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The paper presents a geometrical overview on an optimal control problem on a special Lie group.
TheHamilton-Poisson realization of the dynamics offers us the possibility to study the system from
mechanical geometry point of view.

1. Introduction

Recent work in nonlinear control has drawn attention to drift-free systemswith fewer degrees
than state variables. These arise naturally in problems of motion planning for wheeled robots
subject to nonholonomic controls [1], models of kinematic drift effects in space subjects to
appendage vibrations or articulations [1], the molecular dynamics [2], the autonomous un-
derwater vehicle dynamics [3], the car’s dynamics [4], and spacecraft dynamics [5]. The pur-
pose of our paper is to study a class of left-invariant, drift-free optimal control problems on
a specific Lie group G. The class of all control-affine left-invariant, drift-free optimal control
problems on G can be reduced to a class of two typical controllable left-invariant control sys-
tems onG. The left-invariant, drift-free optimal control problems involve finding a trajectory-
control pair on G, which minimizes a cost function and satisfies the given dynamical cons-
trains and boundary conditions in a fixed time. The problem is lifted to the cotangent bundle
T ∗G using the optimal Hamiltonian on G∗, where the maximum principle yields the optimal
control. The energy-Casimir method is used to give sufficient conditions for nonlinear stabi-
lity of the equilibrium states. Around this equilibrium states, we are able to find the periodical
orbits using Moser’s theorem. In the last paragraph, we have studied the numerical integ-
ration via three methods: Lie-Trotter algorithm, Kahan’s algorithms, and Runge-Kutta 4th
method. Numerical simulations and a comparison between these three methods are presen-
ted too.
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2. The Geometrical Picture of the Problem

Let G be the Lie group given by

G =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1 x2 x4

0 e−x1 x3

0 0 1

⎤

⎥
⎥
⎦ ∈ M3(R) | x1, x2, x3, x4 ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

. (2.1)

Proposition 2.1. The Lie algebra G of G is generated by

A1 =

⎡

⎢
⎢
⎣

0 0 0

0 −1 0

0 0 0

⎤

⎥
⎥
⎦, A2 =

⎡

⎢
⎢
⎣

0 1 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦,

A3 =

⎡

⎢
⎢
⎣

0 0 0

0 0 1

0 0 0

⎤

⎥
⎥
⎦, A4 =

⎡

⎢
⎢
⎣

0 0 1

0 0 0

0 0 0

⎤

⎥
⎥
⎦,

(2.2)

and the Lie algebra structure of G is given by the following

[·, ·] A1 A2 A3 A4

A1 0 A2 −A3 0

A2 −A2 0 A4 0

A3 A3 −A4 0 0

A4 0 0 0 0

. (2.3)

Proposition 2.2. The minus-Lie-Poisson structure on G∗ � (R4)∗ � R4 is generated by the matrix

Π− =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −x2 x3 0

x2 0 −x4 0

−x3 x4 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.4)

An easy computation leads one to the following.

Proposition 2.3. The following two systems are drift-free-left invariant controllable systems on G,
namely:

Ẋ = X(A1u1 +A2u2 +A3u3), (2.5)

Ẋ = X(A1u1 +A2u2 +A3u3 +A4u4), (2.6)

where X ∈ G, Ai are the matrix defined above, and ui ∈ C∞(R,R), i = 1, 4.
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Proof. Since the span of the set of Lie brackets generated by A1, A2, and A3 coincides with G
the proposition is a consequence of a result due to Jurdjevic and Sussmann [6].

3. An Optimal Control Problem for the System (2.5)

Let J be the cost function given by

J(u1, u2, u3) =
1
2

∫ tf

0

[
c1u

2
1(t) + c2u

2
2(t) + c3u

2
3(t)
]
dt c1 > 0, c2 > 0, c3 > 0. (3.1)

Then we have the following.

Proposition 3.1. The controls that minimize J and steer the system (2.5) from X = X0 at t = 0 to
X = Xf at t = tf are given by

u1 =
1
c1
x1, u2 =

1
c2
x2, u3 =

1
c3
x3, (3.2)

where xi’s are solutions of

ẋ1 = − 1
c2
x2
2 +

1
c3
x2
3,

ẋ2 =
1
c1
x1x2 − 1

c3
x3x4,

ẋ3 = − 1
c1
x1x3 +

1
c2
x2x4,

ẋ4 = 0.

(3.3)

Proof. Let us consider the optimal Hamiltonian given by

H(x1, x2, x2, x4) =
1
2

(
x2
1

c1
+
x2
2

c2
+
x2
3

c3

)

. (3.4)

It is in fact the controlled Hamiltonian Hopt given by

Hopt = x1u1 + x2u2 + x3u3 − 1
2

(
c1u

2
1 + c2u

2
2 + c3u

2
3

)
, (3.5)

which is reduced to G∗ via Poisson reduction. Then the optimal controls are given by

u1 =
1
c1
x1, u2 =

1
c2
x2, u1 =

1
c3
x3, (3.6)
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where xi’s are solutions of the reduced Hamilton’s equations given by

[
x1 x2 x3 x4

]t = Π− · ∇H, (3.7)

which is nothing else than the required (3.3).

Remark 3.2. It is easy to see from (3.3) that x4 = constant, and so the dynamics (3.3) can be put
in the equivalent form

ẋ1 = − 1
c2
x2
2 +

1
c3
x2
3,

ẋ2 =
1
c1
x1x2 − k

c3
x3,

ẋ3 = − 1
c1
x1x3 +

k

c2
x2.

(3.8)

The goal of our paper is to study some geometrical and dynamical properties for the
system (3.8).

Proposition 3.3. The dynamics (3.8) has the following Hamilton-Poisson realization:

(
R

3,Π,H
)
, (3.9)

where

Π =

⎡

⎢
⎢
⎣

0 −x2 x2

x2 0 −k
−x3 k 0

⎤

⎥
⎥
⎦ (3.10)

and the Hamiltonian

H(x1, x2, x3) =
1
2

(
x2
1

c1
+
x2
2

c2
+
x2
3

c3

)

. (3.11)

Proof. Indeed, it is not hard to see that the dynamics (3.8) can be put in the equivalent form

[ẋ1, ẋ2, ẋ3]t = Π · ∇H, (3.12)

as required. Moreover, the function C given by

C = kx1 + x2x3 (3.13)
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Figure 1: The phase curves of the system (3.8) (c1 = 1, c2 = 2, c3 = 3, and k = 10).

is a Casimir of our configuration. Indeed,

(∇C)tΠ = 0, (3.14)

as desired.

Remark 3.4. The phase curves of the dynamics (3.8) are intersections of

x2
1

c1
+
x2
2

c2
+
x2
3

c3
= const., (3.15)

with

kx1 + x2x3 = const., (3.16)

see Figure 1.

Proposition 3.5. The dynamics (3.8) has an infinite number of Hamilton-Poisson realizations.

Proof. An easy computation shows us that the triples

(
R

3, {·, ·}ab,Hcd

)
, (3.17)



6 Journal of Applied Mathematics

where

{
f, g
}

ab = −∇Cab ·
(∇f × ∇g

)
, (∀)f, g ∈ C∞

(
R

3,R
)
,

Cab = aC + bH, Hcd = cC + dH, a, b, c, d ∈ R, ad − bc = 1,
(3.18)

define Hamilton-Poisson realizations of the dynamics (3.8), as required.

Remark 3.6. The above proposition tells us in fact that (3.8) is unchanged, so the trajectories
of motion in R

3 remain the same when H and C are replaced by linear combinations of H
and C with coefficients which form a real matrix with det one.

4. Stability and Periodical Orbits

It is not hard to see that the equilibrium states of our dynamics (3.8) are

eM1 = (M, 0, 0), M ∈ R,

eM2 =
(

− kc1√
c2c3

,−
√

c2
c3
M,M

)

, M ∈ R,

eM3 =
(

kc1√
c2c3

,

√
c2
c3
M,M

)

, M ∈ R.

(4.1)

Let A be the matrix of the linear part of the system (3.8), that is,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 − 2
c2
x2

2
c3
x3

1
c1
x2

1
c1
x1 − k

c3

− 1
c1
x3

k

c2
− 1
c1
x1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.2)

then the characteristic roots ofA(eM1 ), respectively,A(eM2 ), respectively, andA(eM3 ) are given
by

λ1 = 0, λ2,3 = ±
√
c2c3M2 − c1k2

c1
√
c2c3

, (4.3)

respectively,

λ1 = 0, λ2,3 = ± 2i√
c1c3

M, (4.4)
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respectively,

λ1 = 0, λ2,3 = ± 2i√
c1c3

M, (4.5)

so we can conclude with the following.

Proposition 4.1. The equilibrium states eM1 , M ∈ R, are spectrally stable if M ∈ (−(c1k/√c2c3),
(c1k/

√
c2c3)).

Proposition 4.2. The equilibrium states eM2 and eM3 , M ∈ R, are spectrally stable for any M ∈ R.

We can now pass to discuss the nonlinear stability of the equilibrium states eM1 , eM2 ,
and eM3 , M ∈ R.

Proposition 4.3. The equilibrium states eM1 ,M ∈ R
∗, are nonlinearly stable ifM ∈ (−(c1k/√c2c3),

(c1k/
√
c2c3)).

Proof. We will make the proof using energy-Casimir method (see [7]). Let

Hϕ = H + ϕ(C) =
x2
1

2c1
+

x2
2

2c2
+

x2
3

2c3
+ ϕ(kx1 + x2x3) (4.6)

be the energy-Casimir function, where ϕ : R → R is a smooth real-valued function defined
on R.

Now, the first variation of Hϕ is given by

δHϕ =
x1

c1
δx1 +

x2

c2
δx2 +

x3

c3
δx3 + ϕ̇(kx1 + x2x3) · (kδx1 + x2δx3 + x3δx2), (4.7)

where

ϕ̇ =
∂ϕ

∂(kx1 + x2x3)
. (4.8)

This equals zero at the equilibrium of interest if and only if

ϕ̇(kM) =
−M
kc1

. (4.9)

The second variation of Hϕ is given by

δ2Hϕ =
1
c1
(δx1)

2 +
1
c2
(δx2)

2 +
1
c3
(δx3)

2 + ϕ̈ · (kδx1 + x2δx3 + x3δx2)
2 + 2ϕ̇ · δx2δx3. (4.10)
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Since M ∈ (−(c1k/√c2c3), (c1k/
√
c2c3)) and if we choose the function ϕ such that

ϕ̇(kM) = − M

kc1
,

ϕ̈(kM) > 0,

(4.11)

we can conclude that the second variation of Hϕ at the equilibrium of interest is positive
definite and, thus, eM1 are nonlinearly stable.

Similar arguments lead us to the following result.

Proposition 4.4. The equilibrium states eM2 ,M ∈ R
∗ and eM3 ,M ∈ R

∗ are nonlinearly stable for any
M ∈ R

∗.

In order to find the periodical orbits around the equilibrium states eM1 , we make use of
the property that the dynamics described by a Hamilton-Poisson system takes place on the
symplectic leaves of the Poisson configuration manifold, to prove the existence of periodic
orbits by looking for periodic orbits of the symplectic Hamiltonian completely integrable sys-
tem obtained by the restriction of the Lorenz system to the regular coadjoint orbits ofG∗. This
procedure will be implemented around nonlinearly stable equilibrium states. The procedure
is the following: we consider the system restricted to a regular coadjoint orbit of G∗ that con-
tains a nonlinearly stable equilibrium, and then we will get the existence of periodic solutions
for the restricted system. These periodic solutions are periodic solutions also for the unre-
stricted system.

Proposition 4.5. Near eM1 = (M, 0, 0), M ∈ (−(c1k/√c2c3), (c1k/
√
c2c3)), the reduced dynamics

has, for each sufficiently small value of the reduced energy, at least 1 periodic solution whose period is
close to

2πc1
√
c2c3

√

k2c21 − c2c3M2
. (4.12)

Proof. Indeed, we have successively the following:

(i) the restriction of our dynamics (3.8) to the coadjoint orbit

kx1 + x2x3 = kM (4.13)

gives rise to a classical Hamiltonian system,

(ii) the matrix of the linear part of the reduced dynamics has purely imaginary roots.
More exactly

λ2,3 = ±i

√

k2c21 − c2c3M2

c1
√
c2c3

, (4.14)
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(iii) consider the following:

span
(
∇C
(
eM1

))
= V0, (4.15)

where

V0 = ker
(
A
(
eM1

))
= span

⎛

⎜
⎜
⎝

1

0

0

⎞

⎟
⎟
⎠, (4.16)

(iv) the reduced Hamiltonian has a local minimum at the equilibrium state eM1 (see the
proof of Proposition 4.3).

Then our assertion follows via the Moser-Weinstein theorem with zero eigenvalue; see
[8] for details.

Remark 4.6. The existence of the periodical orbits around the equilibrium points e2 and e3
remains an open problem, the Moser-Weinstein theorem with zero eigenvalue being incon-
clusive.

5. Lax Formulation and Numerical Integration of the Dynamics (3.8)

Proposition 5.1. The dynamics (3.8) allows a formulation in terms of Lax pairs.

Proof. Let us take the following:

L =

⎡

⎢
⎢
⎣

0 l12 l13

−l12 0 l23

−l13 −l23 0

⎤

⎥
⎥
⎦,

l12 =
2
√
c3x2

c2
√
c1

+
2x3√
c1c2

+

√
2
(√

c2 − 2
√
2 − c1c2

)

c2
√
c1

k − 8
√
c3

c2
√
c1
,

l13 = −2
√
c3x1√
c1

−
√
2c3(2 − c1c2)
c2
√
c1

x2 −
√

2(2 − c1c2)
c1c2

x3 +
c2
√
2 − c1c2 − 4
c2
√
c1c2

k − 4
√
2c3(2 − c1c2)
c2
√
c1

,

l23 = −2
√
c3(2 − c1c2)
c1
√
c2

x1 +

√
2c3
c2

x2 +
√
2x3 + 4

√
2c3
c2

− k,
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B =

⎡

⎢
⎢
⎣

0 b12 b13

−b12 0 b23

−b13 −b23 0

⎤

⎥
⎥
⎦,

b12 =
c2
(
2
√
2x3 + k

)
− 2
√
2 − c1c2k − 4

√
2c2c3

2c2
√
c1c3

,

b13 =
−2√2(c2

√
c2c3x1 + 2k) +

√
c2(2 − c1c2)

(
−4√c3(2 + x2) + 2

√
c2k
)

4c2
√
c1c3

,

b23 = −
√
2 − c1c2

c1
√
2

x1 + x2 −
√
c2

2
√
2c3

k + 2,

(5.1)

then, using MATHEMATICA 7.0, we can put the system (3.8) in the equivalent form

L̇ = [L, B], (5.2)

as desired.

We will discuss now the numerical integration of the dynamics (3.8) via the Kahan
integrator, Lie-Trotter integrator [9], and also via Runge-Kutta 4th steps integrator, and we
will point out some properties of Kahan and Lie-Trotter integrators.

It is easy to see that for the equations (3.8), Kahan’s integrator can be written in the fol-
lowing form:

xn+1
1 − xn

1 = − h

c2
xn+1
2 xn

2 +
h

c3
xn+1
3 xn

3 ,

xn+1
2 − xn

2 =
h

2c1

(
xn+1
1 xn

2 + xn+1
2 xn

1

)
− hk

2c3

(
xn
3 + xn+1

3

)
,

xn+1
3 − xn

3 = − h

2c1

(
xn+1
1 xn

3 + xn+1
3 xn

1

)
+

hk

2c2

(
xn
2 + xn+1

2

)
.

(5.3)

Using MATHEMATICA 8.0, we can prove the following proposition which shows the
incompatibility of the Kahan’s integrator with the Poisson structure of the system (3.8).

Proposition 5.2. Kahan’s integrator (5.3) has the following properties:

(i) it is not Poisson preserving;

(ii) it does not preserve the Casimir C of the Poisson configuration (R3,Π);

(iii) it does not preserve the Hamiltonian H of the system (3.8).

Wewill discuss now the numerical integration of the dynamics (3.8) via the Lie-Trotter
integrator.
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To begin with, let us observe that the Hamiltonian vector field XH splits as follows:

XH = XH1 +XH2 +XH3 , (5.4)

where

H1 =
1
2c1

x2
1, H2 =

1
2c3

x2
2, H3 =

1
2c3

x2
3. (5.5)

Their corresponding integral curves are, respectively, given by

⎡

⎢
⎢
⎣

x1(t)

x2(t)

x3(t)

⎤

⎥
⎥
⎦ = Ai

⎡

⎢
⎢
⎣

x1(0)

x2(0)

x3(0)

⎤

⎥
⎥
⎦, i = 1, 3, (5.6)

where

A1 =

⎡

⎢
⎢
⎣

1 0 0

0 e(a/c1)t 0

0 0 e−(a/c1)t

⎤

⎥
⎥
⎦,

a = x1(0),

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − b

c2
t 0

0 1 0

0
k

c2
t 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

b = x2(0),

A3 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
c

c3
t

0 1 − k

c3
t

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
,

c = x3(0).

(5.7)

Then the Lie-Trotter integrator is given by

xn+1
1 = xn

1 −
b

c2
txn

2 +
(

c

c3
t +

kb

c2c3
t2
)

xn
3 ,

xn+1
2 = e(a/c1)txn

2 −
k

c3
te(a/c1)txn

3 ,

xn+1
3 =

k

c2
te(−a/c1)txn

2 −
k2

c2c3
t2e(−a/c1)txn

3 .

(5.8)
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Figure 2: The 4th-step Runge-Kutta integrator of the system (3.8) (c1 = 1, c2 = 2, c3 = 3, k = 10, and x1(0) =
x2(0) = x3(0) = 1).

Now, a direct computation or using MATHEMATICA leads us to the following.

Proposition 5.3. The Lie-Trotter integrator (5.8) has the following properties:

(i) it preserves the Poisson structureΠ;

(ii) it preserves the Casimir C of the Poisson configuration (R3,Π);

(iii) it does not preserve the Hamiltonian H of the system (3.8);

(iv) its restriction to the coadjoint orbit (Ok, ωk), where

Ok =
{
(x1, x2, x3) ∈ R

3 | kx1 + x2x3 = const.
}

(5.9)

and ωk is the Kirillov-Kostant-Souriau symplectic structure on Ok, gives rise to a symplectic integra-
tor.

Remark 5.4. If we compare these methods, see Figures 2, 3, and 4, with the 4th-step Runge-
Kutta method, we can see that Lie-Trotter integrator and Kahan’s integrator give us a weak
approximation of our dynamics. However, Kahan’s integrator and the Lie-Trotter integrator
have the advantage of being more easily implemented.

6. Conclusion

The paper analyses a drift-free left invariant controllable system on a special Lie group.
The Hamilton-Poisson realization of the system allows us to study the system from the
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Figure 3: The Kahan’s integrator of the system (3.8) (c1 = 1, c2 = 2, c3 = 3, k = 10, and h = 1, x1(0) = x2(0) =
x3(0) = 1).

5

10

2

0

−4

−2

−2

0

0

2

Figure 4: The Lie-Trotter integrator of the system (3.8) (c1 = 1, c2 = 2, c3 = 3, k = 10, and x1(0) = x2(0) =
x3(0) = 1).

mechanical geometry point of view. This means that we can use specific tools as energy-
Casimir method for nonlinear stability, the Moser’s theorem to find the periodical orbits, and
Poisson integrators to make the numerical integration of the dynamics. In addition, we use
non-Poisson integrators (Kahan’s integrator and Runge-Kutta 4th-step integrator) to make
a comparison between the obtained results. Numerical simulations via MATHEMATICA
8.0 are presented too. Similar problems have been studied on the Lie groups SO(3),
SO(4) (see [10]), on the Heisenberg Lie groups H(3) and H(4), or SE(2,R) × SO(3) (see
[11]).
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