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This paper studies the Euler-Maxwell system which is a model of a collisionless plasma. By
energy estimation and the curl-div decomposition of the gradient, we rigorously justify a singular
approximation of the incompressible Euler equations via a quasi-neutral regime.

1. Introduction

We study a model of a collisionless plasma where the ions are supposed to be at rest and
create a neutralizing background field. The dynamics of the compressible electrons for plasma
physics in a uniform background of nonmoving ions with fixed unit density obey the (scaled)
one-fluid Euler-Maxwell system which takes the form [1]

∂tn + div (nu) = 0, (1.1)

∂tu + (u · ∇)u = −
(
E + γu × B

)
, (1.2)

γλ2∂tE − ∇ × B = γnu, γ∂tB +∇ × E = 0, (1.3)

λ2 div E = 1 − n, divB = 0, (1.4)

for (x, t) ∈ T3 × [0, T], subject to initial conditions:

(n, u, E, B)(x, 0) = (n0, u0, E0, B0)(x). (1.5)
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Here, n, u denote the scaled macroscopic density and mean velocity vector of the electrons
and E, B the scaled electric field andmagnetic field. They are functions of a three-dimensional
position vector x ∈ T3 and of the time t > 0, whereT3 = (R/2πZ)3 is the 3-dimensional torus.
The fields E and B are coupled to the particles through the Maxwell equations and act on
the particles via the Lorentz force E + γu × B. In the system (1.1)–(1.4), j = nu stand for the
current densities for the particle. Equations (1.1)-(1.2) are the mass and momentum balance
laws, respectively, while (1.3)-(1.4) are the Maxwell equations.

The dimensionless parameters λ > 0 and γ > 0 can be chosen independently on each
other, according to the desired scaling. Physically, λ stands for the scaled Debye length, γ can
be chosen to be proportional 1/c, where c is the speed of light. These parameters are small
compared to the characteristic length of physical interest. Thus, regarding λ and γ as singular
perturbation parameters, we can study the limits problem in the system (1.1)–(1.4) as these
parameters tend to zero. Thus, the limit λ → 0 is called the quasineutral limit while the limit
γ → 0 is called the nonrelativistic limit.

Note that the systems are pressureless, and the only force is due to Lorentz force E +
γu × B. The energy of systems (1.1)–(1.4) is given by

Eλ =
1
2

∫

T3

(
n|u|2 + λ2|E|2 + |B|2

)
dx. (1.6)

In the present paper, we will consider the combined quasineutral and nonrelativistic
limit of Euler-Maxwell system in the following scaling case:

γ = λ2 −→ 0. (1.7)

Passing to the limits when λ → 0 and γ → 0 go to zero, it is easy to obtain, at least at
a very formal level, the incompressible Euler equations of ideal fluids:

divu0 = 0, x ∈ T3, t > 0, (1.8)

∂tu
0 + u0 · ∇u0 +∇φ0 = 0, x ∈ T3, t > 0, (1.9)

u0(t = 0) = u0
0, x ∈ T3. (1.10)

In these limits the plasma is expected to behave like an incompressible fluid, therefore
governed by the incompressible Euler equation. Themain aim of this note is to give a rigorous
justification to this formal computation in the present paper.

Note that the above limit had been proven in [2] by an analysis of asymptotic
expansions and a careful use of Modulated energy technique. In this paper, the case that the
plasma is collisionless is considered. By energy estimation and the curl-div decomposition of
the gradient, we obtain a convergence to the incompressible Euler system inHs norm for any
s large enough under the assumption that the initial data are well prepared.

There have been a lot of interesting results about the topic on the quasineutral limit, for
the readers to see [3–8] for isentropic Euler-Poisson equations and [9, 10] for nonisentropic
Euler-Poisson equations and therein references. For example, by using the method of formal
asymptotic expansions, Peng et al. in [9] studied the quasineutral limit for Cauchy problems
of multidimensional nonisentropic Euler-Poisson equations for plasmas or semiconductors
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with prepared initial data. Li in [10] justified the convergence of the nonisentropic Euler-
Poisson equation to the incompressible nonisentropic Euler type equation via the quasineu-
tral limit and proved the local existence of smooth solutions to the limit equations by an
iterative scheme. The Euler-Maxwell equations are more intricate than the Euler-Poisson
equations for the complicated coupling of the Lorentz force. So there have been less studies
on the Euler-Maxwell equations than the study on the Euler-Poisson equations. See [3, 6–
8, 10–16] and the references therein. The first rigorously study of the Euler-Maxwell equations
with extrarelaxation terms is due to Chen et al. [17], where a global existence result to weak
solutions in one-dimensional case is established by the fractional step Godunov scheme
together with a compensated compactness argument. Jerome [18] establishes a local smooth
solution theory for the Cauchy problem of compressible Hydrodynamic-Maxwell systems via
a modification of the classical semigroup-resolvent approach of Kato. Paper [19] has just been
studied for the convergence of one-fluid isentropic Euler-Maxwell system to compressible
Euler-Poisson system via the nonrelativistic limit.

We split the rest of the paper in two sections: the first give the main result of this
paper, and the second is devoted to justify the convergence of Euler-Maxwell equations to
incompressible Euler equations by using the the curl-div decomposition of the gradient and
the λ-weighted energy method.

1.1. Notations and Preliminary Results

Now we introduce some important notations and preliminary results that we will use in this
paper as follows.

(1) Throughout this paper, ∇ = ∇x is the gradient, α = (α1, . . . , αd) and β, and so forth
are multi-index, andHs(T3) denotes the standard Sobolev space in torusT3, which
is defined by Fourier transform, namely, f ∈ Hs(T3) if and only if

∥∥f
∥∥2
s = (2π)d

∑

k∈Zd

(
1 + |k|2

)s∣∣(Ff
)
(k)

∣∣2 < +∞, (1.11)

where (Ff)(k) =
∫
T3 f(x)e−ikxdx is the Fourier transform of f ∈ Hs(T3). Noting

that if
∫
T3 f(x)dx = 0, then ‖f‖L2(T3) ≤ ‖∇f‖L2(T3).

(2) The following vector analysis formulas will be repeatedly used, see [1]:

div
(
f × g

)
= ∇ × f · g − ∇ × g · f, (1.12)

f · ∇g =
(
∇ × g

)
× f +∇

(
f · g

)
− ∇f · g, ∇f · g =

3∑

j=1

∇fjgj , (1.13)

f · ∇f =
(
∇ × f

)
× f +∇

(∣∣f
∣∣2

2

)

, (1.14)

∇ ×
(
f × g

)
= f div g − g div f +

(
g · ∇

)
f −

(
f · ∇

)
g. (1.15)
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2. The Main Result

First, we recall the classical result on the existence of sufficiently regular solutions of the in-
compressible Euler equations (see [20]).

Proposition 2.1. Let u0
0 be a divergence-free vector field on T3 and satisfy u0

0 ∈ Hs+2, s > 3/2 + 2.
Then there exist 0 < T ≤ ∞, the maximal existence time, and a unique smooth solution (u0, φ0) of the
incompressible Euler equation (1.8)-(1.9) on [0, T) satisfying that

∫
T3 φ

0(t, x)dx = 0, and, for any
T0 < T , the inequality

sup
0≤t≤T0

(∥∥
∥u0

∥
∥
∥
Hs+2

+
∥
∥
∥∂tu0

∥
∥
∥
Hs+1

+
∥
∥
∥∇φ0

∥
∥
∥
Hs+2

+
∥
∥
∥∂t∇φ0

∥
∥
∥
Hs+1

)
≤ C(T0) (2.1)

holds for some positive constant C(T0).

We will prove the following result.

Theorem 2.2. Let s ≥ 3/2+2 with s ∈ N. Assume that n0 = 1, u0 = u0
0+λu

1
0 with divu

0
0 = 0, u0

0 ∈
Hs+2, u1

0 ∈ Hs, s > 3/2 + 2, ‖u1
0‖s ≤ M1 uniformly in λ. Let T be the maximal existence time of

smooth solution (u0, φ0) of the incompressible Euler equation (1.8)–(1.10). Then for any T0 < T , there
exist constants λ0(T0) andM(T0), depending only on T0 and the initial data, such that Euler-Maxwell
system (1.1)–(1.5) has a classical smooth solution (n, u, E, B), defined on [0, T0], satisfying

∥∥∥λ−2(n − 1)(t, ·)
∥∥∥
s−1

+
∥∥∥λ−1

(
u − u0

)
(t, ·)

∥∥∥
s
+ λ2

∥∥∥
(
E − ∇φ0

)
(t, ·)

∥∥∥
s
+ λ‖B(t, ·)‖s ≤ M(T0),

(2.2)

for all 0 < λ ≤ λ0 and 0 ≤ t ≤ T0.

3. The Proof of Theorem 2.2

Set (n, u, E, B) to be the classical solutions to the problem (1.1)–(1.5), and set

(n, u, E, B) =
(
1 + λ2n1 − λ2Δφ0, u0 + λu1,∇φ0 + E1, B1

)
. (3.1)

Obviously the vector (n1, u1, E1, B1) solves the error system

∂tn
1 + u · ∇n1 +

div u1

λ
+ λ

(
n1 −Δφ0

)
div u1 = (∂t + u · ∇)Δφ0,

∂tu
1 + (u · ∇)u1 = −

(
u1 · ∇

)
u0 − E1

λ
− λu × B1,

λ4∂tE
1 − ∇ × B1 = λ2nu − λ4∂t∇φ0, div E1 = −n1,

λ2∂tB
1 +∇ × E1 = 0, div B1 = 0,

(
n1, u1, E1, B1

)∣∣∣
t=0

=
(
n1
0, u

1
0, E

1
0, B

1
0

)
(x),

(3.2)
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for x ∈ T3, t > 0 and with the initial comparable condition

div E1
0 = −n1

0, div B1
0 = 0. (3.3)

3.1. Reformulation of the System (3.2) with New Unknowns

Now we make the following change of unknowns:

(
d1, ω1

)
=
(
div u1,∇ × u1

)
, (3.4)

then one gets

div u = λd1, ∇ × u = ω = ω0 + λω1, (3.5)

with ω0 = ∇ × u0.
Taking the divergence of the second equation in (3.2) and noting that div E1 = −n1,

one gets

∂td
1 + u · ∇d1 − n1

λ
= −2Du0 : Du1 + λDu1 : Du1 − λdiv

(
u × B1

)
. (3.6)

Taking the curl of the second equation in (3.2), with the aid of the vector analysis
formulas given in Section 1, by a direction calculation, we have

∂t
(
∇ × u1

)
+∇ ×

(
(u · ∇)u1

)
+∇ ×

((
u1 · ∇

)
u0
)
= λ2∂tB

1 − λ∇ ×
(
u × B1

)
. (3.7)

Here we have used the error equation λ2∂tB
1 + ∇ × E1 = 0 of the magnetic field in the error

system (3.2). Since div B1 = 0, there exists a vector function b1 such that

B1 = ∇ × b1. (3.8)

Then, we have

∂t
(
∇ ×

(
u1 − λb1

))
+∇ ×

((
∇ × u1 − λb1

)
× u

)
= ∇ ×

(
∇u0 · u1

)
− ∇ ×

(
u1 · ∇u0

)
. (3.9)

Next introduce the general vorticity

Ω1 = ω1 − λ∇ × b1 = ∇ ×
(
u1 − λb1

)
. (3.10)

By using the vector analysis formulas (1.15), then it follows from the above that Ω1 satisfies
the following vorticity equation:

∂tΩ1 + (u · ∇)Ω1 −
(
Ω1 · ∇

)
u − λd1Ω1 − ∇ ×

(
∇u0 · u1

)
+∇ ×

(
∇u1 · u0

)
= 0. (3.11)
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Therefore, we can rewrite the error system (3.2) as follows:

∂tn
1 + u · ∇n1 +

d1

λ
= (∂t + u · ∇)Δφ0 − λ

(
n1 −Δφ0

)
d1, (3.12)

∂td
1 + u · ∇d1 − n1

λ
= −2Du0 : Du1 − λDu1 : Du1 − λdiv

(
u × B1

)
, (3.13)

∂tΩ1 + (u · ∇)Ω1 −
(
Ω1 · ∇

)
u + λd1Ω1 = ∇ ×

(
∇u0 · u1

)
− ∇ ×

(
u1 · ∇u0

)
, (3.14)

λ4∂tE
1 − ∇ × B1 = λ2nu, div E1 = −n1, (3.15)

λ2∂tB
1 +∇ × E1 = 0, div B1 = 0, (3.16)

(
n1, u1, E1, B1

)∣∣
∣
t=0

=
(
n1
0, u

1
0, E

1
0, B

1
0

)
(x). (3.17)

In order to prove the Theorem 2.2, we introduce the Sobolev norms:

‖·‖ = ‖·‖L2(T3),

∥∥∥Wλ(t)
∥∥∥
s
=
(∥∥∥n1(t)

∥∥∥
2

s−1
+
∥∥∥u1(t)

∥∥∥
2

s
+ λ2

∥∥∥E1(t)
∥∥∥
2

s
+ λ

∥∥∥B1(t)
∥∥∥
2

s

)1/2

.
(3.18)

Next, one begins to estimate ‖Wλ‖s. Our basic idea is to overcome the singularity
which is caused by d1/λ and n1/λ by using the special structures between the first equation
and the the second equation in the system (3.6).

3.2. Energy Estimates

Now we control (‖n1(t)‖2s−1 + ‖d1(t)‖2s−1 + ‖ω1(t)‖2s−1).

Lemma 3.1. Let s be an integer with s > 3/2 + 2. Then for any 0 < t < T with T ∈ (0, T0], one has

(∥∥∥n1(t)
∥∥∥
2

s−1
+
∥∥∥d1(t)

∥∥∥
2

s−1
+
∥∥∥ω1(t)

∥∥∥
2

s−1

)

≤ C

(∥∥∥n1(t = 0)
∥∥∥
2

s−1
+
∥∥∥d1(t = 0)

∥∥∥
2

s−1
+
∥∥∥ω1(t = 0)

∥∥∥
2

s−1

)

+ C

∫ t

0

(
1 +

∥∥∥Wλ(τ)
∥∥∥
2

s
+
∥∥∥Wλ(τ)

∥∥∥
3

s

)
dτ.

(3.19)

Proof. Let α ∈ N
3 with |α| ≤ s − 1 and s > 3/2 + 2. Taking ∂αx of (3.12) and multiplying the

resulting equation by ∂αxn
1, by integration by parts, we have

d

dt

∥∥∥∂αxn
1
∥∥∥
2
=
(
div u∂αxn

1, ∂αxn
1
)
+ 2

(
H(1)

α , ∂αxn
1
)
− 2
λ

(
∂αxd

1, ∂αxn
1
)

+ 2
(
∂αx

(
(∂t + u · ∇)Δφ0 − λ

(
n1 −Δφ0

)
d1

)
, ∂αxn

1
)
,

(3.20)
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where the commutator

H(1)
α = −

[
∂αx

(
(u · ∇)n1

)
− u · ∂αx∇n1

]
, (3.21)

which can be estimated as follows:

∥
∥
∥H(1)

α

∥
∥
∥ = C‖∇u‖L∞

∥
∥
∥∂s−2x ∇n1

∥
∥
∥ + C

∥
∥
∥∇n1

∥
∥
∥
L∞

∥
∥
∥∂s−1x u

∥
∥
∥

≤ C‖∇u‖s−1
∥
∥
∥∂s−2x ∇n1

∥
∥
∥ + C

∥
∥
∥∇n1

∥
∥
∥
s−2

∥
∥
∥∂s−1x u

∥
∥
∥

≤ C
(
1 + λ

∥∥
∥Wλ(t)

∥∥
∥
s

)∥∥
∥Wλ(t)

∥∥
∥
s
.

(3.22)

Here we used the basic Moser-type calculus inequalities [21, 22]:

∥∥Dα
x(fg) − fDα

xg
∥∥
L2 ≤ Cs

(∥∥Dxf
∥∥
L∞

∥∥∥Ds−1
x g

∥∥∥
L2

+
∥∥g

∥∥
L∞

∥∥Ds
xf

∥∥
L2

)
, s ≥ 1. (3.23)

Hence, by Cauchy-Schwartz’s inequality and the Sobolev lemma, noting div u = λd1, one
gets

(
div u∂αxn

1, ∂αxn
1) + 2

(
H(1)

α , ∂αxn
λ
)
≤ C

(
1 +

∥∥Wλ(t)
∥∥2
s + λ

∥∥Wλ(t)
∥∥3
s

)
,

2
(
∂αx

(
(∂t + u · ∇)Δφ0 − λ

(
n1 −Δφ0

)
d1

)
, ∂αxn

1
)
≤ C

(
1 +

∥∥∥Wλ(t)
∥∥∥
2

s

)
.

(3.24)

Combining (3.20) with (3.24), one obtains

d

dt

∥∥∥∂αxn
1
∥∥∥
2
≤ C

(
1 +

∥∥∥Wλ(t)
∥∥∥
2

s
+ λ

∥∥∥Wλ(t)
∥∥∥
3

s

)
− 2
λ

(
∂αxd

1, ∂αxn
1
)
. (3.25)

Next, Taking ∂αx of (3.13) and multiplying the resulting equation by ∂αxd
1, by integra-

tion by parts, we have

d

dt

∥∥∥∂αxd
1
∥∥∥
2
=
(
div u∂αxd

1, ∂αxd
1
)
+ 2

(
H(2)

α , ∂αxd
1
)
+
2
λ

(
∂αxd

1, ∂αxn
1
)

− 2
(
∂αx

(
2Du0 : Du1 + λDu1 : Du1

)
, ∂αxd

1
)
+ λ

(
∂αx

(
∇ ×

(
u × B1

))
, ∂αxd

1
)
,

(3.26)

where the commutator

H(2)
α = −

[
∂αx

(
(u · ∇)u1

)
− u · ∂αx∇u1

]
, (3.27)
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which can be estimated by

∥
∥
∥H(2)

α

∥
∥
∥ = C‖∇u‖L∞

∥
∥
∥∂s−2x ∇u1

∥
∥
∥ + C

∥
∥
∥∇u1

∥
∥
∥
L∞

∥
∥
∥∂s−1x u

∥
∥
∥

≤ C‖∇u‖s−1
∥
∥
∥∂s−2x ∇u1

∥
∥
∥ + C

∥
∥
∥∇u1

∥
∥
∥
s−2

∥
∥
∥∂s−1x u

∥
∥
∥

≤ C
(
1 + λ

∥
∥
∥Wλ(t)

∥
∥
∥
s

)∥∥
∥Wλ(t)

∥
∥
∥
s
.

(3.28)

For the first, forth, and fifth terms, using the property of the approximate solution of
incompressible Euler equations (1.8)–(1.10), Cauchy-Schwarz’s inequality, and the Sobolev
lemma, we get

(
div u∂αxd

1, ∂αxd
1
)
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Wλ(t)
∥∥∥
2

s
,

−2
(
∂αx

(
2Du0 : Du1 + λDu1 : Du1), ∂αxd

1) ≤ C
(
1 + λ

∥∥Wλ(t)
∥∥
s

)∥∥Wλ(t)
∥∥2
s,

λ
(
∂αx

(
∇ ×

(
u × B1)), ∂αxd

1) ≤ C
(
1 + λ

∥∥Wλ(t)
∥∥
s

)∥∥Wλ(t)
∥∥2
s.

(3.29)

For the second term, using the estimate (3.28) forH(2)
α , we obtain

2
(
H(2)

α , ∂αxd
1
)
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Wλ(t)
∥∥∥
2

s
. (3.30)

Combining (3.26) with (3.29)–(3.30), we have

d

dt

∥∥∥∂αxd
1
∥∥∥
2
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Wλ(t)
∥∥∥
2

s
+
2
λ

(
∂αxd

1, ∂αxn
1
)
. (3.31)

From (3.25) and (3.31), we can get

d

dt

(∥∥∥∂αxn
1
∥∥∥
2
+
∥∥∥∂αxd

1
∥∥∥
2
)

≤ C

(
1 +

∥∥∥Wλ(t)
∥∥∥
2

s
+ λ

∥∥∥Wλ(t)
∥∥∥
3

s

)
, (3.32)

which leads to

(∥∥∥n1(t)
∥∥∥
2

s−1
+
∥∥∥d1(t)

∥∥∥
2

s−1

)
≤ C

(∥∥∥n1(t = 0)
∥∥∥
2

s−1
+
∥∥∥d1(t = 0)

∥∥∥
2

s−1

)

+ C

∫ t

0

(
1 +

∥∥∥Wλ(τ)
∥∥∥
2

s
+ λ

∥∥∥Wλ(τ)
∥∥∥
3

s

)
dτ.

(3.33)
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Taking Taking ∂αx on (3.14) andmultiplying the resulting equation by ∂αx, by integration
by parts, we have

d

dt

∥
∥
∥∂αxΩ

1
∥
∥
∥
2
=
(
div u∂αxΩ

1, ∂αxΩ
1
)
− 2

(
∂αx

((
Ω1 · ∇

)
u − λd1Ω1

)
, ∂αxΩ

1
)

+ 2
(
∂αx

(
∇ ×

(
∇u0 · u1

)
− ∇ ×

(
u1 · ∇u0

))
, ∂αxΩ

1
)
+ 2

(
H(3)

α , ∂αxΩ
1
)
,

(3.34)

where the commutator

H(3)
α = −

[
∂αx

(
(u · ∇)Ω1

)
− u · ∂αx∇Ω1

]
, (3.35)

which can be estimated by

∥∥∥H(3)
α

∥∥∥ = C‖∇u‖L∞

∥∥∥∂s−2x ∇Ω1
∥∥∥ + C

∥∥∥∇u1
∥∥∥
L∞

∥∥∥∂s−1x Ω
∥∥∥

≤ C‖∇u‖s−1
∥∥∥∂s−2x ∇Ω1

∥∥∥ + C
∥∥∥∇Ω1

∥∥∥
s−2

∥∥∥∂s−1x u
∥∥∥

≤ C
(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Ω1(t)
∥∥∥
s−1

.

(3.36)

Using the estimates (3.36) for H(3)
α , we have, with the aid of Cauchy-Schwarz’s inequality

and the Sobolev lemma,

(
div u∂αxΩ

1, ∂αxΩ
1
)
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Ω1(t)
∥∥∥
2

s−1
,

−2
(
∂αx

((
Ω1 · ∇

)
u − λd1Ω1

)
, ∂αxΩ

1
)
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Ω1(t)
∥∥∥
2

s−1
,

2
(
∂αx

(
∇ ×

(
∇u0 · u1

)
− ∇ ×

(
u1 · ∇u0

))
, ∂αxΩ

1
)
≤ C

(
1 +

∥∥
∥Wλ(t)

∥∥∥
s

)∥∥
∥Ω1(t)

∥∥∥
2

s−1
,

2
(
H(3)

α , ∂αxΩ
1
)
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Ω1(t)
∥∥∥
2

s−1
.

(3.37)

Combining (3.34) with (3.37), we get

d

dt

∥∥∥∂αxΩ
1
∥∥∥
2
≤ C

(
1 +

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Ω1(t)
∥∥∥
2

s−1
, (3.38)

which yields, for any 0 < t < T ,

∥∥∥Ω1
∥∥∥
2

s−1
≤
∥∥∥Ω1(t = 0)

∥∥∥
2

s−1
+ C

∫ t

0

(
1 +

∥∥∥Wλ(τ)
∥∥∥
s

)∥∥∥Ω1(τ)
∥∥∥
2

s−1
dτ. (3.39)
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Noting the definition of Ω1 (see (3.10)), we obtain

∥
∥ω1

∥
∥2
s−1 ≤ 2

∥
∥Ω1

∥
∥2
s−1 + 2λ2

∥
∥B1

∥
∥2
s−1,

∥
∥Ω1

∥
∥2
s−1 ≤ 2

∥
∥ω1

∥
∥2
s−1 + 2λ2

∥
∥B1

∥
∥2
s−1.

(3.40)

Then (3.39)–(3.40) give the estimate

∥
∥
∥ω1

∥
∥
∥
2

s−1
≤ C

(∥
∥
∥Ω1(t = 0)

∥
∥
∥
2

s−1
+ λ2

∥
∥
∥B1(t = 0)

∥
∥
∥
2

s−1

)
+ Cλ2

∥
∥
∥B1

∥
∥
∥
2

s−1

+ C

∫ t

0

((
1 +

∥
∥
∥Wλ(τ)

∥
∥
∥
s

)∥∥
∥ω1(τ)

∥
∥
∥
2

s−1
+ λ2

∥
∥
∥B1

∥
∥
∥
2

s−1

)
dτ.

(3.41)

So, from (3.33) and (3.41) we complete the proof of Lemma 3.2.

Next, we obtain the high order energy estimates on the electric-magnetic field as fol-
lows.

Lemma 3.2. Let s be an integer with s > 3/2 + 2. Then for any 0 < t < T with T ∈ (0, T0], one has

(
λ4
∥∥∥E1(t)

∥∥∥
2

s
+ λ2

∥∥∥B1(t)
∥∥∥
2

s

)
≤ C

(
λ4
∥∥∥E1(t = 0)

∥∥∥
2

s
+ λ2

∥∥∥B1(t = 0)
∥∥∥
2

s

)

+ C

∫ t

0

(
1 +

∥∥∥Wλ(τ)
∥∥∥
2

s
+
∥∥∥Wλ(τ)

∥∥∥
3

s

)
dτ.

(3.42)

Proof. Let β ∈ N
3 with |β| ≤ s and s > 3/2 + 2. Taking ∂

β
x of (3.15) and then taking the L2 inner

product of the resulting equation with ∂
β
xE

1, and taking ∂
β
x of (3.16) and then taking the L2

inner product of the resulting equation with ∂
β
xB

1, and summing them up, we get

d

dt

(
λ4
∥∥∥∂

β
xE

1
∥∥∥
2
+ λ2

∥∥∥∂
β
xB

1
∥∥∥
2
)

= 2λ2
(
∂
β
x

((
1 − λ2Δφ0

)
u
)
, ∂

β
xE

1
)
+ 2λ4

(
∂
β
x

(
n1u

)
, ∂

β
xE

1
)

≤ C

(
1 +

∥∥∥Wλ(t)
∥∥∥
2

s

)
− 2λ4

(
u∂

β
x

(
div E1

)
, ∂

β
xE

1
)
− 2λ4

(
Hβ, ∂

β
xE

1
)
,

(3.43)

where the commutator is defined by

Hβ = ∂
β
x

(
udiv E1

)
− u∂

β
x

(
div E1

)
, (3.44)
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which can be estimated as follows

Hβ ≤ C
(
‖∇u‖L∞

∥
∥
∥∂s−1x div E1

∥
∥
∥ +

∥
∥
∥div E1

∥
∥
∥
L∞

‖∂sxu‖
)

≤ C
(
‖∇u‖s−1

∥
∥
∥∂s−1x div E1

∥
∥
∥ +

∥
∥
∥div E1

∥
∥
∥
s−1

‖∂sxu‖
)

= C
(
1 + λ

∥
∥
∥Wλ(t)

∥
∥
∥
s

)∥∥
∥E1

∥
∥
∥
s
.

(3.45)

Here we have used Sobolev lemma, s > 3/2 + 2 and the vector analysis formula (1.12).
With the aid of Hölder’s inequality, we have, using the estimate (3.45) of the commu-

tator Hβ, that

−2λ4
(
Hβ, ∂

β
xE

1
)
≤ C

(
1 + λ

∥
∥
∥Wλ(t)

∥
∥
∥
s

)∥∥
∥Wλ(t)

∥
∥
∥
2

s
. (3.46)

By integration by parts and Sobolev lemma,

−2λ4
(
u∂

β
x

(
div E1

)
, ∂

β
xE

1
)
≤ C

(
1 + λ

∥∥∥Wλ(t)
∥∥∥
s

)∥∥∥Wλ(t)
∥∥∥
2

s
. (3.47)

Combining (3.43) with (3.46) and (3.47), one gets

d

dt

(
λ4
∥∥∥∂

β
xE

1(t)
∥∥∥
2
+ λ2

∥∥∥∂
β
xB

1(t)
∥∥∥
2
)

≤ C

(
1 +

∥∥∥Wλ(t)
∥∥∥
2

s
+ λ

∥∥∥Wλ(t)
∥∥∥
3

s

)
, (3.48)

which yields (3.42).

3.3. The End of Proof of Theorem 2.2

Now, we introduce an λ-weighted Sobolev type energy function

Eλ(t) =
∥∥∥Wλ(t)

∥∥∥
2

s
. (3.49)

Then it follows from the estimates (3.19), (3.42), and the curl-divergence decomposition
inequality

∥∥∥∇u1
∥∥∥
s−1

≤ C
(∥∥∥d1

∥∥∥
s−1

+
∥∥∥Ω1

∥∥∥
s−1

)
(3.50)

that there exists an λ0 > 0, depending only upon T0, such that, for any 0 < λ ≤ λ0 and any
0 < t < T ,

Eλ(t) ≤ CEλ(t)(t = 0) + C

∫ t

0

(
1 + Eλ(τ) +

(
Eλ(τ)

)3/2
)
dτ. (3.51)
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Since Eλ(t = 0) ≤ M0 for some positive constant, now applying Gronwall’s inequality to
(3.51), one can conclude that there exists an λ0 sufficiently small such that for any λ ≤ λ0 and
0 < t < T ,

Eλ(t) ≤ M0, (3.52)

which gives the desired priori estimate

∣
∣
∣
∥
∥
∥Wλ(t)

∥
∥
∥
∣
∣
∣
s,T0

≤ M(T0). (3.53)

Finally, we can return to the problem (1.1)–(1.4) to conclude our Theorem 2.2. In fact,
the assumptions in Theorem 2.2 imply that the estimate (3.53) holds. Thus, it follows from the
estimate (3.53) and the transform (3.1) that the estimate (2.2) holds. The proof of Theorem 2.2
is complete.
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