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We study learning algorithms generated by regularization schemes in reproducing kernel Hilbert
spaces associated with an ε-insensitive pinball loss. This loss function is motivated by the ε-insen-
sitive loss for support vector regression and the pinball loss for quantile regression. Approximation
analysis is conducted for these algorithms by means of a variance-expectation bound when a noise
condition is satisfied for the underlying probability measure. The rates are explicitly derived under
a priori conditions on approximation and capacity of the reproducing kernel Hilbert space. As an
application, we get approximation orders for the support vector regression and the quantile regu-
larized regression.

1. Introduction and Motivation

In this paper, we study a family of learning algorithms serving both purposes of support vector
regression and quantile regression. Approximation analysis and learning rates will be provided,
which also helps better understanding of some classical learning methods.

Support vector regression is a classical kernel-based algorithm in learning theory
introduced in [1]. It is a regularization scheme in a reproducing kernel Hilbert space (RKHS)
HK associated with an ε-insensitive loss ψε : R → R+ defined for ε ≥ 0 by

ψε(u) = max{|u| − ε, 0} =

{
|u| − ε, if |u| ≥ ε,
0, otherwise.

(1.1)
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Here, for learning functions on a compact metric space X, K : X × X → R is a continuous,
symmetric, and positive semidefinite function called a Mercer kernel. The associated RKHS
HK is defined [2] as the completion of the linear span of the set of function {Kx = K(x, ·) :
x ∈ X} with the inner product 〈·, ·〉K satisfying 〈Kx,Ky〉K = K(x, y). Let Y = R and ρ be a
Borel probability measure on Z := X × Y . With a sample z = {(xi, yi)}mi=1 ∈ Zm independently
drawn according to ρ, the support vector regression is defined as

fSVR
z = arg min

f∈HK

{
1
m

m∑
i=1

ψε
(
f(xi) − yi

)
+ λ

∥∥f∥∥2
K

}
, (1.2)

where λ = λ(m) > 0 is a regularization parameter.
When ε > 0 is fixed, convergence of (1.2)was analyzed in [3]. Notice from the original

motivation [1] for the insensitive parameter ε for balancing the approximation and sparsity
of the algorithm that ε should change with the sample size and usually ε = ε(m) → 0 as the
sample size m increases. Mathematical analysis for this original algorithm is still open. We
will solve this problem in a special case of our approximation analysis for general learning
algorithms. In particular, we show how fSVR

z approximates the median function fρ,1/2, which
is one of the purposes of this paper. Here, for x ∈ X, the median function value fρ,1/2(x) is a
median of the conditional distribution ρ(· | x) of ρ at x.

Quantile regression, compared with the least squares regression, provides richer infor-
mation about response variables such as stretching or compressing tails [4]. It aims at esti-
mating quantile regression functions. With a quantile parameter 0 < τ < 1, a quantile regression
function fρ,τ is defined by its value fρ,τ(x) to be a τ-quantile of ρ(· | x), that is, a value u ∈ Y
satisfying

ρ
({
y ∈ Y : y ≤ u} | x) ≥ τ, ρ

({
y ∈ Y : y ≥ u} | x) ≥ 1 − τ. (1.3)

Quantile regression has been studied by kernel-based regularization schemes in a
learning theory literature (e.g., [5–8]). These regularization schemes take the form

fQR
z = arg min

f∈HK

{
1
m

m∑
i=1

ψτ
(
f(xi) − yi

)
+ λ

∥∥f∥∥2
K

}
, (1.4)

where ψτ : R → R+ is the pinball loss shown in Figure 1 defined by

ψτ(u) =

{
(1 − τ)u, if u > 0,
−τu, if u ≤ 0.

(1.5)

Motivated by the ε-insensitive loss ψε and the pinball loss ψτ , we propose the ε-insen-
sitive pinball loss ψετ : R → R+ with an insensitive parameter ε ≥ 0 shown in Figure 1 defined
as

ψετ (u) =

⎧⎪⎪⎨
⎪⎪⎩
(1 − τ)(u − ε), if u > ε,
−τ(u + ε), if u ≤ −ε,
0, otherwise.

(1.6)
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Figure 1

This loss function has been applied to online learning for quantile regression in our previous
work [8]. It is applied here to a regularization scheme in the RKHS as

f
(ε)
z = f (ε)

z,λ,τ = arg min
f∈HK

{
1
m

m∑
i=1

ψετ
(
f(xi) − yi

)
+ λ

∥∥f∥∥2
K

}
. (1.7)

The main goal of this paper is to study how the output function f (ε)
z given by (1.7) converges

to the quantile regression function fρ,τ and how explicit learning rates can be obtained with
suitable choices of the parameters λ = m−α, ε = m−β based on a priori conditions on the
probability measure ρ.

2. Main Results on Approximation

Throughout the paper, we assume that the conditional distribution ρ(· | x) is supported on
[−1, 1] for every x ∈ X. Then, we see from (1.3) that we can take values of fρ,τ to be on [−1, 1].
So to see how f

(ε)
z approximates fρ,τ , it is natural to project values of the output function f (ε)

z

onto the same interval by the projection operator introduced in [9].

Definition 2.1. The projection operator π on the space of function on X is defined by

π
(
f
)
(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, if f(x) > 1,
−1, if f(x) < −1,
f(x), if − 1 ≤ f(x) ≤ 1.

(2.1)

Our approximation analysis aims at establishing bounds for the error ‖π(f (ε)
z )−fρ,τ‖Lp∗ρX

in the space Lp
∗
ρX with some p∗ > 0 where ρX is the marginal distribution of ρ on X.

2.1. Support Vector Regression and Quantile Regression

Our error bounds and learning rates are presented in terms of a noise condition and approx-
imation condition on ρ.

The noise condition on ρ is defined in [5, 6] as follows.
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Definition 2.2. Let p ∈ (0,∞] and q ∈ (1,∞). We say that ρ has a τ-quantile of p-average type
q if for every x ∈ X, there exist a τ-quantile t∗ ∈ R and constants ax ∈ (0, 2], bx > 0 such that
for each u ∈ [0, ax],

ρ
({
y ∈ (t∗ − u, t∗)} | x) ≥ bxuq−1, ρ

({
y ∈ (t∗, t∗ + u)

} | x) ≥ bxuq−1, (2.2)

and that the function on X taking value (bxa
q−1
x )−1 at x ∈ X lies in LpρX .

Note that condition (2.2) tells us that fρ,τ(x) = t∗ is uniquely defined at every x ∈ X.
The approximation condition on ρ is stated in terms of the integral operator LK :

L2
ρX → L2

ρX defined by LK(f)(x) =
∫
X K(x, u)f(u)dρX(u). Since K is positive semidefinite,

LK is a compact positive operator and its r-th power LrK is well-defined for any r > 0. Our
approximation condition is given as

fρ,τ = LrK
(
gρ,τ

)
for some 0 < r ≤ 1

2
, gρ,τ ∈ L2

ρX . (2.3)

Let us illustrate our approximation analysis by the following special case which will
be proved in Section 5.

Theorem 2.3. Let X ⊂ R
n and K ∈ C∞(X × X). Assume fρ,τ ∈ HK and ρ has a τ-quantile of p-

average type 2 for some p ∈ (0,∞]. Take λ = m−(p+1)/(p+2) and ε = m−β with (p+1)/(p+2) ≤ β ≤ ∞.
Let 0 < η < (p + 1)/2(p + 2). Then, with p∗ = 2p/(p + 1) > 0, for any 0 < δ < 1, with confidence
1 − δ, one has

∥∥∥π(
f
(ε)
z

)
− fρ,τ

∥∥∥
L
p∗
ρX

≤ C̃ log
3
δ
mη−(p+1)/2(p+2), (2.4)

where C̃ is a constant independent ofm or δ.

If p ≥ (1/2η) − 2 for 0 < η < 1/4, we see that the power exponent for the learning rate
(2.4) is at least (1/2)−2η. This exponent can be arbitrarily close to 1/2when η is small enough.

In particular, if we take τ = 1/2, Theorem 2.3 provides rates for output function fSVR
z

of the support vector regression (1.2) to approximate the median function fρ,1/2.
If we take β = ∞ leading to ε = 0, Theorem 2.3 provides rates for output function fQR

z

of the quantile regression algorithm (1.4) to approximate the quantile regression function fρ,τ .

2.2. General Approximation Analysis

To state our approximation analysis in the general case, we need the capacity of the hypo-
thesis space measured by covering numbers.

Definition 2.4. For a subset S of C(X) and u > 0, the covering number N(S, u) is the minimal
integer l ∈ N such that there exist l disks with radius u covering S.



Journal of Applied Mathematics 5

The covering numbers of balls BR = {f ∈ HK : ‖f‖K ≤ R} with radius R > 0 of the
RKHS have been well studied in the learning theory literature [10, 11]. In this paper, we as-
sume for some s > 0 and Cs > 0 that

logN(B1, u) ≤ Cs

(
1
u

)s

, ∀u > 0. (2.5)

Now we can state our main result which will be proved in Section 5. For p ∈ (0,∞]
and q ∈ (1,∞), we denote

θ = min
{
2
q
,

p

p + 1

}
∈ (0, 1]. (2.6)

Theorem 2.5. Assume (2.3) with 0 < r ≤ 1/2 and (2.5) with s > 0. Suppose that ρ has a τ-quan-
tile of p-average type q for some p ∈ (0,∞] and q ∈ (1,∞). Take λ = m−α with 0 < α ≤ 1 and α <
(2 + s)/s(2 + s − θ). Set ε = m−β with αr/(1 − r) ≤ β ≤ ∞. Let

0 < η <
(1 + s)[2 + 2s − sα(2 + s − θ)]

s(2 + s − θ)(2 + s) . (2.7)

Then, with p∗ = pq/(p + 1) > 0, for any 0 < δ < 1, with confidence 1 − δ, one has

∥∥∥π(
f
(ε)
z

)
− fρ,τ

∥∥∥
L
p∗
ρX

≤ C̃
(
log

3
η

)2

log
3
δ
m−ϑ, (2.8)

where C̃ is a constant independent of m or δ and the power index ϑ is given in terms of r, s, p, q, α,
and η by

ϑ =
1
q
min

{
αr

1 − r ,
1

2 + s − θ − s[α(2 + s − θ) − 1]
(2 + s − θ)(2 + s) − sη

1 + s
,

1
2 + s − θ − sα(1 − 2r)

(1 + s)(2 − 2r)
,

1
2 + s − θ − s

1 + s

(
α

2
− 1
2(2 − θ)

)}
.

(2.9)

The index ϑ can be viewed as a function of variables r, s, p, q, α, η. The restriction 0 <
α < (2 + s)/s(2 + s − θ) on α and (2.7) on η ensure that ϑ is positive, which verifies the valid
learning rate in Theorem 2.5.

Assumption (2.5) is a measurement of regularity of the kernelK when X is a subset of
R
n. In particular, s can be arbitrarily small whenK is smooth enough. In this case, the power

index ϑ in (2.8) can be arbitrarily close to (1/q)min{αr/(1−r), 1/(2−θ)}. Again, when β = ∞,
ε = 0, algorithm (1.7) corresponds to algorithm (1.4) for quantile regression. In this case,
Theorem 2.5 provides learning rates for quantile regression algorithm (1.4).
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Error analysis has been done for quantile regression algorithm (1.4) in [5, 6]. Under the
assumptions that ρ satisfies (2.2)with some p ∈ (0,∞] and q > 1 and the �2 empirical covering
number Nz(B1, η, �

2) (see [5] for more details) of B1 is bounded as

sup
z∈Zm

logNz

(
B1, η, �

2
)
≤ a

(
1
η

)s

with s ∈ (0, 2), a ≥ 1, (2.10)

it was proved in [5] that with confidence 1 − δ,

∥∥∥π(
fQR
z

)
− fρ,τ

∥∥∥
L
p∗
ρX

≤
⎧⎨
⎩Dτ(λ) +

√
Dτ(λ)
λ

log(3/δ)
m

+

(
Ks,Cpa

λs/2m

)(p+1)/(p+2−s/2)

+
Ks,Cpa

λs/2m
+ 5

(
32Cp log(3/δ)

m

)(p+1)/(p+2)

+
145 log(3/δ)

m

⎫⎪⎪⎬
⎪⎪⎭

1/q

,

(2.11)

where Cp andKs,Cp are constants independent ofm or λ. Here,Dτ(λ) is the regularization error
defined as

Dτ(λ) = inf
f∈HK

{
Eτ

(
f
) − Eτ

(
fρ,τ

)
+ λ

∥∥f∥∥2
K

}
, (2.12)

and Eτ(f) is the generalization error associated with the pinball loss ψτ defined by

Eτ
(
f
)
=

∫
Z

ψτ
(
f(x) − y)dρ =

∫
X

∫
Y

ψτ
(
f(x) − y)dρ(y | x)dρX(x). (2.13)

Note that Eτ(f) is minimized by the quantile regression function fρ,τ . Thus, when the regular-
ization error Dτ(λ) decays polynomially as Dτ(λ)=O(λr/(1−r)) (which is ensured by Lemma 2.6
below when (2.3) is satisfied) and λ = m−α, then ‖π(fQR

z ) − fρ,τ‖Lp∗ρX = O(log(3/δ)m−ϑ)with

ϑ =
1
q
min

{
αr

1 − r ,
p + 1

p + 2 − (s/2)

(
1 − αs

2

)
,
p + 1
p + 2

}
. (2.14)

Since (p + 1)/(p + 2) = 1/(2 − θ), we see that this learning rate is comparable to our result in
(2.8).
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2.3. Comparison with Least Squares Regression

There has been a large literature in learning theory (described in [12]) for the least squares
algorithms:

fLS
z = arg min

f∈HK

{
1
m

m∑
i=1

(
f(xi) − yi

)2 + λ∥∥f∥∥2
K

}
. (2.15)

It aims at learning the regression function fρ(x) =
∫
Y ydρ(y | x). A crucial property for its

error analysis is the identity Els(f) − Els(fρ) = ‖f − fρ‖2L2
ρX

for the least squares generalization

error Els(f) =
∫
Z(y − f(x))2dρ. It yields a variance-expectation bound E(ξ2) ≤ 4E(ξ) for the

random variable ξ = (y−f(x))2 − (y−fρ(x))2 on (Z, ρ)where f : X → Y is an arbitrary mea-
surable function. Such a variance-expectation bound with E(ξ) possibly replaced by its posi-
tive power (E(ξ))θ plays an essential role for analyzing regularization schemes and the power
exponent θ depends on strong convexity of the loss. See [13] and references therein. However,
the pinball loss in the quantile regression setting has no strong convexity [6] and we would
not expect a variance-expectation bound for a general distribution ρ. When ρ has a τ-quantile
of p-average type q, the following variance-expectation bound with θ given by (2.6) can be
found in [5, 7] (derived by means of Lemma 3.1 below).

Lemma 2.6. If ρ has a τ-quantile of p-average type q for some p ∈ (0,∞] and q ∈ (1,∞), then

E
{(
ψτ

(
f(x) − y) − ψτ(fρ,τ(x) − y))2} ≤ Cθ

(Eτ(f) − Eτ
(
fρ,τ

))θ
, ∀f : X −→ Y,

(2.16)

where the power index θ is given by (2.6) and the constant Cθ is Cθ = 22−θqθ‖γ−1‖θ
L
p
ρX

.

Lemma 2.6 overcomes the difficulty of quantile regression caused by lack of strong
convexity of the pinball loss. It enables us to derive satisfactory learning rates, as in
Theorem 2.5.

3. Insensitive Relation and Error Decomposition

An important relation for quantile regression observed in [5] assets that the error ‖π(f (ε)
z ) −

fρ,τ‖ taken in a suitable L
p∗
ρX space can be bounded by the excess generalization error

Eτ(π(f (ε)
z )) − Eτ(fρ,τ) when the noise condition is satisfied.

Lemma 3.1. Let p ∈ (0,∞] and q ∈ (1,∞). Denote p∗ = pq/(p + 1) > 0. If ρ has a τ-quantile of
p-average type q, then for any measurable function f on X, one has

∥∥f − fρ,τ
∥∥
L
p∗
ρX

≤ Cq,ρ

{Eτ(f) − Eτ
(
fρ,τ

)}1/q
, (3.1)

where Cq,ρ = 21−(1/q) q1/q‖{(bxaq−1x )−1}x∈X‖1/qL
p
ρX

.
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By Lemma 3.1, to estimate ‖π(f (ε)
z )−fρ,τ‖Lp∗ρX , we only need to bound the excess gener-

alization error Eτ(π(f (ε)
z ))−Eτ(fρ,τ). This will be done by conducting an error decomposition

which has been developed in the literature for regularization schemes [9, 13–15]. Technical
difficulty arises for our problem here because the insensitive parameter ε changes with m.
This can be overcome [16] by the following insensitive relation

ψτ(u) − ε ≤ ψετ (u) ≤ ψτ(u), u ∈ R. (3.2)

Now, we can conduct an error decomposition. Define the empirical error Ez,τ(f) for
f : X → R as

Ez,τ
(
f
)
=

1
m

m∑
i=1

ψτ
(
f(xi) − yi

)
. (3.3)

Lemma 3.2. Let λ > 0, f (ε)
z be defined by (1.7) and

f
(0)
λ = arg min

f∈HK

{
Eτ

(
f
) − Eτ

(
fρ,τ

)
+ λ

∥∥f∥∥2
K

}
. (3.4)

Then,

Eτ
(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

)
+ λ

∥∥∥f (ε)
z

∥∥∥2

K
≤ S1 + S2 + ε +Dτ(λ), (3.5)

where

S1 =
[
Eτ

(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

)] − [
Ez,τ

(
π
(
f
(ε)
z

))
− Ez,τ

(
fρ,τ

)]
,

S2 =
[
Ez,τ

(
f
(0)
λ

)
− Ez,τ

(
fρ,τ

)] − [
Eτ

(
f
(0)
λ

)
− Eτ

(
fρ,τ

)]
,

(3.6)

Proof. The regularized excess generalization error Eτ(π(f (ε)
z )) − Eτ(fρ,τ) + λ‖f (ε)

z ‖2K can be ex-
pressed as

{
Eτ

(
π
(
f
(ε)
z

))
− Ez,τ

(
π
(
f
(ε)
z

))}
+
{[

Ez,τ

(
π
(
f
(ε)
z

))
+ λ

∥∥∥f (ε)
z

∥∥∥2

K

]
−
[
Ez,τ

(
f
(0)
λ

)
+ λ

∥∥∥f (0)
λ

∥∥∥2

K

]}

+
{[

Ez,τ

(
f
(0)
λ

)
− Eτ

(
f
(0)
λ

)]}
+
{
Eτ

(
f
(0)
λ

)
− Eτ

(
fρ,τ

)
+ λ

∥∥∥f (0)
λ

∥∥∥2

K

}
.

(3.7)
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The fact |y| ≤ 1 implies that Ez,τ(π(f
(ε)
z )) ≤ Ez,τ(f

(ε)
z ). The insensitive relation (3.2) and the

definition of f (ε)
z tell us that

Ez,τ

(
f
(ε)
z

)
+ λ

∥∥∥f (ε)
z

∥∥∥2

K
≤ 1
m

m∑
i=1

ψετ

(
f
(ε)
z (xi) − yi

)
+ λ

∥∥∥f (ε)
z

∥∥∥2

K
+ ε

≤ 1
m

m∑
i=1

ψετ

(
f
(0)
λ (xi) − yi

)
+ λ

∥∥∥f (0)
λ

∥∥∥2

K
+ ε ≤ Ez,τ

(
f
(0)
λ

)
+ λ

∥∥∥f (0)
λ

∥∥∥2

K
+ ε.

(3.8)

Then, by subtracting and adding Eτ(fρ,τ) and Ez,τ(fρ,τ) and notingDτ(λ) = Eτ(f (0)
λ

)−Eτ(fρ,τ)+
λ‖f (0)

λ ‖2K, we see that the desired inequality in Lemma 3.2 holds true.

In the error decomposition (3.5), the first two terms are called sample error. The last
term is the regularization error defined in (2.12). It can be estimated as follows.

Proposition 3.3. Assume (2.3). Define f (0)
λ

by (3.4). Then, one has

Dτ(λ) ≤ C0λ
r/(1−r),∥∥∥f (0)

λ

∥∥∥
K
≤

√
C0λ

(2r−1)/(2−2r),
(3.9)

where C0 is the constant C0 = ‖gρ,τ‖L2
ρX

+ ‖gρ,τ‖2L2
ρX

.

Proof. Let μ = λ1/(1−r) > 0 and

fμ =
(
LK + μI

)−1
LKfρ,τ . (3.10)

It can be found in [17, 18] that when (2.3) holds, we have

∥∥fμ − fρ,τ∥∥2
L2
ρX

+ μ
∥∥fμ∥∥2

K
≤ μ2r∥∥gρ,τ∥∥2

L2
ρX

. (3.11)

Hence, ‖fμ − fρ,τ‖L2
ρX

≤ μr‖gρ,τ‖L2
ρX

and ‖fμ‖2K ≤ μ2r−1‖gρ,τ‖2L2
ρX

. Since ψτ is Lipschitz, we know

by taking f = fμ in (2.12) that

Dτ(λ) ≤
∫
Z

ψτ
(
fμ(x) − y

) − ψτ(fρ,τ(x) − y) + λ∥∥fμ∥∥2
K

≤ ∥∥fμ − fρ,τ∥∥L1
ρX

+ λ
∥∥fμ∥∥2

K
≤ ∥∥fμ − fρ,τ∥∥L2

ρX

+ λ
∥∥fμ∥∥2

K

≤ μr∥∥gρ,τ∥∥L2
ρX

+ λμ2r−1∥∥gρ,τ∥∥2
L2
ρX

=
(∥∥gρ,τ∥∥L2

ρX

+
∥∥gρ,τ∥∥2

L2
ρX

)
λr/(1−r).

(3.12)

This verifies the desired bound for Dτ(λ). By taking f = 0 in (2.12), we have

λ
∥∥∥f (0)

λ

∥∥∥2

K
≤ Dτ(λ) ≤ C0λ

r/(1−r). (3.13)

Then the bound for ‖f (0)
λ ‖K is proved.
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4. Estimating Sample Error

This section is devoted to estimating the sample error. This is conducted by using the vari-
ance-expectation bound in Lemma 2.6.

Denote κ = supx∈X
√
K(x, x). For R ≥ 1, denote

W(R) =
{
z ∈ Zm :

∥∥∥f (ε)
z

∥∥∥
K
≤ R

}
. (4.1)

Proposition 4.1. Assume (2.3) and (2.5). Let R ≥ 1 and 0 < δ < 1. If ρ has a τ-quantile of p-average
type q for some p ∈ (0,∞] and q ∈ (1,∞), then there exists a subset VR of Zm with measure at most
δ such that for any z ∈ W(R)\VR,

Eτ
(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

)
+ λ

∥∥∥f (ε)
z

∥∥∥2

K
≤ 2ε + C′

1 log
3
δ
λr/(1−r) max

{
1,
λ−(1/(2−2r))

m

}

+ C′
2 log

3
δ
m−1/(2−θ) + C′

3m
−1/(2+s−θ)Rs/(1+s),

(4.2)

where θ is given by (2.6) and C′
1, C

′
2, C

′
3 are constants given by

C′
1 = 4C0+2κ

√
C0, C′

2 = 245+324C1/(2−θ)
θ , C′

3 = 40(6Cs)1/(1+s)+40(8CθCs)1/(2+s−θ).
(4.3)

Proof. Let us first estimate the second part S2 of the sample error. It can be decomposed into
two parts S2 = S2,1 + S2,2 where

S2,1 =
[
Ez,τ

(
f
(0)
λ

)
− Ez,τ

(
π
(
f
(0)
λ

))]
−
[
Eτ

(
f
(0)
λ

)
− Eτ

(
π
(
f
(0)
λ

))]
,

S2,2 =
[
Ez,τ

(
π
(
f
(0)
λ

))
− Ez,τ

(
fρ,τ

)] − [
Eτ

(
π
(
f
(0)
λ

))
− Eτ

(
fρ,τ

)]
.

(4.4)

For boundingS2,1, we take the randomvariable ξ(z)=ψτ(f
(0)
λ

(x)−y)−ψτ(π(f (0)
λ

)(x)−y)
on (Z, ρ). It satisfies 0 ≤ ξ ≤ |π(f (0)

λ
)(x) − f (0)

λ
(x)| ≤ 1 + ‖f (0)

λ
‖∞. Hence, |ξ − E(ξ)| ≤ 1 + ‖f (0)

λ
‖∞

and E(ξ − E(ξ))2 ≤ Eξ2 ≤ (1 + ‖f (0)
λ

‖∞)E(ξ). Applying the one-side Bernstein inequality [12],
we know that there exists a subset Z1,δ of Zm with measure at least 1 − (δ/3) such that

S2,1 ≤
7
(
1 +

∥∥∥f (0)
λ

∥∥∥
∞

)
log(3/δ)

6m
+ Eτ

(
f
(0)
λ

)
− Eτ

(
π
(
f
(0)
λ

))
, ∀z ∈ Z1,δ.

(4.5)
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For S2,2, we apply the one-side Bernstein inequality again to the random variable
ξ(z) = ψτ(π(f

(0)
λ )(x)−y)−ψτ(fρ,τ(x)−y), bound the variance by Lemma 2.6 with f = π(f (0)

λ ),
and find that there exists another subset Z2,δ of Zm with measure at least 1 − (δ/3) such that

S2,2 ≤
4 log(3/δ)

3m
+
(
θ

2

)θ/(4−2θ)(
1 − θ

2

)(
2Cθ log(3/δ)

m

)1/(2−θ)

+ Eτ
(
π
(
f
(0)
λ

))
− Eτ

(
fρ,τ

)
, ∀z ∈ Z2,δ.

(4.6)

Next, we estimate the first part S1 of the sample error. Consider the function set

G =
{
ψτ

(
π
(
f
)
(x) − y) − ψτ(fρ,τ(x) − y) :

∥∥f∥∥K ≤ R}
. (4.7)

A function from this set g(z) = ψτ(π(f)(x) − y) − ψτ(fρ,τ(x) − y) satisfies E(g) ≥ 0, |g(z)| ≤ 2,
and E(g2) ≤ Cθ(E(g))

θ by (2.16). Also, the Lipschitz property of the pinball loss yields
N(G, u) ≤ N(B1, u/R). Then, we apply a standard covering number argument with a ratio
inequality [12, 13, 19, 20] to G and find from the covering number condition (2.5) that

Probz∈Zm

⎧⎪⎨
⎪⎩ sup
‖f‖K≤R

[Eτ(π(
f
)) − Eτ

(
fρ,τ

)] − [Ez,τ
(
π
(
f
)) − Ez,τ

(
fρ,τ

)]
√(Eτ(π(

f
)) − Eτ

(
fρ,τ

))θ + uθ ≤ 4u1−(θ/2)

⎫⎪⎬
⎪⎭

≥ 1 −N
(
B1,

u

R

)
exp

{
− mu2−θ

2Cθ + (4/3)u1−θ

}
≥ 1 − exp

{
Cs

(
R

u

)s

− mu2−θ

2Cθ + (4/3)u1−θ

}
.

(4.8)

Setting the confidence to be 1 − (δ/3), we take u∗(R,m, δ/3) to be the positive solution to the
equation

Cs

(
R

u

)s

− mu2−θ

2Cθ + (4/3)u1−θ
= log

δ

3
. (4.9)

Then, there exists a third subset Z3,δ of Zm with measure at least 1 − (δ/3) such that

sup
‖f‖K≤R

[Eτ(π(
f
))−Eτ(fρ,τ)]−[Ez,τ

(
π
(
f
))−Ez,τ

(
fρ,τ

)]
√(Eτ(π(

f
))−Eτ(fρ,τ))θ+(u∗(R,m, δ/3))θ ≤4

(
u∗

(
R,m,

δ

3

))1−(θ/2)
, ∀z ∈ Z3,δ.

(4.10)
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Thus, for z ∈ W(R) ∩ Z3,δ, we have

S1 =
[
Eτ

(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

)] − [
Ez,τ

(
π
(
f
(ε)
z

))
− Ez,τ

(
fρ,τ

)]

≤ 4
[
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(
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δ
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)]1−(θ/2)√[
Eτ

(
π
(
f
(ε)
z
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− Eτ

(
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)]θ
+
[
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(
R,m,

δ

3

)]θ

≤
(
1 − θ

2

)
42/(2−θ)u∗

(
R,m,
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3

)
+
θ

2

[
Eτ

(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

)]
+ 4u∗

(
R,m,

δ

3

)
.

(4.11)

Here, we have used the elementary inequality
√
a + b ≤ √

a +
√
b and Young’s inequality.

Putting this bound and (4.5), (4.6) into (3.5), we know that for z ∈ W(R) ∩ Z3,δ ∩ Z1,δ ∩ Z2,δ,
there holds

Eτ
(
π
(
fz

)) − Eτ
(
fρ,τ

)
+ λ

∥∥∥f (ε)
z

∥∥∥2

K
≤ 1

2

[
Eτ

(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

)]
+ ε + 2Dτ(λ)

+ 20u∗
(
R,m,

δ

3

)
+
7
(
1 +

∥∥∥f (0)
λ

∥∥∥
∞

)
log(3/δ)

6m
+
4 log(3/δ)

3m
+
(
2Cθ log(3/δ)

m

)1/(2−θ)
,

(4.12)

which together with Proposition 3.3 implies

Eτ
(
π
(
fz

)) − Eτ
(
fρ,τ

)
+ λ

∥∥∥f (ε)
z

∥∥∥2

K
≤ 2ε + 4C0λ

r/(1−r) +
(
5 + 2(2Cθ)1/(2−θ)

)
log

3
δ
m−1/(2−θ)

+ 40u∗
(
R,m,

δ

3

)
+ 2κ

√
C0 log

3
δ

λ(2r−1)/(2−2r)

m
.

(4.13)

Here, we have used the reproducing property inHK which yields [12]

∥∥f∥∥∞ ≤ κ∥∥f∥∥K, ∀f ∈ HK. (4.14)

Equation (4.9) can be expressed as

u2+s−θ − 4
3m

log
3
δ
u1+s−θ − 2Cθ

m
log

3
δ
us − 4CsR

s

3m
u1−θ − 2CθCsR

s

m
= 0. (4.15)

By Lemma 7.2 in [12], the positive solution u∗(R,m, δ/3) to this equation can be bounded as

u∗(R,m, δ/3) ≤ max

{
6
m

log
3
δ
,

(
8Cθ

m
log

3
δ

)1/(2−θ)
,

(
6CsR

s

m

)1/(1+s)

,

(
8CθCsR

s

m

)1/(2+s−θ)}

≤
(
6 + (8Cθ)1/(2−θ)

)
log

3
δ
m−1/(2−θ) +

(
(6Cs)1/(1+s) + (8CθCs)1/(2+s−θ)

)
×m−1/(2+s−θ)Rs/(1+s).

(4.16)
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Thus, for z ∈ W(R) ∩ Z3,δ ∩ Z1,δ ∩ Z2,δ, the desired bound (4.2) holds true. Since the measure
of the set Z3,δ ∩ Z1,δ ∩ Z2,δ is at least 1 − δ, our conclusion is proved.

5. Deriving Convergence Rates by Iteration

To apply Proposition 4.1 for error analysis, we need some R ≥ 1 for z ∈ W(R). One may
choose R = λ−1/2 according to

∥∥∥f (ε)
z

∥∥∥
K
≤ λ−1/2, ∀z ∈ Zm (5.1)

which is seen by taking f = 0 in (1.7). This choice is too rough. Recall from Proposition 3.3
that ‖f (0)

λ
‖K ≤

√
C0λ

(2r−1)/(2−2r) which is a bound for the noise-free limit f (0)
λ

of f (ε)
z . It is much

better than λ−1/2. This motivates us to try similar tight bounds for f (ε)
z . This target will be

achieved in this section by applying Proposition 4.1 iteratively. The iteration technique has
been used in [13, 21] to improve learning rates.

Lemma 5.1. Assume (2.3) with 0 < r ≤ 1/2 and (2.5) with s > 0. Take λ = m−α with 0 < α ≤ 1 and
ε = m−β with 0 < β ≤ ∞. Let 0 < η < 1. If ρ has a τ-quantile of p-average type q for some p ∈ (0,∞]
and q ∈ (1,∞), then for any 0 < δ < 1, with confidence 1 − δ, there holds

∥∥∥f (ε)
z

∥∥∥
K
≤ 4C′

3

(
1 +

√
2 +

√
C′

1 +
√
C′

2

)(
log

3
η

)2
√
log

3
δ
mθη , (5.2)

where θη is given by

θη = max
{
α − β
2

,
α(1 − 2r)
2 − 2r

,
α

2
− 1
2(2 − θ) ,

[α(2 + s − θ) − 1](1 + s)
(2 + s − θ)(2 + s) + η

}
≥ 0. (5.3)

Proof. Putting λ = m−α with 0 < α ≤ 1 and ε = m−β with 0 < β ≤ ∞ into Proposition 4.1, we
know that for any R ≥ 1 there exists a subset VR of Zm with measure at most δ such that

∥∥∥f (ε)
z

∥∥∥
K
≤ amRs/(2+2s) + bm, ∀z ∈ W(R)\VR, (5.4)

where with ζ := max{(α − β)/2, α(1 − 2r)/(2 − 2r), α/2 − 1/2(2 − θ)} ≥ 0, the constants are
given by

am =
√
C′

3m
(α/2)−(1/2(2+s−θ)), bm =

⎛
⎝√

2 +

√
C′

1 log
3
δ
+

√
C′

2 log
3
δ

⎞
⎠mζ. (5.5)

It follows that

W(R) ⊆ W
(
amR

s/(2+2s) + bm
)
∪ VR. (5.6)
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Let us apply (5.6) iteratively to a sequence {R(j)}Jj=0 defined by R(0) = λ−1/2 and R(j) =

am(R(j−1))s/(2+2s) +bm where J ∈ N will be determined later. Then,W(R(j−1)) ⊆ W(R(j))∪VR(j−1) .
By (5.1),W(R(0)) = Zm. So we have

Zm = W
(
R(0)

)
⊆ W

(
R(1)

)
∪ VR(0) ⊆ · · · ⊆ W

(
R(J)

)
∪
(
∪J−1j=0VR(j)

)
. (5.7)

As the measure of VR(j) is at most δ, we know that the measure of ∪J−1j=0VR(j) is at most Jδ.
Hence, W(R(J)) has measure at least 1 − Jδ.

Denote Δ = s/(2 + 2s) < 1/2. The definition of the sequence {R(j)}Jj=0 tells us that

R(J) = a1+Δ+Δ2+···+ΔJ−1
m

(
R(0)

)ΔJ

+
J−1∑
j=1

a1+Δ+Δ2+···+Δj−1
m bΔ

j

m + bm. (5.8)

Let us bound the two terms on the right-hand side.
The first term equals

(
C′

3
)(1−ΔJ )/2(1−Δ)

m((α(2+s−θ)−1)/(4+2s−2θ))((1−ΔJ )/(1−Δ))m(α/2)ΔJ
, (5.9)

which is bounded by

C′
3m

(α(2+s−θ)−1)/(4+2s−2θ)(1−Δ)m((α/2)−(α(2+s−θ)−1)/(4+2s−2θ)(1−Δ))ΔJ

≤ C′
3m

[α(2+s−θ)−1](1+s)/(2+s−θ)(2+s)m(1/(2+s−θ))2−J .
(5.10)

Take J to be the smallest integer greater than or equal to log(1/η)/ log 2. The above expres-
sion can be bounded by C′

3m
[α(2+s−θ)−1](1+s)/(2+s−θ)(2+s)+η.

The second terms equals

J−1∑
j=1

a1+Δ+Δ2+···+Δj−1
m bΔ

j

m + bm ≤
J−1∑
j=1

C′
3m

((α/2)−1/2(2+s−θ))((1−Δj )/(1−Δ))bΔ
j

1 mζΔj

+ b1mζ,

(5.11)

where b1 :=
√
2 +

√
C′

1 log(3/δ) +
√
C′

2 log(3/δ). It is bounded by

m[α(2+s−θ)−1](1+s)/(2+s−θ)(2+s)C′
3b1

J−1∑
j=0

m(ζ−([α(2+s−θ)−1](1+s)/(2+s−θ)(2+s)))(sj/(2+2s)j ). (5.12)

When ζ ≤ [α(2 + s − θ) − 1](1 + s)/(2 + s − θ)(2 + s), the above expression is bounded by
C′

3b1Jm
[α(2+s−θ)−1](1+s)/(2+s−θ)(2+s). When ζ ≥ [α(2 + s − θ) − 1](1 + s)/(2 + s − θ)(2 + s), it is

bounded by C′
3b1Jm

ζ.
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Based on the above discussion, we obtain

R(J) ≤ (
C′

3 + C
′
3b1J

)
mθη , (5.13)

where θη = max{[α(2 + s − θ) − 1](1 + s)/(2 + s − θ)(2 + s) + η, ζ}. So with confidence 1 − Jδ,
there holds

∥∥∥f (ε)
z

∥∥∥
K
≤ R(J) ≤ C′

3

(
1 +

√
2 +

√
C′

1 +
√
C′

2

)
J

√
log

3
δ
mθη . (5.14)

Then, our conclusion follows by replacing δ by δ/J and noting J ≤ 2 log(3/η).

Now, we can prove our main result, Theorem 2.5.

Proof of Theorem 2.5. Take R to be the right side of (5.2). By Lemma 5.1, there exists a subset
V ′
R of Zm with measure at most δ such that Zm\V ′

R ⊆ W(R). Applying Proposition 4.1 to this
R, we know that there exists another subset VR of Zm with measure at most δ such that for
any z ∈ W(R)\VR,

Eτ
(
π
(
f
(ε)
z

))
− Eτ

(
fρ,τ

) ≤ 2m−β + C′
1 log

3
δ
m−αr/(1−r) + C′

2 log
3
δ
m−1/(2−θ)

+ C′
4

(
log

3
η

)2
√
log

3
δ
m(s/(1+s))θη−(1/(2+s−θ)),

(5.15)

where

C′
4 = C

′
3
(
4C′

3
)s/(1+s)(1 +

√
2 +

√
C′

1 +
√
C′

2

)
. (5.16)

Since the set VR ∪ V ′
R has measure at most 2δ, after scaling 2δ to δ and setting the constant C̃

by

C̃ = 2Cq,ρ

(
2 + C′

1 + C
′
2 + C

′
4

)
, (5.17)

we see that the above estimate together with Lemma 3.1 gives the error bound

∥∥∥π(
f
(ε)
z

)
− fρ,τ

∥∥∥
L
p∗
ρX

≤ C̃
(
log

3
η

)2

log
3
δ
m−ϑ (5.18)

with confidence 1 − δ and the power index ϑ give by

ϑ =
1
q
min

{
β,

αr

1 − r ,
1

2 + s − θ − s

1 + s
θη

}
, (5.19)



16 Journal of Applied Mathematics

provided that

θη <
1 + s

s(2 + s − θ) . (5.20)

Since β ≥ αr/(1 − r), we know that (α − β)/2 ≤ α(1 − 2r)/(2 − 2r). By the restriction 0 < α <
(2+s)/s(2+s−θ) on α, we find α(1−2r)/(2−2r) < (1+s)/s(2+s−θ) and (α/2)−(1/2(2−θ)) <
(1 + s)/s(2 + s − θ). Moreover, restriction (2.7) on η tell us that [α(2 + s − θ) − 1](1 + s)/(2 +
s − θ)(2 + s) + η < (1 + s)/s(2 + s − θ). Therefore, condition (5.20) is satisfied. The restriction
β ≥ αr/(1−r) and the above expression for ϑ tells us that the power index for the error bound
can be exactly expressed by formula (2.9). The proof of Theorem 2.5 is complete.

Finally, we prove Theorem 2.3.

Proof of Theorem 2.3. Since fρ,τ ∈ HK, we know that (2.3) holds with r = 1/2. The noise condi-
tion on ρ is satisfied with q = 2 and p ∈ (0,∞]. Then, θ = p/(p + 1) ∈ (0, 1]. Since X ⊂ R

n and
K ∈ C∞(X × X), we know from [11] that (2.5) holds true for any s > 0. With 0 < η < ((p +
1)/2(p+2)), let us choose s to be a positive number satisfying the following four inequalities:

p + 1
p + 2

<
2 + s

s(2 + s − θ) ,

1
3
<

(1 + s)
[
2 + 2s − (

s(2 + s − θ)(p + 1
))
/
(
p + 2

)]
s(2 + s − θ)(2 + s) ,

p + 1
p + 2

− 2η ≤ 1
2 + s − θ − s

[
(2 + s − θ)(p + 1

)
/
(
p + 2 − 1

)]
(2 + s − θ)(2 + s) − s

3(1 + s)
,

p + 1
p + 2

− 2η ≤ 1
2 + s − θ .

(5.21)

The first inequality above tells us that the restrictions on α, β are satisfied by choosing α =
(p + 1)/(p + 2) = 1/(2 − θ) and (p + 1)/(p + 2) ≤ β ≤ ∞. The second inequality shows that
condition (2.7) for the parameter η renamed now as η∗ is also satisfied by taking η∗ = 1/3.
Thus, we apply Theorem 2.5 and know that with confidence 1−δ, (2.8) holds with the power
index ϑ given by (2.9); but r = 1/2, α = 1/(2 − θ), and η∗ = 1/3 imply that

ϑ =
1
2
min

{
α,

1
2 + s − θ ,

1
2 + s − θ − s[α(2 + s − θ) − 1]

(2 + s − θ)(2 + s) − s

3(1 + s)

}
. (5.22)

The last two inequalities satisfied by s yield ϑ ≥ (α/2) − η. So (2.8) verifies (2.4). This com-
pletes the proof of the theorem.
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