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The purpose of this paper is to develop a generalized matrix Riccati technique for the selfadjoint
matrixHamiltonian systemU′ = A(t)U+B(t)V , V ′ = C(t)U−A∗(t)V . By using the standard integral
averaging technique and positive functionals, new oscillation and interval oscillation criteria are
established for the system. These criteria extend and improve some results that have been required
before. An interesting example is included to illustrate the importance of our results.

1. Introduction

In this paper, we consider oscillatory properties for the linear Hamiltonian system

U′ = A(t)U + B(t)V,

V ′ = C(t)U −A∗(t)V, t ≥ t0,
(1.1)

where A(t), B(t), and C(t) are real n × n matrix-valued functions, B,C are Hermitian, and B
is positive definite. By M∗, we mean the conjugate transpose of the matrix M, for any n × n
Hermitian matrixM.

For any two solutions (U1(t), V1(t)) and (U2(t), V2(t)) of system (1.1), the Wronski
matrixU∗

1(t)V2(t)−V ∗
1 (t)U2(t) is a constant matrix. In particular, for any solution (U(t), V (t))

of system (1.1),U∗(t)V(t) − V ∗(t)U(t) is a constant matrix.
A solution (U(t), V (t)) of system (1.1) is said to be nontrivial if detU(t)/= 0 is fulfilled

for at least one t ≥ t0. A nontrivial solution (U(t), V (t)) of system (1.1) is said to be conjoined
(prepared) if U∗(t)V (t) − V ∗(t)U(t) ≡ 0, t ≥ t0. A conjoined solution (U(t), V (t)) of system



2 Journal of Applied Mathematics

(1.1) is said to be a conjoined basis of system (1.1) if the rank of the 2n×nmatrix (U(t), V (t))T

is n.
In 2000, Kumari and Umamaheswaram [1], Yang and Cheng [2], and Wang [3] used

the substitution

W1(x) = a(x)
[
V (x)U−1(x) + f(x)En

]
, a(x) = exp

{
−2
∫x
x0

f(s)ds

}
, (1.2)

to study the oscillation of system (1.1). One of the main results in [1] is as follows.

Theorem A. Let D = {(x, s) | x0 ≤ s ≤ x} and D0 = {(x, s) | x0 ≤ s < x}. Let the functions
H ∈ C(D,R) and h ∈ C(D0,R) satisfy the following three conditions:

(i) H(x, x) = 0, for x ≥ x0,H(x, s) > 0 on D0;

(ii) H has a continuous and nonpositive partial derivative on D0 with respect to the second
variable;

(iii) −(∂/∂s)H(x, s) = h(x, s)
√
H(x, s), for all (x, s) ∈ D0.

If there exists a function f ∈ C1[x0,∞) such that

lim sup
x→∞

1
H(x, x0)

λ1

[∫x
x0

{H(x, s)T(s) + F(x, s)}ds
]
= ∞, (1.3)

where T(x) = a(x)[−C − f(A +A∗) + f2B − f ′En](x), a(x) = exp{−2 ∫xx0 f(s)ds}, En is the n × n
identity matrix, and

F(x, s) = H(x, s)
[
af(A +A∗) − aA∗B−1A

]
(s)

− a(s)
[
1
2
h(x, s)

√
H(x, s) + f(s)H(x, s)

][
A∗B−1 + B−1A

]
(s)

− a(s)
[(

1
2
h(x, s) + f(s)

√
H(x, s)

)
B−1/2(s) − f(s)

√
H(x, s)B(s)

]2
,

(1.4)

then, system (1.1) is oscillatory.

In 2003, Meng and Mingarelli [4], Wang [3], and Zheng and Zhu [5] studied the
oscillation of system (1.1) by using the substitution

W2(x) = a(x)
[
V (x)U−1(x) + f(x)B−1(x)

]
, a(x) = exp

{
−2
∫x
x0

f(s)ds

}
. (1.5)

One of the main results in [4] is as follows.
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Theorem B. Let the functions H ∈ C(D,R) and h ∈ C(D0,R) satisfy (i)–(iii) in Theorem A and,
for all sufficiently large s ∈ R, lim infx→∞H(x, s) ≥ 1. Assume that there exist a function f ∈
C1[x0,∞) and a monotone subhomogeneous functional q of degree c on S such that

lim sup
x→∞

1
H(x, x0)c

q

[∫x
x0

{
H(x, s)R1(s) +

1
4
a(s)h2(x, s)B−1

1 (s)
}
ds

]
= ∞, (1.6)

where R1(x) = φ∗(x)R(x)φ(x), B1(x) = φ−1(x)B(x)[φ∗(x)]−1, φ(x) is a fundamental matrix of the
linear equation v′ = A(x)v, and

R(x) = a(x)
[
−C − f

(
A∗B−1 + B−1A

)
+ f2B−1 −

(
fB−1

)′]
(x). (1.7)

Then, system (1.1) is oscillatory.

In 2004, Sun and Meng [6] also studied the oscillation of system (1.1). One of the main
results in [6] is as follows.

Theorem C. LetH,h be as in Theorem A, and suppose that

0 < inf
s≥t0

{
lim inf
t→∞

H(t, s)
H(t, t0)

}
≤ +∞. (1.8)

If there exist a function f ∈ C1[t0,∞) and a positive linear functional g on R such that

lim inf
t→∞

1
H(t, t0)

∫ t
t0

g

[
−H(t, s)

(
C1 +A∗B−1

1 A +
(
B−1
1 A

)′)
(s)
]
ds > −∞,

lim sup
t→∞

1
H(t, t0)

∫ t
t0

h2(t, s)g
[
B−1
1 (s)

]
ds <∞,

(1.9)

and suppose also that there exists a functionm ∈ C[t0,∞) such that

lim sup
t→∞

1
H(t, T)

∫ t
T

g

[
H(t, s)

(
C1 +A∗B−1

1 A +
(
B−1
1 A

)′)
(s) − 1

4
h2(t, s)B−1

1 (s)
]
ds,

≥ m(T),
(1.10)

for all T ≥ t0 and
∫∞

t0

m2
+(t)

g
[
B−1
1 (t)

]dt = +∞, (1.11)

where m+(t) = max{m(t), 0} and B1(t), C1(t) are the same as in Theorem A, then, the system (1.1)
is oscillatory.
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Recently, Li et al. [7] also studied the oscillation of system (1.1) by using the standard
integral averaging technique and the substitution

W3(t) = −a(t)
[
Y (t)X−1(t) + f(t)B−1(t)

]
, t ≥ t0, (1.12)

where a(t) is as in (1.5). One of the main results in [7] is as follows.

Theorem D. LetH,h be as in Theorem A, and suppose that there exist a function f ∈ C1[t0,∞) and
a positive linear functional g on R, for some β ≥ 1, such that

lim sup
t→∞

1
H(t, t0)

∫ t
t0

g

[
−H(t, s)

(
C1 +A∗B−1

1 A +
(
B−1
1 A

)′)
(s) − β

4
h2(t, s)B−1

1 (s)
]
ds = ∞,

(1.13)

where

B1(t) = a−1(t)B(t), a(t) = exp

{
−2
∫ t
f(s)ds

}
,

C1(t) = a(t)
{
C(t) + f(t)

[
B−1A +A∗B−1

]
(t) +

[
f(t)B−1(t)

]′ − f2(t)B−1(t)
}
.

(1.14)

Then, system (1.1) is oscillatory.

The purpose of this paper is further to improve Theorems A, B, C, and D as well as
other related results regarding the oscillation of the system (1.1), by refining the standard
integral averaging technique and Riccati transformation.

Now we use the general weighted functions from the classH. LetD = {(t, s) | t0 < s ≤
t < +∞} and D0 = {(t, s) | t0 < s < t < +∞}. We say that a continuous functionH(t, s) : D →
R+ belongs to the class H if

(i) H(t, t) = 0 for t ≥ t0,H(t, s) > 0 on D0,

(ii) H has a continuous and nonpositive partial derivative on D0 with respect to the
second variable,

(iii) −(∂/∂s)(H(t, s)k(s)) = h(t, s)
√
H(t, s)k(s), for all (t, s) ∈ D0, where k(t) ∈

C1([t0,+∞), (0,+∞)).

We now follow [8] in defining the space S as the real linear spare of all real symmetric
n × nmatrices. Let g be a linear functional on R, g is said to be positive if g(A) > 0 whenever
A ∈ S and A > 0.

2. Main Results

In this paper, we need the following lemma.

Lemma 2.1 (see [6]). If g is a positive linear functional on R, then, for all A,B ∈ R, one has

∣∣g[A∗B]
∣∣2 ≤ g[A∗A]g[B∗B]. (2.1)
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Theorem 2.2. Let H(t, s) ∈ H. If there exist a function b ∈ C1([t0,+∞),R+), a matrix function
ψ ∈ C1([t0,+∞),S), and a positive linear functional g on R, for some α ≥ 1, such that

lim sup
t→+∞

1
H(t, t0)

∫ t
t0

g
{
−H(t, s)k(s)T1(s) − α

4
B−1
1 (s)T2(t, s)2

}
ds = ∞, (2.2)

where B1(t) = (1/b(t))B(t), D(t) = A(t) − b(t)B1(t)ψ(t), F1(s) = b(s)[C + A∗ψ + ψA −
ψBψ + ψ ′](s), T1(s) = [F1 + (B−1

1 D)
′
+ D∗B−1

1 D − (b′/b)B−1
1 D](s), and T2(t, s) = h(t, s) −√

H(t, s)k(s)(b′(s)/b(s)), then, system (1.1) is oscillatory.

Proof. Assume to the contrary that system (1.1) is nonoscillatory. Then, there exists a
nontrivial prepared solution of (U(t), V (t)) such that U(t) is nonsingular for all sufficiently
large t. Without loss of generality, we assume that detU(t)/= 0 for all t ≥ t0. This allows us to
make a Riccati transformation

W(t) = −b(t)
[
V (t)U−1(t) + ψ(t)

]
, (2.3)

for all t ≥ t0. Then,W(t) is well defined, Hermitian, and solves the Riccati equation

W ′(t) − b′(t)
b(t)

W(t) +W∗(t)
(
A − Bψ)(t) + (A − Bψ)∗(t)W(t) − 1

b(t)
W∗(t)B(t)W(t) + F1(t) = 0,

(2.4)

on [t0,∞).
Let B1(t) = (1/b(t))B(t), D(t) = A(t) − b(t)B1(t)ψ(t). So, from (2.4), we have

W ′(t) − b′(t)
b(t)

W(t) +W∗(t)D(t) +D∗(t)W(t) −W∗(t)B1(t)W(t) + F1(t) = 0. (2.5)

Now by the substitution P(t) =W(t) − B−1
1 (t)D(t) in (2.5), we obtain

P ′(t) − b′(t)
b(t)

P(t) − P ∗(t)B1(t)P(t) + T1(t) = 0. (2.6)

By rearranging the terms, we get

T1(t) = −P ′(t) +
b′(t)
b(t)

P(t) + P ∗(t)B1(t)P(t). (2.7)
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Multiplying (2.7), with t replaced by s, byH(t, s)k(s) and integrating from t0 and t, we obtain

−
∫ t
t0

H(t, s)k(s)T1(s)ds

=
∫ t
t0

H(t, s)k(s)
[
P ′(s) − b′(s)

b(s)
P(s) − P ∗(s)B1(s)P(s)

]
ds

= −H(t, t0)k(t0)P(t0) +
∫ t
t0

P(s)
[
h(t, s)

√
H(t, s)k(s) −H(t, s)k(s)

b′(s)
b(s)

]
ds

−
∫ t
t0

H(t, s)k(s)P ∗(s)B1(s)P(s)ds.

(2.8)

Taking the linear functional g on both sides of the above equation, we have, for some α ≥ 1,

∫ t
t0

g{−H(t, s)k(s)T1(s)}ds

= −H(t, t0)k(t0)g[P(t0)] +
∫ t
t0

g[P(s)]
[
h(t, s)

√
H(t, s)k(s) −H(t, s)k(s)

b′(s)
b(s)

]
ds

−
∫ t
t0

H(t, s)k(s)g[P ∗(s)B1(s)P(s)]ds

≤ −H(t, t0)k(t0)g[P(t0)] +
∫ t
t0

g[P(s)]
[
h(t, s)

√
H(t, s)k(s) −H(t, s)k(s)

b′(s)
b(s)

]
ds

−
∫ t
t0

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds

= −H(t, t0)k(t0)g[P(t0)]

−
∫ t
t0

⎡
⎢⎣
√
H(t, s)k(s)√
αg[B−1

1 (s)]
g[P(s)] −

√
αg
[
B−1
1 (s)

]

2

(
h(t, s) −

√
H(t, s)k(s)

b′(s)
b(s)

)
⎤
⎥⎦

2

ds

+
α

4

∫ t
t0

g
[
B−1
1 (s)

](
h(t, s) −

√
H(t, s)k(s)

b′(s)
b(s)

)2

ds

− α − 1
α

∫ t
t0

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds

≤ −H(t, t0)k(t0)g[P(t0)] +
α

4

∫ t
t0

g
[
B−1
1 (s)

]
T2(t, s)2ds.

(2.9)

So,

∫ t
t0

g
{
−H(t, s)k(s)T1(s) − α

4
B−1
1 (s)T2(t, s)2

}
ds ≤ −H(t, t0)k(t0)g[P(t0)]. (2.10)
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Taking the upper limit in both sides of (2.10) as t → ∞, we obtain

lim sup
t→∞

1
H(t, t0)

∫ t
t0

g
{
−H(t, s)k(s)T1(s) − α

4
B−1
1 (s)T2(t, s)2

}
ds ≤ −k(t0)g[P(t0)], (2.11)

which contradicts (2.2). This completes the proof of Theorem 2.2.

Theorem 2.3. Let the functionsH,h and b, g be as in Theorem 2.2, and suppose that

0 < inf
s≥t0

{
lim inf
t→∞

H(t, s)
H(t, t0)

}
≤ +∞. (2.12)

If there exists a function φ ∈ C([t0,∞)), such that, for all t ≥ T ≥ t0, and for some α ≥ 1,

lim sup
t→∞

1
H(t, T)

∫ t
T

g
{
−H(t, s)k(s)T1(s) − α

4
B−1
1 (s)T2(t, s)2

}
ds ≥ φ(T), (2.13)

∫∞

t0

φ2
+(t)

g
[
B−1
1 (t)

]
k2(t)

dt = +∞, (2.14)

where φ+(t) = max{φ(t), 0}, B1(t), F1(t), D(t), T1(t), and T2(t, s) are the same as in Theorem 2.2,
then, system (1.1) is oscillatory.

Proof. Assume to the contrary that system (1.1) is nonoscillatory. Similar to the proof of
Theorem 2.2, we can obtain, for all t ≥ T ≥ t0, and for some α ≥ 1,

1
H(t, T)

∫ t
T

g
{
−H(t, s)k(s)T1(s) − α

4
B−1
1 (s)T2(t, s)2

}
ds

≤ −k(T)g[P(T)] − α − 1
α

1
H(t, T)

∫ t
T

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds.

(2.15)

Taking the upper limit of the above inequation as t → ∞,

lim sup
t→∞

1
H(t, T)

∫ t
T

g
{
−H(t, s)k(s)T1(s) − α

4
B−1
1 (s)T2(t, s)2

}
ds

≤ −k(T)g[P(T)] − α − 1
α

lim inf
t→∞

1
H(t, T)

∫ t
T

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds.

(2.16)

By (2.13), we obtain

−k(T)g[P(T)] ≥ φ(T) + α − 1
α

lim inf
t→∞

1
H(t, T)

∫ t
T

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds,

(2.17)
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−k(T)g[P(T)] ≥ φ(T). (2.18)

Besides, we have

lim inf
t→∞

1
H(t, t0)

∫ t
t0

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds

≤ − α

α − 1
[
φ(t0) + k(t0)g[P(t0)]

]
<∞.

(2.19)

Now, we claim that

∫+∞

t0

{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds <∞. (2.20)

Suppose to the contrary that

∫+∞

t0

{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds = +∞. (2.21)

By (2.12), there exists a positive constant ε satisfying

inf
s≥t0

{
lim inf
t→∞

H(t, s)
H(t, t0)

}
> ε > 0. (2.22)

And according to the above ε, there exists t1 ≥ t0 such that

∫ t
t0

{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds >

1
ε2
, t ≥ t1. (2.23)

Thus,

1
H(t, t0)

∫ t
t0

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds

=
1

H(t, t0)

∫ t
t0

H(t, s)k(s)d

(∫s
t0

{
g
[
B−1
1 (ξ)

]}−1{
g[P(ξ)]

}2
dξ

)

= − 1
H(t, t0)

∫ t
t0

∂(H(t, s)k(s))
∂s

∫ s
t0

{
g
[
B−1
1 (ξ)

]}−1{
g[P(ξ)]

}2
dξ ds

>
1
ε2

1
H(t, t0)

∫ t
t1

−∂(H(t, s)k(s))
∂s

ds

=
k(t1)
ε2

H(t, t1)
H(t, t0)

.

(2.24)
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From (2.22), there exists a t2 ≥ t1 such that, for all t ≥ t2,

H(t, t1)
H(t, t0)

> ε. (2.25)

So,

1
H(t, t0)

∫ t
t0

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds >

k(t1)
ε

. (2.26)

Since ε is arbitrary, we get

lim inf
t→∞

1
H(t, t0)

∫ t
t0

H(t, s)k(s)
{
g
[
B−1
1 (s)

]}−1{
g[P(s)]

}2
ds = ∞, (2.27)

which contradicts (2.19). So, (2.20) holds; then, by (2.18) and (2.20), we can obtain

∫∞

t0

φ2
+(t)

g
[
B−1
1 (t)

]
k2(t)

dt ≤
∫∞

t0

g[P(t)]2

g
[
B−1
1 (t)

]dt <∞, (2.28)

which contradicts (2.14). This completes our proof of Theorem 2.3.

Example 2.4. Consider the linear Hamiltonian system (1.1), where B(t) = tI2, C(t) = −((1/t)
cos t + (3/4t3))I2, A(t) =

(
0 1/t

−1/t 0

)
are 2 × 2-matrices and B,C are Hermitian.

Let H(t, s) = (t − s)2, h(t, s) = 2, b(t) = t, ψ(t) = −(1/2t2)I2, and g[A] = a11,
where A = (aij) is a 2 × 2-matrix. Then, limt→∞(H(t, s)/H(t, t0)) = (t − s)2/(t − t0)

2 =

1, B1(t) = I2, D(t) =
(

1/2t 1/t
−1/t 1/2t

)
, F1(t) = − cos tI2, T(t) =

(
1/4t2−cos t −2/t2

2/t2 1/4t2−cos t

)
,

lim supt→∞(1/t
2)
∫ t
T g{−(t − s)2T(s) − (α/4)B−1

1 (s)[2 − (t − s)(1/s)]2}ds > 1/
√
T
.= φ(T), and∫∞

t0
(φ2

+(t)/g[B
−1
1 (t)]k2(t))dt =

∫∞
t0
(1/t)dt = ∞. According to Theorem 2.3, we get that this

linear system is oscillatory.

Remark 2.5. In Theorem 2.2, let b(t) = exp{−2 ∫ t f(s)ds}, ψ(t) = f(t)B−1(t), k(t) = 1.
Theorem 2.2 reduces to Theorem D. In Theorem 2.3, we obtain the same result in which
we remove the two assumptions (1.9) in Theorem C. Therefore, Theorems 2.2 and 2.3 are
generalizations and improvements of [7, Theorem 2.1] and [6, Theorem 3].

Remark 2.6. The above theorems give rather wide possibilities of deriving different explicit
oscillation criteria for system (1.1) with appropriate choices of the functions H(t, s), k(s),
and f(s). For example, we can obtain some useful oscillation criteria if we choose H(t, s) =
(x − s)m, [ln(x/s)]m, [∫xs dz/θ(z)]m, or ρ(x − s), and so forth.

3. Interval Oscillation Criteria

Now we establish interval oscillation criteria of system (1.1), that is, criteria given by the
behavior of system (1.1) only on a sequence of subinterval of [t0,∞). We assume that a
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function H = H(t, s) satisfying (i). Further, we assume that k(t) = 1 and H(t, s) has partial
derivatives ∂H/∂t and ∂H/∂s on D such that

∂

∂t
H(t, s) = h1(t, s)

√
H(t, s), (3.1)

∂

∂s
H(t, s) = −h2(t, s)

√
H(t, s), (3.2)

where h1, h2 ∈ Lloc(D,R).
We first prove two lemmas.

Lemma 3.1. Suppose that (U(t), V (t)) is a nontrivial prepared solution of system (1.1) such that
detU(t)/= 0 on (a1, a2] ⊂ [t0,∞). Then, for any b(t) ∈ C1([t0,∞),R+), matrix function ψ ∈
C1([t0,∞),S), H satisfies (i), (3.1) and (3.2), and a positive linear functional g on R, one has, for
some α ≥ 1,

1
H(a2, a1)

∫a2
a1

g

{
−H(t, a1)T1(s) − α

4
B−1
1 (t)

(
h1(t, a1) +

√
H(t, a1)

b′(t)
b(t)

)2
}
dt

≤ g[P(a2)],
(3.3)

where W(t) is defined by (2.3) on (a1, a2], B1(t), D(t), F1(s), and T1(s) are the same as in
Theorem 2.2.

Proof. Since (U(t), V (t)) is a nontrivial prepared solution of system (1.1) such that U(t) is
nonsingular on (a1, a2], then, W(t) by (2.3) is well defined and solves the Riccati equation
(2.7) on (a1, a2].

On multiplying (2.7) by H(t, s) and integrating with respect to t from s to a2 for s ∈
(a1, a2], we can find

−
∫a2
s

H(t, s)T1(t)dt

=
∫a2
s

H(t, s)P ′(t)dt −
∫a2
s

H(t, s)
b′(t)
b(t)

P(t)dt −
∫a2
s

H(t, s)P ∗(t)B1(t)P(t)dt

= H(a2, s)P(a2) −
∫a2
s

P(t)
(
h1(t, s)

√
H(t, s) +H(t, s)

b′(t)
b(t)

)
dt

−
∫a2
s

H(t, s)P ∗(t)B1(t)P(t)dt.

(3.4)
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Taking the linear functional g on both sides of the above equation, we have, for some α ≥ 1,

∫a2
s

g{−H(t, s)T1(t)}dt

= H(a2, s)g[P(a2)] −
∫a2
s

g[P(t)]
(
h1(t, s)

√
H(t, s) +H(t, s)

b′(t)
b(t)

)
dt

−
∫a2
s

H(t, s)g[P ∗(t)B1(t)P(t)]dt

≤ H(a2, s)g[P(a2)] −
∫a2
s

g[P(t)]
(
h1(t, s)

√
H(t, s) +H(t, s)

b′(t)
b(t)

)
dt

−
∫a2
s

H(t, s)
{
g
[
B−1
1 (t)

]}−1{
g[P(t)]

}2
dt

= H(a2, s)g[P(a2)]

−
∫a2
s

⎡
⎢⎣

√
H(t, s)√

αg[B−1
1 (t)]

g[P(t)] +

√
αg
[
B−1
1 (t)

]

2

(
h1(t, s) +

√
H(t, s)

b′(t)
b(t)

)
⎤
⎥⎦

2

dt

+
α

4

∫a2
s

g
[
B−1
1 (t)

](
h1(t, s) +

√
H(t, s)

b′(t)
b(t)

)2

dt

− α − 1
α

∫a2
s

H(t, s)
{
g
[
B−1
1 (t)

]}−1{
g[P(t)]

}2
dt

≤ H(a2, s)g[P(a2)] +
α

4

∫a2
s

g
[
B−1
1 (t)

](
h1(t, s) +

√
H(t, s)

b′(t)
b(t)

)2

dt.

(3.5)

That is,

1
H(a2, s)

∫a2
s

g

{
−H(t, s)T1(t) − α

4
B−1
1 (t)

(
h1(t, s) +

√
H(t, s)

b′(t)
b(t)

)2
}
dt

≤ g[P(a2)].
(3.6)

Let s → a1,

1
H(a2, a1)

∫a2
a1

g

{
−H(t, a1)T1(t) − α

4
B−1
1 (t)

(
h1(t, a1) +

√
H(t, a1)

b′(t)
b(t)

)2
}
dt

≤ g[P(a2)].
(3.7)

Lemma 3.2. Suppose that (U(t), V (t)) is a nontrivial prepared solution of system (1.1) such
that detU(t)/= 0 on (a2, a3] ⊂ [t0,∞). Then, for any b(t) ∈ C1([t0,∞),R+), matrix function
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ψ ∈ C1([t0,∞),S), H satisfies (i), (3.1) and (3.2), and a positive linear functional g on R, one
has, for some α ≥ 1,

1
H(a3, a2)

∫a3
a2

g

{
−H(a3, s)T1(s) − α

4
B−1
1 (s)

(
h1(a3, s) +

√
H(a3, s)

b′(s)
b(s)

)2
}
ds

≤ −g[P(a2)],
(3.8)

where W(t) is defined by (2.3) on (a2, a3], B1(t), D(t), F1(s), and T1(s) are the same as in
Theorem 2.2.

Proof. Since (U(t), V (t)) is a nontrivial prepared solution of system (1.1) such that U(t) is
nonsingular on (a2, a3], then, W(t) by (2.3) is well defined and solves the Riccati equation
(2.7) on (a2, a3].

Onmultiplying (2.7) byH(t, s), integratingwith respect to s from a2 to t for t ∈ (a2, a3],
and following the proof of Lemma 3.1, we can find

1
H(t, a2)

∫ t
a2

g

{
−H(t, s)T1(s) − α

4
B−1
1 (s)

(
h1(t, s) +

√
H(t, s)

b′(s)
b(s)

)2
}
ds

≤ −g[P(a2)] < +∞.

(3.9)

Let t → a3,

1
H(a3, a2)

∫a3
a2

g

{
−H(a3, s)T1(s) − α

4
B−1
1 (s)

(
h1(a3, s) +

√
H(a3, s)

b′(s)
b(s)

)2
}
ds

≤ −g[P(a2)].
(3.10)

Theorem 3.3. Suppose that there exist some a2 ∈ (a1, a3) ⊂ [t0,∞), b(t) ∈ C1([t0,∞),R+), matrix
function ψ ∈ C1([t0,∞),S), H satisfies (i), (3.1) and (3.2), and a positive linear functional g on R

such that, for some α ≥ 1,

g

{
1

H(a2, a1)

∫a2
a1

−H(t, a1)T1(t) − α

4
B−1
1 (t)

(
h1(t, a1) +

√
H(t, a1)

b′(t)
b(t)

)2

dt

+
1

H(a3, a2)

∫a3
a2

−H(a3, s)T1(s) − α

4
B−1
1 (s)

(
h1(a3, s) +

√
H(a3, s)

b′(s)
b(s)

)2

ds

}
> 0,

(3.11)

where B1(t), D(t), F1(s), and T1(s) are defined as in Theorem 2.2. Then, for any nontrivial prepared
solution (U(t), V (t)) of system (1.1), detU(t) has at least one zero in (a1, a3).

Theorem 3.4. If, for each T ≥ t0, there exist b(t) ∈ C1([t0,∞),R+), matrix function ψ ∈
C1([t0,∞),S), H satisfies (i), (3.1), (3.2), a positive linear functional g on R and a1, a2, a3 ∈ R,
such that T ≤ a1 < a2 < a3 and condition (3.1) holds, where B1(t), D(t), F1(s), and T1(t) are defined
as in Theorem 2.2, then, system (1.1) is oscillatory.

In conclusion, we note that the results given here can extend, improve and complement
Theorems A–D, and deal with some cases not covered by known criteria by choosing the
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functions H, b, φ, and g. From our results, we can derive a number of easily verifiable
oscillation criteria.
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