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Using the modulus of smoothness, directional derivatives of multivariate Bernstein operators
with weights are characterized. The obtained results partly generalize the corresponding ones for
multivariate Bernstein operators without weights.

1. Introduction

For the simplex S = Sd in Rd(d = 1, 2, . . .),

S =

{
x = (x1, x2, . . . , xd); xi ≥ 0, i = 1, 2, . . . , d, |x| =

d∑
i=0

xi ≤ 1

}
, (1.1)

we denote C(S) the space of continuous functions on S equipped with the norm

∥∥f∥∥ = sup
x∈S

∣∣f(x)∣∣. (1.2)

Let f ∈ C(S), for each n ∈ N0 (N0 = N ∪{0}, Nd
0 = N0 ×N0 × · · · ×N0 ∈ Rd), the multivariate

Bernstein polynomial of f is defined by

Bn,d

(
f ; x
)
=
∑
|k|≤n

Pn,k(x)f
(
k
n

)
, x ∈ S, (1.3)
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where k = (k1, k2, . . . , kd)with nonnegative integers ki (i = 0, 1, 2, . . . , n), and

Pn,k(x) =
n!

(n − |k|)!x
k(1 − |x|)n−|k|,

|x| =
d∑
i=0
xi, |k| =

d∑
i=0
ki ,

(1.4)

with the convention

k! = k1!k2! · · · kd! , xk = xk1
1 xk2

2 · · ·xkd
d . (1.5)

Obviously, the multivariate Bernstein operators given in (1.3) can be reduced as the
classical Bernstein polynomials in case d = 1, that is,

Bn

(
f, x
)
:= Bn,1

(
f, x
)
:=

n∑
k=0

f

(
k

n

)
Pn,k(x), x ∈ [0, 1]. (1.6)

Here introduce the crucial notations of our investigation. First, with the simplex S,
we denote VS the set of unit vectors in the directions of the edges of S where ei and −ei
are considered to be the same vectors. That is, ei = (0, 0, . . . ,

ith
1 , 0, . . . , 0) (1 ≤ i ≤ d) and

eij = ei − ej (1 ≤ i < j ≤ d). With a direction ξ ∈ VS and a point x ∈ S, we define the
step-weight function

ϕ2
ξ(x) = inf

x+λξ/∈S, λ>0
d(x, x + λξ) inf

x−λξ/∈S, λ>0
d(x, x − λξ), (1.7)

where d(x,y) is the Euclidean distance between x and y in Rd. Obviously, as x ∈ S, the ϕ2
ξ
(x)

can further be expressed as:

ϕ2
ξ(x) =

⎧⎪⎨
⎪⎩
xi(1 − |x|), if ξ = ei, 1 ≤ i ≤ d,

2xixj if ξ =
ei − ej√

2
, 1 ≤ i < j ≤ d.

(1.8)

It is clear that ϕ2
ξ(x) can be reduced as the classical Bernstein polynomials’ step-weight

function ϕ2(x) = ϕξ(x)
2 = x(1 − x) (x ∈ [0, 1]) in case d = 1.

The multivariate Jacobiweight function in this paper is denoted as follows:

ω(x) = xα(1 − |x|)β, x ∈ S, (1.9)

where α = (α1, α2, . . . , αd) ∈ Rd, 0 < αi, β < 1, i = 1, 2, . . . , d, xα = xα1
1 xα2

2 , . . . , xαd

d
.
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The rth symmetric difference of function f with the direction e is given by

Δr
hef(x) =

⎧⎪⎨
⎪⎩

r∑
i=0

Ci
r(−1)if

(
x +
( r
2
− i
)
he
)
, if x ± rhe

2
∈ S,

0, otherwise.
(1.10)

Using the above notation, the weighted Sobolev space in S is then defined by

Wr,∞
φ (S) =

{
f ∈ C(S) : ωf ∈ C(S), f ∈ Cr

( ◦
S

)
, ωϕr

ijD
r
ijf ∈ C(S), 1 ≤ i ≤ j ≤ d, r ∈ N

}
,

(1.11)

where
◦
S is the inner of S.
Furthermore, the weighted K-functional is defined by

Kr
ϕ(f, t

r)ω = inf
g∈Wr,p

φ

⎧⎨
⎩
∥∥ω(f − g

)∥∥ + tr
∑

1≤i≤j≤d

∥∥∥ωϕr
ijD

r
ijg
∥∥∥
⎫⎬
⎭, (1.12)

and the weighted modulus is

Ωr
ϕ(f, t)ω = sup

0<h≤t

∑
1≤i≤j≤d

∥∥∥ωΔr
hϕij eij

f
∥∥∥, (1.13)

where ‖ωf‖ = maxx∈S|ω(x)f(x)| is the weighted form. From [1], there exists a positive
constant C,

C−1Kr
ϕ

(
f, tr
)
ω ≤ Ωr

ϕ

(
f, t
)
ω ≤ CKr

ϕ

(
f, tr
)
ω. (1.14)

Throughout the paper, the letter C, appearing in various formulas, denotes a positive
constant independent of n, x, and f . Its value may be different at different occurrences, even
within the same formula.

The close connection between the derivatives of Bernstein-type operators and the
smoothness of functions has been well investigated by Ditzian, Totik, Ivanov and some
other mathematicians (see [2–6], etc.) In [2], Ditzian has studied the relations between the
derivatives of classical Bernstein operators Bn,1(f, x) and the smoothness of the function
f . In [7], we have presented the relation between the derivatives of classical Bernstein
operators and the smoothness of function f with Jacobi weights. Zhou has considered the
approximation problems of higher-dimensional Bernstein operators with Jacobi weights, and
has pointed out the unboundedness of Bernstein operators with Jacobi weights in the usual
norm [8]. Because of the unboundedness of Bn,d(f, x) operators with weights in C(S), he
used the method of space reduction, that is,

C0(S) =
{
f ∈ C(S) : f(x)|x∈∂S = 0

}
(1.15)
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has been taken instead ofC(S)(∂S is the boundary of S). He then has shown the characteristic
of the two dimensional Bernstein operators with Jacobi weights. In [1], Cao has yielded the
order of approximation of d-dimensional Bernstein Operators with Jacobi weights by using
the equivalence relation (1.14). In [6], Cao has evaluated extensively derivatives of the
multivariate Bernstein operators on a simplex, and he proved the following.

Theorem 1.1. Let f ∈ C(S), 0 < α ≤ r, 0 ≤ λ ≤ 1, r ∈ N, and ξ ∈ VS, and suppose Ωξ
r(f, t) =

O(tα), then

∥∥∥∥ϕrλ
ξ

(
∂

∂ξ

)r

Bn,d

(
f, x
)∥∥∥∥ = O

⎧⎪⎨
⎪⎩min

⎛
⎝n2−λ,

n

ϕ
2(1−λ)
ξ

⎞
⎠

(r−α)/2⎫⎪⎬
⎪⎭. (1.16)

In this paper, we study the characterization of derivatives of multivariate Bernstein
polynomials with Jacobiweights by using the measure of smoothness in the space C0(S). The
main result is expressed as follows.

Theorem 1.2. Let f ∈ C0(S), 0 < α ≤ r, r ∈ N, and ξ ∈ VS, and suppose Ωξ
r(f, t)ω = O(tα), one

has

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

Bn,d

(
f, x
)∥∥∥∥∥ = O

(
nr−α). (1.17)

Remark 1.3. Theorem 1.2 shows that the characterization of derivatives for multivariate bern-
stein operators with jacobi weight by using the measure of smoothness Ωξ

r(f, t)ω. conversely,
we conjecture that the inverse theorem is also correct, that is,

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

Mn,d

(
f, x
)∥∥∥∥∥ = O

(
nr−α)⇐⇒ Ωξ

r(f, t)ω = O(tα). (1.18)

The above equivalent relation without Jacobi weight has been proved in [6] when λ = 1. In
fact, the proof of Theorem 1.2 shows that the direct part holds true, we leave the inverse part
as an open problem.

2. Lemmas

To prove Theorem 1.2, some lemmas will be shown in this section.

Lemma 2.1. Consider the following;

∑
|k|≤n

Pn,k(x)ω−1
(
k

n

)
≤ Cω−1(x). (2.1)
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Proof. When d = 1, one has

n∑
k=0

Pn,k(x)
{

n

k + 1

}α{ n

n − k + 1

}β

≤
[

n∑
k=0

Pn,k(x)
{

n

k + 1

}2α
]1/2[ n∑

k=0

Pn,k(x)
{

n

n − k + 1

}2β
]1/2

=: I1/2J1/2. (2.2)

Consider different conditions,

(1) if 0 < 2α < 1,

I ≤
{

n∑
k=0

Pn,k(x)
n

k + 1

}2α{ n∑
k=0

Pn,k(x)

}1−2β
≤ Cx−2α, (2.3)

(2) if 1 < 2α < 2, let 2α = 1 + r, 0 ≤ r < 1,

I =
n∑

k=0

Pn,k(x)
{

n

k + 1

}{
n

k + 1

}r

≤ 2
x

n∑
k=0

Pn+1,k+1(x)
{

n

k + 1

}r

≤ Cx−(1+r) = Cx−2α. (2.4)

By the same methods J ≤ C(1 − x)−2β can also be given.
Suppose the lemma is correct when d − 1. We prove the lemma is also correct when d.

Through a simple computation, the following results can be easily obtained

Pn,k(x) = Pn,k1(x1)Pn−k1,k

(
x

1 − x1

)
, (2.5)

where k = (k2, k3, . . . , kd) x = (x2, x3, . . . , xd),

ω(x)
∑
|k|≤n

Pn,k(x)ω−1
(
k

n

)

= ω(x)
∑
|k|≤n

Pn,k1(x1)Pn−k1,k

(
x

1 − x1

)(
k1
n

)−α1
(
k2
n

)−α2

· · ·
(
kd
n

)−αd
(
1 − |k|

n

)−β

= xα1
1

n∑
k1=0

Pn,k1(x1)x
α2
2 xα3

3 · · ·xαd

d (1 − |x|)β
(
k1
n

)−α1
(
n − k1

n

)−|α|−β

×
∑

∣∣∣k∣∣∣≤n−k1
Pn−k1,k

(
x

1 − x1

)
·
(

k2
n − k1

)−α2

· · ·
(

kd
n − k1

)−αd

⎛
⎝1 −

∣∣∣k∣∣∣
n − k1

⎞
⎠

−β
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= xα1
1

n∑
k1=0

Pn,k1(x1)x
α2
2 xα3

3 · · ·xαd

d (1 − |x|)β
(
k1
n

)−α1
(
n − k1

n

)−|α|−β

×
∑

∣∣∣k∣∣∣≤n−k1
Pn−k1,k

(
x

1 − x1

)
ω−1
(

k

n − k1

)

≤ Cxα1
1

n∑
k1=0

Pn,k1(x1)x
α2
2 xα3

3 · · ·xαd

d (1 − |x|)β
(
k1
n

)−α1
(
n − k1
n

)−|α|−β
ω−1
(

x

1 − x1

)

≤ Cxα1
1

n∑
k1=0

Pn,k1(x1)(1 − x1)|α|+β
(
k1
n

)−α1
(
n − k1

n

)−|α|−β

≤ C. (2.6)

Lemma 2.2. Letf ∈ C0(S), r ∈ N, and ξ ∈ VS, then

∥∥∥∥∥ωϕξ(x)2r
(

∂

∂ξ

)2r

Bn,d

(
f, x
)∥∥∥∥∥ ≤ Cnr

∥∥ωf
∥∥ f ∈ C0(S). (2.7)

Proof. First, we recall the discussion of theorem 4.1 of [9] that will allow us to consider lemma
1 with ξ = e2. it is clear that if ξ = ei, i = 1, 3, 4, . . . , d, we may just rename the coordinates.
the following transformation will help us to complete the other case of ξ. the transformation
T : S → S is defined by [9]

T :

⎧⎨
⎩

T(x1, x2, . . . , xd) = (u1, u2, . . . , ud),

T2 = I,
(2.8)

where ui = xi (i /= j); uj = 1 − |x| and I is the identity operator.
Obviously,

∂

∂ui
=

∂

∂xi
− ∂

∂xj
, i /= j,

∂

∂uj
= − ∂

∂xj
, (2.9)

Bn,d

(
f ; x
)
= Bn,d

(
fT ; Tx

)
, Bn,d

(
f ; Tx

)
= Bn,d

(
fT ; x

)
, (2.10)

where fT (u) = f(x) and u = Tx. So, for ξ = eij/
√
2, 1 ≤ i < j ≤ d, we have

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

Bn,d

(
f
)∥∥∥∥∥ =

∥∥∥∥ωTϕ
2r
ei

(
∂

∂ui

)r

Bn,d

(
fT
)∥∥∥∥

≤ Cnr
∥∥ωTfT

∥∥
≤ Cnr

∥∥ωf
∥∥. (2.11)
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Secondly, we prove

∥∥∥∥∥ωϕ2r
e2

(
∂

∂x2

)2r

Bn,d

(
f
)∥∥∥∥∥ ≤ Cnr

∥∥ωf
∥∥. (2.12)

In The following we use mathematical induction on the dimension number d to prove (2.12).
When d = 1, Lemma 3.2 in [10] proved the above inequality for r = 1, for r > 1, from the
expression of derivatives of Bernstein operator in [4] (page125,(9.4.3)), we can easily prove it.
Next, suppose that (2.12) is valid for d − 1 (d > 1); we prove (2.12) is also true for d. Assume

S′ = {x : (x1, x) ∈ Sd}, x = (x2, x3, . . . , xd), k = (k2, k3 . . . , kd), k =
(
k1,k

)
. (2.13)

Let z = x/(1 − x1) = (x2/(1 − x1), x3/(1 − x1), . . . , xd/(1 − x1)). ω(x) can therefore be
rewritten as

ω(x) = xα1
1 (1 − x1)|α|+βω(z), (2.14)

and Bn,d(f, x) can be decomposed as

Bn,d

(
f, x
)
=

n∑
k1=0

pn,k1(x1)Bn−k1,d−1(H, z), (2.15)

where H(u) = f(k1/n, (1 − k1/n)u). Using the inductive assumption, we have

∣∣∣∣∣ωϕ2r
e2

(
∂

∂x2

)2r

Bn,d

(
f
)∣∣∣∣∣

= xα1
1 (1 − x1)|α|+β

n∑
k1=0

pn,k1(x1)z
α2
1 · · · zαd

d−1(1 − |z|)βϕ2r
e1 (z)

(
∂

∂z1

)2r

Bn−k1,d−1(H, z)

= xα1
1 (1 − x1)|α|+β

n∑
k1=0

pn,k1(x1)ω(z)ϕ2r
e1 (z)

(
∂

∂z1

)2r

Bn−k1,d−1(H, z)

≤ xα1
1 (1 − x1)|α|+β

n∑
k1=0

pn,k1(x1)C(n − k1)
r max
Z∈Sd−1

|ω(z)H(z)|

≤ Cnr
∥∥ωf

∥∥xα1
1 (1 − x1)|α|+β

n∑
k1=0

pn,k1(x1)
(
k1
n

)−α1
(
n − k1

n

)−|α|−β

≤ Cnr
∥∥ωf

∥∥.

(2.16)

Here, the equality

ω(z)H(z) =
(
k1
n

)−α1
(
n − k1
n

)−|α|−β(
ωf
)(k1

n
,

(
1 − k1

n

)
z

)
, (2.17)
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and the inequality

xα1
1 (1 − x1)

|α|+β
n∑

k1=0

pn,k1(x1)
(
k1
n

)−α1
(
n − k1

n

)−|α|−β
≤ C (2.18)

have been used in the proof of (2.16). The proof of Lemma 2.2 is complete.

Lemma 2.3. Let r ∈ N and ξ ∈ VS, then

∥∥∥∥∥ωϕξ(x)
2r
(

∂

∂ξ

)2r

Bn,d

(
f, x
)∥∥∥∥∥ ≤ C

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

f

∥∥∥∥∥ f ∈ Cr
0(S). (2.19)

Proof. By (2.10), for η = ei, u = Tx and ξ = eij/
√
2, 1 ≤ i < j ≤ d, we have

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

Bn,d

(
f, x
)∥∥∥∥∥ =

∥∥∥∥∥ωTϕ
2r
η

(
∂

∂η

)2r

Bn,d

(
fT , Tx

)∥∥∥∥∥
≤ C

∥∥∥∥∥ωTϕ
2r
η

(
∂

∂η

)2r(
fT
)
(u)

∥∥∥∥∥
≤ C

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

f

∥∥∥∥∥
p

. (2.20)

Similar to the discussion in the proof of Lemma 2.2., we need only to prove the case of ξ = e2,
that is,

∥∥∥∥∥ωϕ2r
e2

(
∂

∂x2

)2r

Bn,d

(
f, x
)∥∥∥∥∥ ≤ C

∥∥∥∥∥ωϕ2r
e2

(
∂

∂x2

)2r

f

∥∥∥∥∥. (2.21)

The steps to prove (2.21) are similar to those to prove the inequality (2.12). Hence, the
proof of Lemma 2.3 is complete

3. Proof of Theorem

We will prove Theorem 1.2 in the followings. For ξ = e2 and for all g ∈ Wr,∞
φ

(S), it follows
from Lemmas 2.2 and 2.3 that

∥∥∥∥∥ωϕ2r
e2

(
∂

∂x2

)2r

Bn,d

(
f, x
)∥∥∥∥∥

≤
∥∥∥∥∥ωϕ2r

e2

(
∂

∂x2

)2r

Bn,d

(
f − g, x

)∥∥∥∥∥ +
∥∥∥∥∥ωϕ2r

e2

(
∂

∂x1

)2r

Bn,d

(
g, x
)∥∥∥∥∥

≤ C

{
nr
∥∥ω(f − g

)∥∥ +
∥∥∥∥∥ωϕ2r

e2

(
∂

∂x2

)2r

g

∥∥∥∥∥
}
. (3.1)
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From the definition of K-functional and (1.14), we obtain

∥∥∥∥∥ωϕ2r
e2

(
∂

∂x2

)2r

Bn,d

(
f, x
)∥∥∥∥∥ ≤ CnrKe2

r

(
f ;n−r)

ω

≤ CnrΩe2
r

(
f,

1
n

)
ω

≤ Cnr−α.

(3.2)

Similarly, the case of ξ = ei, i = 1, 3, 4, . . . , d can also be proved. If ξ = ((ei − ej)/
√
2) 1 ≤ i < j ≤

d, it is not difficult to obtain

∥∥∥∥∥ωϕ2r
ξ

(
∂

∂ξ

)2r

Bn,d

(
f, x
)∥∥∥∥∥ =

∥∥∥∥∥ωTϕ
2r
η

(
∂

∂η

)2r

Bn,d

(
fT , u

)∥∥∥∥∥ ≤ Cnr−α, (3.3)

by assuming η = ei, u = Tx. The proof of Theorem 1.2 is complete.
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