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Tabu search has become acceptable worldwide as one of the most efficient intelligent searches
applied to various real-world problems. There have been different modifications made to the
generic tabu search in recent years to achieve better performances. Among those reviewed in
the introduction of this paper, the adaptive tabu search (ATS) has incorporated the backtracking
and the adaptive search radius mechanisms that help accelerate the search and release it from a
local solution lock. The paper explains an enhancement made to the ATS to accomplish multipath
ATS (MATS) algorithms. Performances of the ATS and the MATS are evaluated using surface
optimization problems, and results are presented in the paper. Finally, the MATS is applied to
solve a real-world vehicle control problem.

1. Introduction

The tabu search (TS) [1], one of the most widely used local search techniques, was proposed
to solve the combinatorial optimization problems. The TS is based on the neighbourhood
search approach and adaptive memory. With the common deterministic scheme, the search
process of the TS is commonly based on the recency and the frequency approaches [2, 3].
The high-quality solution found by each search round is stored in the tabu list (TL). In case
of entrapment (deadlock) problems caused by some local minima, the elite solutions stored
in the TL are retrieved according to the aspiration criteria (AC) for starting a new search
such that the search could be released from the deadlock. By literatures, the TS has been
successfully applied to solve optimization problems in various fields, for examples, power
systems [4, 5], transportation [6], flow shop [7], food processing [8], and so forth. However,
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the conventionally simple TS cannot completely handle the deadlock problems. With this
challenging task, some researchers have proposed modified versions of the original TS to
find alternative, more potential versions to overcome such problems. Distinctively modified
version of the TS include the reactive tabu search (RTS) [9, 10], the parallel tabu search (PTS)
[11–13], the modified tabu search (MoTS) [14–16], the probabilistic tabu search (PrTS) [17–
19], and the hybrid tabu search (HTS) [20–29].

Recently, the adaptive tabu search (ATS) has been launched [30] as amodified versions
of the original TS. The ATS consists of the backtracking (BT) and the adaptive search radius
(AR) mechanisms. As firstly introduced in 1996 [7], the BT regarded as a diversification
strategy is used for the search to escape from the deadlocks caused by local minima. The AR
concept introduced in 1989 [31] and regarded as an intensification strategy is applied to speed
up the search process. The convergence analysis and the performance evaluation of the ATS
were reported [30]. In addition, the ATS has been successfully applied to various engineering
problems, for examples, electrical system protection [32], dynamical system identification
[33], control synthesis [34], and acoustic signal processing [35].

This article proposes the multipath adaptive tabu search (MATS) and begins with
the review of the ATS algorithms in Section 2. Section 3 explains the MATS in details and
presents some algorithm analyses. Performance evaluations of the MATS compared with
the ATS via surface optimization problems can be found in Section 4. An application of the
proposed MATS to the control synthesis problem of a scaled vehicle (the Illinois Roadway
Simulator system (IRS) [36]) is illustrated in Section 5. The application is considered as a
special case (n = 2) of the n-dimensional continuous optimization problems. Conclusion
follows in Section 6.

2. Review of the Adaptive Tabu Search

In this section, reviews of the adaptive tabu search (ATS) are provided. The section is divided
into two parts, that is, the ATS algorithms review and its performance evaluation via some
benchmark surface optimization problems.

2.1. Adaptive Tabu Search Algorithms

Regarding the original TS as the predecessor, the adaptive tabu search (ATS) consists of two
additional mechanisms, that is, the backtracking (BT) regarded as a diversification strategy
and the adaptive search radius (AR) regarded as an intensification strategy. The ATS begins
the search with some random initial solutions belonging to an entire search space. In practice,
the users may implement heuristically seeded initial solutions instead. All solutions in a
neighbourhood search space within a certain search radius are evaluated via the objective
function. The solution giving the minimum objective value (cost value) is set as a new
starting point for the next search round and memorized in the tabu list (TL). According to
the original TS algorithm and the TL property, the visited search spaces (or visited solutions)
are prohibited for consecutively generated solutions. These search spaces are remarked as
tabu. However, once the search is held by a local minimum (deadlock problem), the BT
is activated. The BT looks up the TL and selects one of the memorized solutions as a new
starting point. A new search could begin in a new direction. Hence, the search can possibly
be released from the deadlock, and the search proceeds towards a better local minimum.
Once the search approaches an elite local solution, the AR is invoked to speed up the search
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Figure 1: Generic algorithms of the TS and the ATS: (a) generic TS algorithms, (b) generic ATS algorithms,
(c) the BT mechanism of the ATS, and (d) the AR mechanism of the ATS.

process. The search radius is subsequently decreased in accordance with the cost value of
the current solution to provide finer and finer solutions within a short duration. The less the
cost value, the smaller the search radius becomes. With these two mechanisms, a sequence
of solutions obtained by the ATS is efficiently and rapidly converged towards the global
minimum. Figure 1 expresses the generic algorithms of the original TS and the ATS with the
BT and the AR mechanisms, respectively, while Figure 2 depicts the diagram representing
some movements of the ATS. Both figures give a clear view for the reader to follow.

2.2. Performance Evaluation of the ATS

Although the performance evaluation of the ATS has appeared [30], the work reported here
is an extension via six well-known surface optimization problems, that is, Bohachevsky
function (BF), Rastrigin function (RF), Shekel’s foxholes function (SF), Shubert function
(ShF), large area Schwefel function (type-1 or ScF#1), and small area Schwefel function (type-
2 or ScF#2), respectively. Details of these tested functions are summarized in Table 1. Among
these, the ShF contains 18 global solutions while each of the rest has only one.

The ATS algorithms were coded by MATLAB, and run on the Intel Celeron(R),
2.6GHz, 238Mbytes SD-RAM, 30Gbytes HDD. Referring to the Table 1, the global solutions
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Figure 2: Movements of the ATS.

Table 1: Summary of the surface optimization problems.

Surface names Surface functions Search
spaces Sketches

Bohachevsky F(x, y) = x2 +2y2 −0.3 cos(3πx)−0.4 cos(4πy)+0.7,
fmin(0, 0) = 0 [−2, 2]

Rastrigin F(x, y) = x2 + y2 − 10 cos(2πx) − 10 cos(3πy) + 20,
fmin(0, 0) = 0 [−2, 2]

Shekel’s
foxholes

f(x1, x2) =

[1/500 +
∑25

j=1(1/(j +
∑2

i=1 (xi − aij)
6))]

−1

[−40, 40]Where
aij =

( −32 −16 0 16 32 −32 ··· 0 16 32
−32 −32 −32 −32 −32 −16 ··· 32 32 32

)

fmin(−32,−32) = 1

Shubert
f(x, y) =
(
∑5

i=1 i cos((i + 1)x1 + i))(
∑5

i=1 i cos((i + 1)y + i)) [−10, 10]
fmin(xj , yj) = −186.7309, j ∈ {1, 2, . . . , 17, 18}

Schwefel I
f(x1, x2) = 418.9829 × 2 −∑2

i=1(xi sin
√
|xi|),

fmin(421, 421) = 0

[−500, 500]

Schwefel II [400, 500]

of the tested functions are as follows: BF and RF-{x = y = 0 with the cost value f(0, 0) = 0};
SF-{x = y = −32 with f(−32,−32) = 0.998}; ShF-{xj , yj with f(xj , yj) = −186.7309, where
j = 1, 2, . . . , 18}, and ScF#1 and #2-{x = y = 421 with f(421, 421) = 0}. The variables’
boundaries of all tested functions are set to form the corresponding search spaces as declared
in the Table 1.

Following the recommendations [30], the parameter settings of the ATS for each tested
function are declared in the Table 2, where Remax is the maximum allowance of the solution
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Table 2: Setting of the ATS search parameters.

Test
function

ATS parameters

BT AR TCSearch
radius

no. of
neighbours Remax kth Stage I Stage II Stage III Countmax Jmin

BF 0.2 (5%) 30 5 5 J < 0.1,
R = 0.002

J < 0.001,
R = 0.002 — 10,000 1e-9

RF 0.2 (5%) 30 5 5 J < 0.1,
R = 0.002

J < 0.001,
R = 0.002 — 10,000 1e-8

SF 0.8 (1%) 30 5 5 J < 5,
R = 0.2

J < 2,
R = 0.1 — 10,000 0.999

ShF 1.0 (5%) 30 5 5 J < −100,
R = 0.1

J < −150,
R = 0.015 — 10,000 −186.7

ScF#1 100 (10%) 20 5 5 J < 100,
R = 50

J < 10,
R = 0.01

J < 1,
R = 0.001 10,000 1e-4

ScF#2 1.0 (1%) 20 5 5 J < 10,
R = 0.01

J < 1,
R = 0.001 — 10,000 1e-4

Table 3: Results of the ATS’s performance evaluation.

Search results
Test functions

BF RF SF ShF ScF#1 ScF#2

(1) Search time (sec) 5.3940 8.2067 2.2837 3.3978 38.1037 0.2522

(2) Search rounds 556.06 759.80 108.22 342.54 336.24 31.24

(1)/(2) (sec/round) 0.0097 0.0108 0.0211 0.0099 0.1133 0.0081

cycling before invoking the BT, kth is the backward-selected solution by the BT, countmax

is maximum search round, R is search radius, J is the cost value, and Jmin is minimum
cost value used as the termination criteria (TC) for all tests in order to assure the global
minimum found. The performance tests were conducted 50 trials against each tested function
to obtain the average search round and time consumed. Each trial starts with a random initial
solution generated by MATLAB using a seed number. The initial solution forms the center
of a uniformly distributed hypersphere of a given radius, from which a neighbourhood is
generated. The ATS stops when J < Jmin or count ≥ countmax.

The results obtained are summarized in Table 3, where the first row stands for the
average time consumed, the second row is the average search round, and the third row
expresses the average time consumed per one search round. It is found that the ATS yields
very satisfactory search performance in terms of solution convergence and the search time
consumed for all surface optimization problems.

3. Multipath Adaptive Tabu Search (MATS)

In order to improve the search performance of the ATS, one may utilize an exploration
strategy proposed by this paper. The implementation is suitable for use on a single
CPU platform. The proposed MATS consists of partitioning, sequencing, and discarding
mechanisms (PM, SM, and DM), respectively. Each mechanism is described next.
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Partitioning Mechanism (PM)

This mechanism operates only once at the beginning of the search. The PM starts with
decomposing the entire search space into a number of sub-search-spaces defined by the
user. The PM also defines explicit boundaries for the sub-search-spaces, each of which is
given an individual initial solution and an independent ATS path. Since all ATS paths
as the search cores of the MATS use the same set of search parameters, this approach is
referred to as the multiple points single strategy (MPSS). Just before launching the search
paths, the PM removes the predefined boundaries such that all ATS paths could search
freely on the originally entire search space. This technique helps to reduce any conflicts
that may arise during the search along the border lines. Figure 3 summarizes the PM
procedures.

As an example, the surface of the Shekel’s foxholes function (SF) partitioned into 4
sub-search-spaces is shown in Figure 4. The boundaries of the sub-search-spaces are defined
in the form of ((upper limit of the 1st variable) (upper limit of the 2nd variable); (lower limit
of the 1st variable) (lower limit of the 2nd variable)).

Regarding this notion, the entire search space can be defined as [40 40;−40 −40], and the
sub-search-spaces #1, 2, 3, and 4 are confined within [40 40; 0 0], [0 40;−40 0], [0 0;−40 −40]
and [40 0; 0 −40], respectively. In practice, any geometrical forms and coordinates are possible
for the partitioning process to suit the applications. The number of sub-search-spaces must
be finite and not too great, and the problem dimensions are not limited. Subsequently, an ATS
path is assigned to each sub-search-space, and the boundaries are then removed.
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Sequencing Mechanism (SM)

As mentioned earlier, the proposed MATS is intended for the use on a single CPU platform.
Since the MATS possesses a few to many search paths, it needs some organizing mechanisms
for its correct sequential operations. The SM is implemented to accomplish this, and can
be represented by the simple diagram in Figure 5. Assuming that there are n search paths
organized by the SM, the first ATS path (#1ATS) begins its first trial. Afterward, it goes to
the wait state. Once the CPU finishes its service to the #1ATS, it provides the service to the
second path. Once the #2ATS finishes its first search trial, it has to wait. The operation goes on
in this manner until the #nATS finishes its first search trial. The CPU then returns to service
the #1ATS for its second search trial, then the #2, #3, . . . and #nATS, in sequential manner. The
operation is repeated until one of the ATS paths hits the solution, and requests for exiting the
search according to the satisfied termination criterion. Either an equal or an unequal number
of search rounds constitutes one search trial. The works by this paper utilize an equal number
of search rounds for all ATS paths to work on one search trial. Readers may notice that
organizing the search this way, more search paths would result in more wait states making
the search process very time consuming. Hence, the number of search paths employed
must be limited. Moreover, another mechanism, namely, the discarding mechanism (DM)
is introduced and explained in the next section. With the DM, as time goes by, more and more
search paths will be cut off from the search process until only one path is left to continue
searching for most cases. However, an individual ATS can request for a complete termination
once the global solution is found at any time. The SM needs to communicate with the DM to
learn about the existing and the forcedly terminated (or discarded) ATS paths. Thus, the SM
can be summarized by the procedures shown in Figure 6.

Discarding Mechanism (DM)

TheDM is designed to reduce the overall search time of theMATS based on the idea of forcing
some low-quality search paths to stop as soon as possible. Various possible approaches can
be used to implement this idea including evaluation of the search-path quality based on the
cost values of the current best-solutions or a set of previous elite solutions of the specific
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search path, the probability or the possibility of the search path to hit some higher quality
solutions, and so forth. A simple implementation of the recency strategy via the evaluation
of the cost values of the current best-solutions of the search paths is demonstrated. Each time
the DM operates, the number of search paths is reduced by half. However, the number of
search paths to be reduced can be arbitrarily adjusted to suit an application. After this forced
termination made to the low-quality paths, the DM transfers the information concerning the
being-terminated and the existing paths to the SM. Figure 7 summarizes the DM procedures.

According to the previous explanation, the MATS algorithms can be described by the
list in Figure 8 due to the fact that the ATS is used as the core search algorithms.

4. Performance Evaluation

Evaluation of the performance of any search algorithms can be done in several ways, for
example, using data mining, logistic, surface optimization problems, and so forth. The works
reported here have applied the six surface optimization problems described in Section 2 for
the purposes. These test functions are referred to shortly as the BF, RF, SF, ShF, ScF#1, and
ScF#2, respectively, and summarized by the Table 1. Performance comparisons are made
among the ATS, the MATS with 2, 4, 8, 16, 32, and 64 paths denoted as MATS#2, MATS#4,
MATS#8, MATS#16, MATS#32 and MATS#64, respectively.

The PM and the DM settings are rather complicated for the performance investiga-
tions. The SM simple settings can be either fixed or adjustable search rounds for each ATS
path. The fixed numbers of search rounds as well as the same ATS search parameters have
been used throughout the studies. As mentioned earlier, the proposed MATS employs the
multiple points single strategy (MPSS) method.
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The PM settings are now explained by referring to Table 4, which declares the
boundaries of the sub-search-spaces for 2, 4, . . . , 64 paths. As an example, consider the ShF
having its entire space defined by [10 10; −10 −10]. For MATS#32, the ShF is decomposed into
#1[10 10; 7.5 5] for the 1st region, #2[7.5 10; 5 5] for the 2nd, #3[5 10; 2.5 5] for the 3rd, and so
on. The similar approach for space partitioning can be applied to the other surface functions.
In addition, other geometric partitioning techniques and coordinates could be employed to
suit particular applications.

The DM employs the recency strategy by comparing the cost values of the current best-
solutions of the ATS paths. Only the paths with the cost values lower than a preset limit are
kept, otherwise they are discarded. The number of the paths being discarded can be set in the
manner of either a gradual cut or a sudden cut. For the MATS with many search paths, the
sudden cut is preferable such that the wait-state time be minimum. For a moderate to a few
numbers of search paths inside the MATS, the gradual cut is more suitable. Table 5 reveals
the DM settings in details. Let us consider the SF case of 8, 32, and 64 paths as examples.
For the case of SF with MATS#8, the DM becomes active firstly at the 2nd iteration, and 4
search paths are discarded. The DM becomes active again at the 4th and 6th iterations; 2 and
1 paths are forced to stop, respectively. Eventually, there is 1 path left to continue searching.
This is one example of using the gradual cut technique. Different approaches, that is, the
sudden cuts, are found for the cases of MATS#32 and #64. At the 1st iteration of both cases,
31 and 63 search paths are discarded correspondingly. This means that only one path is left
after the 1st iteration to track down the solution as for the cases of MATS#32 and #64. It
is found in some cases, that is, the ShF problem, that good performances are obtained via
having more than one path left for searching and competing for solutions. Note that, for an
effective operation, the qth iteration at which the DM is invoked should be less than half of
the average search rounds consumed by the single path ATS (SRATS). The SRATS data are
presented in row 2, Table 3. Due to the fact that the MATS utilizes more than 1 search path,
the inequality

∑k
i=1(dmi × ni) < SRATS must hold. Consider the case of BF with MATS#4,

∑k
i=1(dmi × ni) = (5 × 4) + (10 × 2) < 556, for instance.

The investigations of the search performance of the proposed MATS were conducted
against the six surface optimization problems on the Intel Celeron(R), 2.6GHz, 250MB-RAM
and 30GB-HDD platform. Each figure of the results reported herein is an average of 50 trials.
Tables 6–9 reveal the detailed results. The averages of search rounds are summarized in
Table 6. However, the figures do not disclose the actual activities performed by the ATS used
as the search core of the MATS. These figures are therefore converted into the equivalent
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Table 6: Average values of search rounds.

Average search rounds obtained from 50 trials

Test
functions

ATS MATS

1-path #2 #4 #8 #16 #32 #64

BF 556.06 530.20 507.94 186.82 142.70 202.34 173.76

RF 759.80 685.40 603.78 713.26 327.32 313.48 200.32

SF 108.22 79.84 72.96 64.62 30.62 54.04 36.16

ShF 342.54 291.56 282.16 75.68 73.02 61.68 70.12

ScF#1 336.24 304.88 294.44 241.56 268.22 263.18 131.10

ScF#2 31.24 30.02 29.20 26.48 24.26 21.58 19.96

Table 7: Equivalent average search rounds with respect to the ATS.

Average search rounds equivalent to those of the ATS

Test
functions

ATS MATS

1-path #2 #4 #8 #16 #32 #64

BF 556.06 535.20 527.94 241.82 272.70 487.34 328.76

RF 759.80 690.40 753.78 735.26 379.32 427.48 263.32

SF 108.22 84.84 80.96 86.62 82.62 85.04 99.16

ShF 342.54 292.56 285.16 310.72 336.08 274.72 340.48

ScF#1 336.24 309.88 299.44 256.56 303.22 295.18 194.10

ScF#2 31.24 30.02 32.20 33.48 39.26 52.58 82.96

averages with-respect-to the ATS as shown in the Table 7. Noticeably, all cases, but the ScF#2,
the MATS search rounds are actually less than those performed by the single path ATS.

The average values of search time tabulated in Table 8 also confirm this. The figures
indicating search time (in seconds) in Table 8 are converted into percent reduction of search
time using the following relation for comparison purposes:

Percent reduction of search time

=

(
average search time of ATS − average search time of MATS

)

average search time of ATS
×100

(4.1)

The percent reduction figures summarized in Table 9 reflect the merits of the MATS.
The proposed MATS can effectively reduce the search time in the range of 4.08–56.79%,
except that it is not efficient for the ScF#2 problem. Among the six test functions, only
the ScF#2 is actually smooth over the entire search space whereas the MATS is not aimed
for. The conventional optimization methods should be favourable to this kind of problems.
The contemporary search methods, for example, the MATS and those of the local search
algorithms, and so forth, are more suitable to the problems having Pareto front, nonsmooth
surfaces, andmultiple global solutions in nature. The numeric figures in Table 9 are displayed
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Table 8: Average values of search time in seconds.

Test functions

Average search time in seconds obtained from 50 trials

ATS MATS

1-path #2 #4 #8 #16 #32 #64

BF 5.3940 5.0516 4.8901 2.3435 2.3309 4.1309 3.3029

RF 8.2067 6.5863 6.9925 7.2175 4.5316 5.0078 7.3221

SF 2.2837 1.8818 1.7697 1.8134 1.3918 1.7944 1.8431

ShF 3.3978 2.9819 3.1369 2.4038 2.6099 2.2640 2.9433

ScF#1 38.1037 30.3475 34.6200 28.1975 33.7100 34.8431 29.2327

ScF#2 0.2522 0.2419 0.2609 0.3009 0.3213 0.4350 1.5179

Table 9: Percent reduction of search time.

Test functions

Percent reduction of search

ATS MATS

1-path #2 #4 #8 #16 #32 #64

BF 0.0000 6.35 9.34 56.55 56.79 23.42 38.77

RF 0.0000 19.74 14.80 12.05 44.78 38.98 10.78

SF 0.0000 17.60 22.51 20.59 39.06 21.43 19.29

ShF 0.0000 12.24 7.68 29.25 23.19 33.37 13.38

ScF#1 0.0000 20.36 9.14 26.00 11.53 8.56 23.28

ScF#2 0.0000 4.08 −3.45 −19.31 −27.40 −72.48 −501.86

as bar graphs in Figure 9 to give a clear view of the merits of the MATS whereas the negative
values indicate the nonproductive domain of the MATS.

To complement the revealed results, the cost values are also monitored and plotted
as the convergence curves illustrated in Figure 10, for instance. Referring to Figure 10, the
accepted solutions must have the costs of less than 1e-9; the ATS hits the solution within
5.7650 s.; path#1 of the MATS#2 succeeds within 5.3440 s.; path#3 of the MATS#4 succeeds
within 4.7500 s., and so forth. At present, it can be said that the proposed MATS performs
faster than the single-path ATS; its speed for the best case (on a single CPU platform) is
twice as much of the ATS speed; for the worst case its performance is about the same
as the ATS, and the MATS can effectively reduce the search time by 30% as an average
figure.

5. An Application: Car Control System in Roadway Simulator

This section presents the application of the proposed MATS algorithms for solving a real-
world control problem of a car model.

The Illinois Roadway Simulator (IRS) has been proposed [36] to study the effects of
road surface on car dynamics. The IRS is a reduced scale car model for a laboratory use. It



14 Journal of Applied Mathematics

#2 #4 #8 #16 #32 #64

0

20

40

60

80

100

Number of paths

BF
R

ed
uc

ti
on

 o
f s

ea
rc

h 
ti

m
e
(%

)

6.35% 9.34%

56.55% 56.79%

23.42%

38.77%

(a)

#2 #4 #8 #16 #32 #64

0

20

40

60

80

100
RF

Number of paths

R
ed

uc
ti

on
 o

f s
ea

rc
h 

ti
m

e
(%

)

19.74%
14.79% 12.05%

44.78%
38.98%

10.78%

(b)

SF

#2 #4 #8 #16 #32 #64

0

20

40

60

80

100

Number of paths

17.60%
22.51% 20.59%

39.05%

21.42% 19.29%

R
ed

uc
ti

on
 o

f s
ea

rc
h 

ti
m

e
(%

)

(c)

ShF

#2 #4 #8 #16 #32 #64

0

20

40

60

80

100

Number of paths

12.24%
7.68%

29.25%
23.19%

33.37%

13.37%

R
ed

uc
ti

on
 o

f s
ea

rc
h 

ti
m

e
(%

)

(d)

ScF1

#2 #4 #8 #16 #32 #64

0

20

40

60

80

100

Number of paths

20.35%
9.14%

26%

11.53% 8.56%

23.28%

R
ed

uc
ti

on
 o

f s
ea

rc
h 

ti
m

e
(%

)

(e)

0 ScF2

#2 #4 #8 #16 #32 #64

Number of paths

−500

−400

−300

−200

−100

4.08% −3.45%−19.31%−27.40%
−72.48%

−501.86%

R
ed

uc
ti

on
 o

f s
ea

rc
h 

ti
m

e
(%

)

(f)

Figure 9: Bar graphs of the reduction of search time in percentages.

possesses the dynamics very similar to those of an actual car. In this, the yaw rate control
is the issue of interest. The transfer function models of the IRS have been developed by
applying the Buckingham-Pi theorem as well as system identification. The obtained transfer
functions consist of the plant dynamic (G) and the disturbance dynamic (Gd) constituting
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Figure 11: Block diagram representing the original yaw-rate control problem.

the vehicle dynamics. The block diagram shown in Figure 11 indicating the 3-DOF control
structure represents the original system.

The three controllers, namely, Gdc, Gff , and Gfb are designed via the model reference
control (MRC) method. The vehicle models and the controllers are listed as follows:

G =
2.802e4s + 2.306e5

1.5s4 + 94.43s3 + 7.308e4s2 + 1.183e5s + 5.361e5
,

Gd =
8.024e4s + 6.710e5

1.3s4 + 53.250s3 + 1.943e3s2 + 2.693e4s + 1.162e5
,
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Gdc =
−1.2036e5s5 − 8.584e6s4 − 6.497e8s3 − 1.44e10s2 − 1.224e11s − 3.598e11
3.6426e4s5 + 1.792e6s4 + 6.671e7s3 + 1.202e9s2 + 9.464e9s + 2.679e10

,

Gff =
103s2 + 1.8542e4s + 8.34385e5

s3 + 155.3s2 + 3.727e3s + 2.0714e4
,

Gfb =
−5.181s3 + 49.98s2 + 5.294e3s + 4.8142e4

s3 + 155.3s2 + 3.727e3s + 2.0714e4
.

(5.1)

Note that the controllers Gffand Gfb have the same poles. Referring to Figure 11, the
system transfer function, Girs can be expressed as

Girs(s) =
Y (s)
R(s)

=
Gd +G ·Gdc +G ·Gff

1 +G ·Gfb
, (5.2)

and hence

Girs =
b23s

23 + b22s
22 + · · · + b1s + b0

a27s27 + a26s26 + · · · + a1s + a0
, (5.3)

where the coefficients ai, i = 0, 1, 2, . . . , 27 and bi, i = 0, 1, 2, . . . , 23 are summarized in Table 10.
The unit step response of the original control system is depicted in Figure 12. The

response possesses 40ms delay time, and smoothly rises to the final value in 0.552 s.
To compensate for the delay time, an additional PD-controller is proposed in cascade

connection to the Gff . The theoretical PD-controller of the form GPD = KDs + KP is
considered. Thus, the Gff block is modified to be GPD · Gff . The design of the PD-
controller is not straight-forward because of the complexity of the existing control system
structure. So, the search method has been applied to find an optimum PD-controller such
that the following objectives are satisfied: P.O. < 0.1% (no overshoot preferred), rise-
time (tr) < 0.231 s., and settling-time (ts) < 5tr s. The control design problem becomes a
multiobjective optimization problem in which the surrogate objective function, J , is formed
such that

J = α1tsj + α2trj + α3P.O., (5.4)

where trj = % rise-time (normalized), tsj = % settling-time (normalized), P.O. = % overshoot,
and α1, α2, and α3 =weighting factors.

In this application, the factors α1 = α2 = α3 = 1, and the penalty concept is
applied to trj , tsj , P.O. and J , respectively. Figure 13 provides the list of the objective function
procedures.

The max-min ranges of both KP and KD for the search are (2, 0). The MATS with two
ATS-paths is used with the following settings: [2 2; 1 0] and [1 2; 0 0] for the PM, and the
qth iteration = 50 for the DM. The initial solutions for the ATS#1 and #2 are (KP = 1.824,
KD = 0.153) and (KP = 0.329, KD = 0.776), respectively. The search parameters of the ATS
are as follows: initial R = 0.2, N = 5, Nre max = 5, kth backward for the BT = 5, (J < 90) →
(R = 0.1) and (J < 70) → (R = 0.05) for the AR, and countmax = 10, 000 or J < 65 for the TC.
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Table 10: The coefficients of the transfer function in (5.3).

The coefficients
ai bi

a0 = 4.115e41 a10 = 3.346e35 a20 = 4.678e20 b0 = 3.565e42 b8 = 9.645e37 b16 = 4.055e26
a1 = 6.265e41 a11 = 2.225e34 a21 = 6.423e18 b1 = 4.813e42 b9 = 7.143e36 b17 = 6.618e24
a2 = 4.480e41 a12 = 1.251e33 a22 = 7.331e16 b2 = 3.016e42 b10 = 4.307e35 b18 = 8.798e22
a3 = 2.001e41 a13 = 5.979e31 a23 = 6.805e14 b3 = 1.165e42 b11 = 2.136e34 b19 = 9.327e20
a4 = 6.265e40 a14 = 2.445e30 a24 = 4.957e12 b4 = 3.107e41 b12 = 8.779e32 b20 = 7.624e18
a5 = 1.462e40 a15 = 8.580e28 a25 = 2.671e10 b5 = 6.075e40 b13 = 3.006e31 b21 = 4.525e16
a6 = 2.643e39 a16 = 2.590e27 a26 = 9.423e7 b6 = 9.037e39 b14 = 8.590e29 b22 = 1.7521e14
a7 = 3.797e38 a17 = 6.729e25 a27 = 1.598e5 b7 = 1.048e39 b15 = 2.048e28 b23 = 3.075e11
a8 = 4.417e37 a18 = 1.503e24
a9 = 4.219e36 a19 = 2.873e22
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Figure 12: Original system response.

As a result shown in Figure 14, path#1 of the MATS#2 spent 217.1648 s to track down
the solutionsKP = 1.0 andKD = 0.07 at the 326th iteration with the cost J = 61.7234. Figure 15
illustrates the step responses of the original and the enhanced systems for comparison
purposes. It can be observed that the delay time is reduced by 97%, and the rise-time and
settling-time are reduced by 30%, approximately.

6. Conclusion

The development of the multipath adaptive tabu search (MATS) has been reported by this
paper. The algorithms incorporates the partitioning, sequencing, and discardingmechanisms,
respectively, to the ATS, and can be run efficiently on a single CPU platform as being
confirmed by the detailed performance assessment results using the well-known surface
optimization problems. According to the assessment results, the MATS is about two-times
faster than the ATS as the best case. Moderately, the MATS renders 30% reduction in the
search time compared to the ATS. However, the MATS is not suitable for some smooth
problems as it consumes more search time than the single ATS does. The paper has been



18 Journal of Applied Mathematics

Simulate the control system.

Calculate the cost value and exit.

Step 1: Input argument loading
Load values of KP and KD as input arguments.

Step 2: Simulation

Return step response as the simulation results.
Step 3: Performance extraction

Extract P.O. , rise-time and settling-time from the output.
Step 4: Cost generation

Figure 13: The objective function procedures for the control problem.
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Figure 14: Convergence curves of the PD-controller design problem.
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Figure 15: Comparison of the step responses.

closed by an illustrative example of using the MATS to solve the multiparameter control
problem of a reduced scale vehicle in which the enhanced system becomes 4-DOF. The very
satisfactory results obtained confirm the effectiveness and the usefulness of the proposed
algorithms. The proposed algorithmic mechanisms described herein are open enough for
applications to other search algorithms.
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