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We introduced (λ, μ)-fuzzy ideals, (λ, μ)-fuzzy interior ideals, (λ, μ)-fuzzy quasi-ideals, and (λ, μ)-
fuzzy bi-ideals of an ordered semigroup and studied them. When λ = 0 and μ = 1, we meet
the ordinary fuzzy ones. This paper can be seen as a generalization of Kehayopulu and Tsingelis
(2006), Kehayopulu and Tsingelis (2007), and Yao (2009).

1. Introduction and Preliminaries

An ideal of a semigroup is a special subsemigroup satisfying certain conditions. The best way
to know an algebraic structure is to begin with a special substructure of it. There are plenty
of papers on ideals. After Zadeh’ introduction of fuzzy set in 1965 (see [1]), the fuzzy sets
have been used in the reconsideration of classical mathematics. Also, fuzzy ideals have been
considered by many researchers. For example, Kim [2] studied intuitionistic fuzzy ideals of
semigroups, Meng and Guo [3] researched fuzzy ideals of BCK/BCI-algebras, Koguep [4]
researched fuzzy ideals of hyperlattices, and Kehayopulu and Tsingelis [5] researched fuzzy
interior ideals of ordered semigroups.

Recently, Yuan et al. [6] introduced the concept of fuzzy subfield with thresholds. A
fuzzy subfield with thresholds λ and μ is also called a (λ, μ)-fuzzy subfield. Yao continued to
research (λ, μ)-fuzzy normal subfields, (λ, μ)-fuzzy quotient subfields, (λ, μ)-fuzzy subrings,
and (λ, μ)-fuzzy ideals in [7–10]. Feng et al. researched (λ, μ)-fuzzy sublattices and (λ, μ)-
fuzzy subhyperlattices in [11].
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An ordered semigroup (S, ◦,≤) is a poset (S,≤) equipped with a binary operation ◦,
such that

(1) (S, ◦) is a semigroup, and

(2) if x, a, b ∈ S, then

a ≤ b ⇒
{
a ◦ x ≤ b ◦ x
x ◦ a ≤ x ◦ b. (1.1)

Given an ordered semigroup S, a fuzzy subset of S (or a fuzzy set in S) is an arbitrary
mapping f : S → [0, 1], where [0, 1] is the usual closed interval of real numbers. For any
α ∈ [0, 1], fα is defined by fα = {x ∈ S|f(x) ≥ α}. For a ∈ S, we define that Aα = {(y, z) ∈
S × S|a ≤ yz}. For two fuzzy subsets f and g of S, we define the multiplication of f and g as
the fuzzy subset of S defined by

(
f ∗ g)(a) =

⎧⎪⎨
⎪⎩

sup
(y,z)∈Aa

(
f
(
y
) ∧ g(z)

)
, if Aa /= ∅,

0, if Aa = ∅.
(1.2)

In the set of fuzzy subsets of S, we define the order relation as follows: f ⊆ g if and
only if f(x) ≤ g(x) for all x ∈ S. For two fuzzy subsets f and g of S, we define

(
f ∩ g

)
(x) = f(x) ∧ g(x),

(
f ∪ g

)
(x) = f(x) ∨ g(x). (1.3)

Note that we use a ∧ b to denote min(a, b) and use a ∨ b to denote max(a, b).
For any α ∈ [0, 1], α can be seen as a fuzzy subset of S which is defined by α(x) = α,

for all x ∈ S.
In the following, we will use S or (S, ◦,≤) to denote an ordered semigroup and the

multiplication of x, y will be xy instead of x ◦ y.
In the rest of this paper, we will always assume that 0 ≤ λ < μ ≤ 1.
In this paper, we introduced (λ, μ)-fuzzy ideals, (λ, μ)-fuzzy interior ideals, (λ, μ)-

fuzzy quasi-ideals and (λ, μ)-fuzzy bi-ideals of an ordered semigroup. We obtained the
followings:

(1) in an ordered semigroup, every (λ, μ)-fuzzy ideal is a (λ, μ)-fuzzy interior ideal;

(2) in an ordered semigroup, every (λ, μ)-fuzzy right (resp. left) ideal is a (λ, μ)-fuzzy
quasi-ideal;

(3) in an ordered semigroup, every (λ, μ)-fuzzy quasi-ideal is a (λ, μ)-fuzzy bi-ideal;

(4) in a regular ordered semigroup, the (λ, μ)-fuzzy quasi-ideals and the (λ, μ)-fuzzy
bi-ideals coincide.

2. (λ, μ)-Fuzzy Ideals and (λ, μ)-Fuzzy Interior Ideals

Definition 2.1. Let (S, ·,≤) be an ordered semigroup. A fuzzy subset f of S is called a (λ, μ)-
fuzzy right ideal (resp. (λ, μ)-fuzzy left ideal) of S if
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(1) f(xy) ∨ λ ≥ f(x) ∧ μ (resp. f(xy) ∨ λ ≥ f(y) ∧ μ ) for all x, y ∈ S, and

(2) if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ μ for all x, y ∈ S.

A fuzzy subset f of S is called a (λ, μ)-fuzzy ideal of S if it is both a (λ, μ)-fuzzy right
and a (λ, μ)-fuzzy left ideal of S.

Example 2.2. Let (S, ∗,≤) be an ordered semigroup where S = {e, a, b} and e ≤ a ≤ b. The
multiplication table is defined by the following:

∗ e a b

e e a b
a a b e
b b e a

(2.1)

A fuzzy set f is defined as follows:

S e a b

f 0.1 0.2 0.3
(2.2)

Then, f is a (0.3, 0.7)-fuzzy ideal of S. But it is not a fuzzy ideal of S.

Definition 2.3 (see [12]). If (S, ◦,≤) is an ordered semigroup, a nonempty subset A of S is
called an interior ideal of S if

(1) SAS ⊆ A, and

(2) if a ∈ A, b ∈ S, and b ≤ a, then b ∈ A.

Definition 2.4. If (S, ◦,≤) is an ordered semigroup, a fuzzy subset f of S is called a (λ, μ)-fuzzy
interior ideal of S if

(1) f(xay) ∨ λ ≥ f(a) ∧ μ for all x, a, y ∈ S, and

(2) if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ μ.

In the previous example, f is also a (0.3, 0.7)-fuzzy interior ideal of S. In fact, every
fuzzy ideal of an ordered semigroup is a fuzzy interior.

Theorem 2.5. Let (S, ◦,≤) be an ordered semigroup and f a (λ, μ)-fuzzy ideal of S, then f is a
(λ, μ)-fuzzy interior ideal of S.

Proof. Let x, a, y ∈ S. Since f is a (λ, μ)-fuzzy left ideal of S and x, ay ∈ S, we have

f
(
x
(
ay

)) ∨ λ ≥ f
(
ay

) ∧ μ. (2.3)

Since f is a (λ, μ)-fuzzy right ideal of S, we have

f
(
ay

) ∨ λ ≥ f(a) ∧ μ. (2.4)
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From (2.3) and (2.4)we know that f(xay) ∨ λ = (f(x(ay)) ∨ λ) ∨ λ ≥ (f(ay) ∧ μ) ∨ λ =
(f(ay) ∨ λ) ∧ (μ ∨ λ) ≥ f(a) ∧ μ.

Theorem 2.6. Let (S, ◦,≤) be an ordered semigroup, then f is a (λ, μ)-fuzzy interior ideal of S if and
only if fα is an interior ideal of S for all α ∈ (λ, μ].

Proof. Let f be a (λ, μ)-fuzzy interior ideal of S and α ∈ (λ, μ].
First of all, we need to show that xay ∈ fα, for all a ∈ fα, x, y ∈ S.
From f(xay) ∨ λ ≥ f(a) ∧ μ ≥ α ∧ μ = α and λ < α, we conclude that f(xay) ≥ α, that

is, xay ∈ fα.
Then, we need to show that b ∈ fα for all a ∈ fα, b ∈ S such that b ≤ a.
From b ≤ awe know that f(b) ∨ λ ≥ f(a) ∧ μ and from a ∈ fα we have f(a) ≥ α. Thus,

f(b) ∨ λ ≥ α ∧ μ = α. Notice that λ < α, then we conclude that f(b) ≥ α, that is, b ∈ fα.
Conversely, let fα be an interior ideal of S for all α ∈ (λ, μ].
If there are x0, a0, y0 ∈ S, such that f(x0a0y0)∨λ < α = f(a0)∧μ, then α ∈ (λ, μ], f(a0) ≥

α and f(x0a0y0) < α. That is a0 ∈ fα and x0a0y0 /∈ fα. This is a contradiction with that fα is
an interior ideal of S. Hence f(xay) ∨ λ ≥ f(a) ∧ μ holds for all x, a, y ∈ S.

If there are x0, y0 ∈ S such that x0 ≤ y0 and f(x0) ∨ λ < α = f(y0) ∧ μ, then α ∈
(λ, μ], f(y0) ≥ α, and f(x0) < α, that is, y0 ∈ fα and x0 /∈ fα. This is a contradiction with that
fα is an interior ideal of S. Hence if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ μ.

3. (λ, μ)-Fuzzy Quasi-Ideals and (λ, μ)-Fuzzy Bi-Ideals

Definition 3.1. Let (S, ◦,≤) be an ordered semigroup. A subset A of S is called a quasi-ideal of
S if

(1) AS ∩ SA ⊆ S, and

(2) if x ∈ S and x ≤ y ∈ A, then x ∈ A.

Definition 3.2. A nonempty subset A of an ordered semigroup S is called a bi-ideal of S if it
satisfies

(1) ASA ⊆ A, and

(2) x ∈ S and x ≤ y ∈ A, then x ∈ A.

Definition 3.3. Let (S, ◦,≤) be an ordered semigroup. A fuzzy subset f of S is called a (λ, μ)-
fuzzy quasi-ideal of S if

(1) f ∪ λ ⊇ (f ∗ 1) ∩ (1 ∗ f) ∩ μ, and

(2) if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ μ for all x, y ∈ S.

Definition 3.4. Let (S, ◦,≤) be an ordered semigroup. A fuzzy subset f of S is called a (λ, μ)-
fuzzy bi-ideal of S if for all x, y, z ∈ S,

(1) f(xyz) ∨ λ ≥ (f(x) ∧ f(z)) ∧ μ, and

(2) if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ μ.

Remark 3.5. It is easy to see that a fuzzy quasi-ideal [13] of S is a (0, 1)-fuzzy quasi-ideal of S,
and a fuzzy bi-ideal [13] of S is a (0, 1)-fuzzy bi-idealof S.
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Theorem 3.6. Let (S, ◦,≤) be an ordered semigroup, then f is a (λ, μ)-fuzzy quasi-ideal of S if and
only if fα is a quasi-ideal of S for all α ∈ (λ, μ].

Proof. Let f be a (λ, μ)-fuzzy quasi-ideal of S and α ∈ (λ, μ].
First of all, we need to show that Sfα ∩ fαS ⊆ fα.
If x ∈ Sfα ∩ fαS, then x = st1 = t2s for some t1, t2 ∈ fα and s ∈ S.
From f ∪λ ⊇ (f ∗1)∩ (1∗f)∩μ, we conclude that f(x)∨λ ≥ (f ∗1)(x)∧ (f ∗1)(x)∧μ ≥

f(t1) ∧ f(t2) ∧ μ ≥ α ∧ μ = α. Thus, f(x) ≥ α, and so x ∈ fα. Hence, S ∗ fα ∩ fα ∗ S ⊆ fα.
Next, we need to show that b ∈ fα for all a ∈ fα, b ∈ S such that b ≤ a.
From b ≤ awe know that f(b) ∨ λ ≥ f(a) ∧ μ and from a ∈ fα we have f(a) ≥ α. Thus,

f(b) ∨ λ ≥ α ∧ μ = α. Notice that λ < α, we conclude that f(b) ≥ α, that is, b ∈ fα.
Conversely, let fα be a quasi-ideal of S for all α ∈ (λ, μ]. Then, fαS ∩ Sfα ⊆ fα.
If there is x0 ∈ S, such that f(x0) ∨ λ < α = (f ∗ 1)(x) ∧ (1 ∗ f)(x) ∧ μ, then α ∈

(λ, μ], f(x0) < α, (f ∗ 1)(x0) ≥ α and (1 ∗ f)(x0) ≥ α. That is x0 /∈ fα, supx0≤x1x2
f(x1) ≥ α and

supx0≤x1x2
f(x2) ≥ α.

From fαS ∩ Sfα ⊆ fα and x0 /∈ fα, we obtain that x0 /∈ fαS ∩ Sfα.
From supx0≤x1x2

f(x1) ≥ α and α/= 0, we know that there exists at least one pair (x1, x2) ∈
S × S such that x0 ≤ x1x2 and f(x1) ≥ α. Thus, x0 ≤ x1x2 ∈ fαS. Hence, x0 ∈ fαS.

Similarly, we can prove that x0 ∈ Sfα.
So x0 ∈ fαS ∩ Sfα. This is a contradiction.
Hence, f ∪ λ ⊇ (f ∗ 1) ∩ (1 ∗ f) ∩ μ holds.
If there are x0, y0 ∈ S such that x0 ≤ y0 and f(x0) ∨ λ < α = f(y0) ∧ μ, then α ∈

(λ, μ], f(y0) ≥ α and f(x0) < α, that is, y0 ∈ fα and x0 /∈ fα. This is a contradiction with that
fα is a quasi-ideal of S. Hence if x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ μ.

Theorem 3.7. Let (S, ◦,≤) be an ordered semigroup, then f is a (λ, μ)-fuzzy bi-ideal of S if and only
if fα is a bi-ideal of S for all α ∈ (λ, μ].

Proof. The proof of this theorem is similar to the proof of the previous theorem.

Theorem 3.8. Let (S, ◦,≤) be an ordered semigroup, then the (λ, μ)-fuzzy right (resp. left) ideals of
S are (λ, μ)-fuzzy quasi-ideals of S.

Proof. Let f be a (λ, μ)-fuzzy right ideal of S and x ∈ S. First we have

((
f ∗ 1) ∩ (

1 ∗ f))(x) = (
f ∗ 1)(x) ∧ (

1 ∗ f)(x). (3.1)

If Ax = ∅, then we have (f ∗ 1)(x) = 0 = (1 ∗ f)(x). So f(x) ∨ λ ≥ 0 = (f ∗ 1)(x) ∧ (1 ∗
f)(x) ∧ μ. Thus, f ∪ λ ⊇ (f ∗ 1) ∩ (1 ∗ f) ∩ μ.

If Ax /= ∅, then

(
f ∗ 1)(x) = sup

(u,v)∈Ax

(
f(u) ∧ 1(v)

)
. (3.2)

On the other hand, f(x) ∨ λ ≥ f(u) ∧ 1(v) ∧ μ, for all (u, v) ∈ Ax.
Indeed, if (u, v) ∈ Ax, then x ≤ uv, thus f(x) ∨ λ = f(x) ∨ λ ∨ λ ≥ (f(uv) ∧ μ) ∨ λ =

(f(uv) ∨ λ) ∧ (λ ∨ μ) ≥ (f(u) ∧ μ) ∧ μ = f(u) ∧ μ = f(u) ∧ 1(v) ∧ μ.
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Hence, we have that f(x) ∨ λ ≥ (sup(u,v)∈Ax
(f(u) ∧ 1(v))) ∧ μ = (f ∗ 1)(x) ∧ μ ≥

(f ∗ 1)(x) ∧ (1 ∗ f)(x) ∧ μ. Thus, f ∪ λ ⊇ (f ∗ 1) ∩ (1 ∗ f) ∩ μ.
Therefore, f is a (λ, μ)-fuzzy quasi-ideal of S.

Theorem 3.9. Let (S, ◦,≤) be an ordered semigroup, then the (λ, μ)-fuzzy quasi-ideals of S are (λ, μ)-
fuzzy bi-ideals of S.

Proof. Let f be a (λ, μ)-fuzzy quasi-ideal of S and x, y, z ∈ S. Then we have that

f
(
xyz

) ∨ λ ≥ (
f ∗ 1)(xyz) ∧ (

1 ∗ f)(xyz) ∧ μ. (3.3)

From (x, yz) ∈ Axyz, we have that (f ∗ 1)(xyz) ≥ f(x) ∧ 1(yz) = f(x).
From (xy, z) ∈ Axyz, we have that (1 ∗ f)(xyz) ≥ 1(xy) ∧ f(z) = f(z).
Thus, f(xyz) ∨ λ ≥ f(x) ∧ f(z) ∧ μ.
Therefore, f is a (λ, μ)-fuzzy bi-ideal of S.

Definition 3.10 (see [5]). An ordered semigroup (S, ◦,≤) is called regular if for all a ∈ S there
exists x ∈ S such that a ≤ axa.

Theorem 3.11. In a regular ordered semigroup S, the (λ, μ)-fuzzy quasi-ideals and the (λ, μ)-fuzzy
bi-ideals coincide.

Proof. Let f be a (λ, μ)-fuzzy bi-ideal of S and x ∈ S. We need to prove that

f(x) ∨ λ ≥ (
f ∗ 1)(x) ∧ (

1 ∗ f) ∧ μ. (3.4)

If Ax = ∅, it is easy to verify that condition (3.4) is satisfied.
Let Ax /= ∅.
(1) If (f ∗ 1)(x)∧μ ≤ f(x)∨ λ, then we have that f(x)∨ λ ≥ (f ∗ 1)(x)∧μ ≥ (f ∗ 1)(x)∧

(1 ∗ f)(x) ∧ μ. Thus, condition (3.4) is satisfied.
(2) If (f ∗ 1)(x) ∧ μ > f(x) ∨ λ, then there exists at least one pair (z,w) ∈ Ax such that

f(z) ∧ 1(w) ∧ μ > f(x) ∨ λ. That is z,w ∈ S, x ≤ zw and f(z) ∧ μ > f(x) ∨ λ.
We will prove that (1∗f)(x)∧μ ≤ f(x)∨λ. Then, f(x)∨λ ≥ (1∗f)(x)∧μ ≥ (f ∗1)(x)∧

(1 ∗ f)(x) ∧ μ, and condition (3.4) is satisfied.
For any (u, v) ∈ Ax, we need to show that 1(u) ∧ f(v) ∧ μ ≤ f(x) ∨ λ.
Let (u, v) ∈ Ax, then x ≤ uv for some u, v ∈ S. Since S is regular, there exists s ∈ S such

that x ≤ xsx.
From x ≤ xsx, x ≤ zw and x ≤ uv, we obtain that x ≤ zwsuv. Since f is a (λ, μ)-fuzzy

bi-ideal of S, we have that

f(x) ∨ λ ≥ (
f(zwsuv) ∧ μ

) ∨ λ =
(
f(zwsuv) ∨ λ

) ∧ (
μ ∨ λ

) ≥ f(z) ∧ f(v) ∧ μ. (3.5)

Note that f(z) ∧ μ > f(x) ∨ λ. Thus, f(x) ∨ λ ≥ f(v) ∧ μ = 1(u) ∧ f(v) ∧ μ.
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