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The lattice fractal Sierpinski carpet and the percolation theory are applied to develop a new
random stock price for the financial market. Percolation theory is usually used to describe
the behavior of connected clusters in a random graph, and Sierpinski carpet is an infinitely
ramified fractal. In this paper, we consider percolation on the Sierpinski carpet lattice, and the
corresponding financial price model is given and investigated. Then, we analyze the statistical
behaviors of the Hong Kong Hang Seng Index and the simulative data derived from the financial
model by comparison.

1. Introduction

Financial fluctuation system is one of complex systems, and the statistical behavior of
fluctuation of stock price changes has long been a focus of financial research. With the
flourishing research of complex systems, it becomes more and more attractive to find
universal rules and principles of these systems and further to answer the origination of
financial complex system. Recent research is no longer restricted to the traditional areas but
concentrated on the more comprehensive domains, leading to the birth of many burgeoning
disciplines through the interaction and amalgamation of mathematics and other fields such
as finance, biology, and sociology. For example, the theory of stochastic interacting particle
systems (see [1–6]) recently has been applied to study the behaviors of market fluctuations,
see [7–15]. And the study of financial market prices has been found to exhibit some universal
properties similar to those observed in interacting particle systems with a large number of
interacting units.

Percolation theory, as a model (in interacting particle systems) for a disordered
medium, has brought new understanding and techniques to a broad range of topics in



2 Journal of Applied Mathematics

nature and society. First we consider the bond percolation on Z
d, that is, for x, y ∈ Z

d, the
distance δ(x, y) from x to y is defined by δ(x, y) =

∑d
i=1 |xi − yi|, where x = (x1, . . . , xd)

and y = (y1, . . . , yd). By adding edges (or bonds) between all pairs x, y of points of Z
d

with δ(x, y) = 1, we establish the d-dimensional lattice L
d = (Zd,Ed), and we write E

d for
the set of the edges. Suppose that each bond of lattice L

d is either open (occupied) with
probability p or closed (empty) with probability 1 − p, then connected components of this
graph are called open clusters. Let C(x) denote the open cluster containing the vertex x, and
θ(p) = P(|C(0)| = ∞) be the probability that the origin belongs to an infinite open cluster.
When the intensity p increases from zero to one, at some sharp percolation threshold (or
critical point) pc, for the first time, one infinite cluster appears; for all p > pc we have exactly
one infinite cluster, for all p < pc we have no infinite cluster, and at critical value p = pc the
incipient infinite clusters are supposed to be fractal.

A lattice fractal is a graph which corresponds to a fractal, all of them have a self-
similarity, but most of them have no translation invariance, see [1, 16–19]. The Sierpinski
gasket and the Sierpinski carpet are well-known examples of fractals. The former is a finitely
ramified fractal (i.e., it can be disconnected by removing a finite number of points) and the
latter is an infinitely ramified fractal. Fractals also have close relations to financial markets
[17], electrical conductivity, superconductivity, and mechanical properties of percolating
systems, and so forth. In [1], it shows that the Isingmodel on the lattice Sierpinski carpet does
exhibit the phase transition in any dimension, but the Ising model on the lattice Sierpinski
gasket has no phase transition in any dimension (because of the character of the finitely
ramified fractal). Similar results of phase transitions can be obtained for percolation on the
lattice Sierpinski carpet and on the lattice Sierpinski gasket, see [18].

In the present paper, a new method is introduced to model and describe the
fluctuations ofmarket prices, namely, we use the lattice fractal Sierpinski carpet percolation to
establish a new random market price in a financial market. In this financial model, the local
interaction or influence among traders in one stock market is constructed, and a cluster of
percolation is used to define the cluster of traders sharing the same opinion about the market.
For the comparison, we also consider the most important index of Hong Kong financial
market, the Hong Kong Hang Seng Index. We analyze the statistical properties of Hong Kong
Hang Seng Index and the simulative data derived from the pricemodel by comparison, which
including the sharp peak and the fat-tail distribution for the price changes, the distribution
of returns decays with power law in the tails, the price fluctuations are not invariant against
time reversal (i.e., they show a forward-backward asymmetry), and so forth. Moreover, the
behaviors of long memory and long-range correlation in volatility series of market returns
are exhibited.

2. Description of Price Model on Lattice Sierpinski Carpet Percolation

First we give a brief description of percolation on the lattice Sierpinski carpet S
(d) (for d = 2),

which is defined as follows: consider Z
2 as a graph in the usual sense and set

S̃
(2)
0 = Z

2 ∩ [0, 3]2, S̃
(2)
n+1 =

⋃

i1,i2∈{0,1,2}
(i1,i2)/= (1,1)

{(
i13n+1, i23n+1

)
+ S̃

(2)
n

}
,

(2.1)
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Figure 1: Lattice percolation on lattice Sierpinski carpet.

where u + S̃
(2)
n = {u + v : v ∈ S̃

(2)
n }. To make the graph more symmetric, let S

(2)
n be the union of

S̃
(2)
n and its reflections in every coordinate hyperplane. Then we define the lattice Sierpinski

carpet as

S
(2) =

∞⋃

n=0

S
(2)
n . (2.2)

Similarly to Section 1, we define the corresponding edges set of S
(2) as E(S(2)). Next

we consider random graph (bond percolation) on the lattice L(S(2)) = (S(2), E(S(2))), see
Figure 1. Let p (the intensity value) satisfies 0 ≤ p ≤ 1, each edge of L(S(2)) is declared
to be open with probability p and closed with probability 1 − p independently. We denote
the product probability by Pp (or P), and define θ(p) = P(|C(0)| = ∞), where C(0) is the
open cluster containing the origin on L(S(2)), and |C(0)| is the number of vertices in C(0).
Let pc(S(2)) = inf{p : θ(p) > 0}, then percolation on the Sierpinski carpet S

(2) exhibits the
existence of a phase transition, that is, θ(p) > 0 for p > pc(S(2)), for details see [1, 18].

Next we consider a price model of auctions for a stock in a stock market. Assume that
each trader can trade the stock several times at each day t ∈ {1, 2, . . . , T}, but at most one unit
number of the stock at each time. Let S(t) denote the daily closing price of tth trading day.
And let Λn be a subset of S

(2), where

Λn =
{
(x1, x2) ∈ S

(2) : −3n ≤ x1 ≤ 3n,−3n ≤ x2 ≤ 3n
}

(2.3)

and Ct(0) be a random open cluster on Λn. Suppose that this stock consists of |Λn| (n is large
enough) investors, who are located in Λn lattice. And Ct(0) is a random set of the selected
traders who receive the information. At the beginning of trading in each day, suppose that the
investors receive some news. We define a random variable ζt for these investors, suppose that
these investors taking buying positions (ζt = 1) selling positions (ζt = −1), or neutral positions
(ζt = 0)with probability q1, q−1 or 1− (q1 + q−1)(q1, q2 > 0, q1 + q2 ≤ 1), respectively. Then these
investors send bullish, bearish or neutral signal to the market. According to bond percolation
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on S
(2), investors can affect each other or the news can be spread, which is assumed as the

main factor of price fluctuations. For a fixed t ∈ {1, 2, . . . , T}, let

Bt =
ζt|Ct(0)|
|Λn| . (2.4)

From the above definitions and mathematical finance theory [20–24], we define the stock
price at tth trading day as

S(t) = eα(t)BtS(t − 1), (2.5)

where S(0) is the initial stock price at time 0, and α(t)(>0) represents the depth function of
the market at trading day t. Then we have

S(t) = S(0) exp

{

α(t)
t∑

k=1

Bk

}

, t ∈ {1, 2, . . . , T}. (2.6)

The formula of the single-period stock logarithmic returns from t to t + 1 is given as follows:

r(t) = lnS(t + 1) − lnS(t), t ∈ {1, 2, . . . , T}. (2.7)

3. Experiment Analysis of Market Return Distribution

In order to make empirical research on the financial price model and an actual stock market
by comparison, we select the daily closing prices of Hang Seng Index in the 20-year period
from September 3, 1990 to September 3, 2010, the total number of observed data is about 4942.
Recent research shows that returns on financial markets are not Gaussian, but exhibit excess
kurtosis and fatter tails than the normal distribution, which is usually called the “fat-tail”
phenomenon, see [21, 25–30]. The general explanation for this phenomenon is thought to be
the “herd effect” of investors in the market. The time series of returns by simulating the price
model which is developed on the Sierpinski carpet percolation is plotted in Figure 2(a). The
returns distributions of Hang Seng Index and the financial model are plotted in Figure 2(b),
the part (where the probability is above the 75th or below 25th percentiles of the samples)
deviates from the dash line. This implies that the probability distributions of returns deviate
from the corresponding normal distributions at the tail parts.

For further analyzing the character of returns distributions for the simulative data and
Hang Seng Index, we make the single-sample Kolmogorov-Smirnov test by the statistical
method, the basic statistics of the corresponding returns is displayed in Table 1. The value of
two-tail test P is 0.000, thus the hypothesis is denied that the distribution of returns follows
the Gaussian distribution.
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Figure 2: (a) The returns time series of simulation data for the price model with the intensity p = 0.49. (b)
The comparison of returns distributions for 20-year period Hang Seng index and the simulative data with
p = 0.49.

Table 1: The Kolmogorov-Smirnov test.

The financial model Hang Seng Index
Capability 4942 4942
The H value 1 1
The P value of double tail 0.0000 0.0000
K-S statistics to measure 0.4633 0.4736
The CV value 0.0193 0.0193

In this part, we study the properties of skewness and kurtosis on the returns for the
simulative data and Hang Seng Index. Next we give the definitions of skewness and kurtosis
as follows:

Skewness =
n∑

i=1

(ri − ur)3

(n − 1)δ3
,

Kurtosis =
n∑

i=1

(ri − ur)4

(n − 1)δ4
,

(3.1)

where ri denotes the return of ith trading day, ur is the mean of r, n is the total number of
trading dates, and δ is the corresponding standard variance. Kurtosis shows the centrality of
data, and the skewness shows the symmetry of the data; it is a measure of the “peakedness”
of the probability distribution of a real-valued random variable, and the infrequent extreme
deviations lead higher kurtosis. Skewness is important because kurtosis is not independent of
skewness, and the latter may “induce” the former. It is known that the skewness of standard
normal distribution is 0 and the kurtosis is 3. Next we investigate the statistical behaviors of
the returns for different intensity values p , where the value p changes from 0.39 to 0.55 with
the interval length 0.01.
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Table 2: The analysis of the price model for different intensity values p.

p Kurtosis Skewness Mean Variance Min Max
0.55 5.144784 −0.09809 −9.88E − 06 2.19E − 07 −0.00242 0.002424
0.54 5.131352 −0.02482 −7.67E − 06 2.80E − 07 −0.0029 0.003056
0.53 4.893179 0.02581 2.39E − 06 3.35E − 07 −0.00316 0.003425
0.52 5.145840 −0.12553 1.41E − 06 4.17E − 07 −0.00411 0.003056
0.51 4.923338 −0.03637 1.16E − 05 5.47E − 07 −0.00379 0.003741
0.50 4.417513 0.061596 6.37E − 06 6.88E − 07 −0.00374 0.004057
0.49 5.114434 −0.10168 −6.15E − 06 8.47E − 07 −0.00559 0.004321
0.48 4.697023 0.030538 −1.25E − 05 1.11E − 06 −0.00495 0.005954
0.47 4.484873 −0.07156 −1.90E − 05 1.47E − 06 −0.00669 0.005427
0.46 5.045552 0.13255 1.03E − 05 1.92E − 06 −0.00801 0.00743
0.45 5.066152 −0.07007 −3.35E − 05 2.46E − 06 −0.01112 0.008536
0.44 4.491076 0.076139 2.90E − 05 3.11E − 06 −0.00843 0.008325
0.43 4.905725 −0.14384 5.43E − 05 4.61E − 06 −0.01565 0.008115
0.42 5.029006 −0.03238 −1.70E − 06 6.18E − 06 −0.01655 0.013437
0.41 4.905482 −0.08227 −2.31E − 05 8.84E − 06 −0.01813 0.013806
0.40 4.539316 −0.05757 1.30E − 05 1.23E − 05 −0.01739 0.01702
0.39 4.431923 0.042044 −6.44E − 06 1.92E − 05 −0.02176 0.019338

Table 2 gives a description of the statistics for 17 group data of the price model. This
shows that the distribution of the returns deviates from the Gaussian distribution with the
intensity values p increasing, and the kurtosis distribution of the returns has a sharper peak,
longer and fatter tails for larger p. From the definitions in Section 2, p is the intensity for the
Sierpinski carpet lattice percolation and represents the strength of information spread in the
price model. The wider the information spread, the larger the value of p is. In the following,
we hope to exhibit that the numerical characteristics of simulation results for some intensity
p are very close to those of the real data. We analyze the probability distributions of the
logarithmic returns and the cumulative distributions of the normalized returns for these data
in Figure 3, where the intensity values of the model are p = 0.485, p = 0.49, and p = 0.495,
respectively.

4. Long Memory Test of the Model and Hang Seng Index

We analyze the long memory of the returns by using Lo’s modified rescaled range statistic
[31]. The long memory is measured by the Hurst exponent H, calculated by Lo’s modified
rescaled range statistic. For 0.5 < H < 1, the series exhibits the long-term persistence, with the
maintenance of tendency; for 0 < H < 0.5, the series is the antipersistent, presenting reversion
to the mean; and forH = 0.5, the series corresponds to a random walk. We consider a sample
of series X1, X2, . . . , Xn and let Xn denote the sample mean. Then the modified rescaled range
statistic, denoted by Qn, is defined by

Qn =
1

σ̂n

(
q
)

⎡

⎣max
1≤k≤n

k∑

j=1

(
Xj −Xn

)
− min

1≤k≤n

k∑

j=1

(
Xj −Xn

)
⎤

⎦, (4.1)
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Figure 3: The plots (a), (b), and (c) are the probability distributions of the logarithmic returns, and the plot
(d) is the cumulative distributions of the normalized price returns. The data is selected from Hang Seng
Index and from the simulation data with the different values p, p = 0.485, p = 0.49 and p = 0.495.

where

σ̂2
n

(
q
)
=

1
n

n∑

j=1

(
Xj −Xn

)2
+
2
n

q∑

j=1

ωj

(
q
)
⎡

⎣
n∑

i=j+1

(
Xi −Xn

)(
Xi−j −Xn

)
⎤

⎦

= σ̂2
X + 2

q∑

j=1

ωj

(
q
)
γ̂j ,

ωj

(
q
)
= 1 − j

q + 1
(
q < n

)

(4.2)

σ̂2
X and γ̂j denote the sample variance and the autocovariance estimators of X.
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Table 3: Statistics of returns for V and H.

Return series
V statistic results Hurst index results

First-order
n autocorrelation q V Intercept c H

The financial model 4942 0.018461152 2.1624 1.3901 0.129960913 0.5175
Hang Seng Index 4942 0.009450232 1.3835 1.2361 −0.357078997 0.5893

In order to make the statistical inference for the above-modified rescaled range
statistics, Lo derived that Vn(q) = n1/2Qn converges weakly to a random variable V , where V
is the range of a Brownian bridge on the unit interval. Then the corresponding distribution
function of V is given by

F(v) = 1 + 2
∞∑

k=1

(
1 − 4k2v2

)
e−2(kv)

2
. (4.3)

Form this function F(v), we can get test threshold for any level of significance (by
examining significant of Vn(q)), this reflects the long memory behavior for the time series. It
is important to select the window wide q; we take the experience value

q =
(
3T
2

)1/3

·
(

2ρ̂1
1 − ρ̂21

)2/3

, (4.4)

where ρ̂1 is the estimation of first-order autocorrelation coefficient of the time series. Then the
Hurst exponentH is defined as the limit of the ratio logQn/ logn. At the same time, it shows
a linear growth trend between modified R/S statistic and sample size n, by using regression

lnQn = ln c +H lnn. (4.5)

With some optimal q value, the statistics of returns by the modified R/S statistic is given in
Table 3 and Figure 4. Figure 4 also shows the fluctuations of exponent H of returns for the
price model and Hang Seng Index.

5. Long-Range Correlation of the Model and Hang Seng Index

In this section, detrended fluctuation analysis (DFA) method is applied on the lattice
Sierpinski carpet percolation. The DFA is a technique used to estimate a scaling exponent
from the behavior of the average fluctuation of a random variable around its local trend, for
the details see [26]. The cumulative deviation of time series {xt, t = 1, . . . ,N} is given by

Y (i) =
i∑

k=1

(xk − x) , for i = 1, . . . ,N. (5.1)
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Figure 4: (a) The plots of modified R/S statistics and the fluctuation of exponentH for the price model. (b)
The corresponding plots for the actual data from Hang Seng Index.

We divide Y (i) into intervals of nonoverlapping and equal length of time (n). Then the root
mean square fluctuation for all such length interval is defined as

F(n) =

√
√
√
√ 1

N

N∑

i=1

[Y (i) − Yn(i)]2, (5.2)



10 Journal of Applied Mathematics

The simulation returns
The fitted line

F(n) = −2.0003 × n0.51755

101 102 103

n

F
(n
)

10−1

(a)

The Hang Seng Index returns
The fitted line

F(n) = −2.3797 × n0.51531

101 102 103

n

F
(n
)

10−1

(b)

Figure 5: (a) DFA analysis of the returns for the simulation data with the intensity p = 0.49. (b) DFA
analysis of the returns for Hang Seng Index.

where Yn(i) is the fitting polynomial of the interval. The above definition is repeated for all
the divided intervals. There is a power-law relation between F(n) and n, namely,

F(n) ∼ nα. (5.3)

The parameter α is the scaling exponent or the correlation exponent, which exhibits the long-
range correlation of the time series. For α = 0.5, it indicates that the time series is uncorrelated
(white noise); for the value 0 < α < 0.5, it indicates the anticorrelations; for 0.5 < α < 1, the
time series has the persistent long-range correlation. According to DFAmethod and computer
simulation, the scaling exponents of the returns of the price model and Hang Seng Index are
0.51755 and 0.51531, respectively, in Figure 5. Although both the exponent values are larger
than 0.5, they are very close to 0.5. This shows that there is some strong indication of long-
range correlations for the returns.

6. Conclusion

A new random stock price model is developed by the lattice Sierpinski carpet percolation
in the present paper, and a cluster of carpet percolation is applied to describe the cluster of
traders sharing the same opinion about themarket. The statistical properties of the returns are
investigated and analyzed for different intensity values, and the behaviors of long memory
and long-range correlation in volatility series are exhibited. Further, Hang Seng Index is also
introduced and investigated by comparison; the empirical results show that the price model
is accord with the real market to some degree.
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