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Two kinds of the Levenberg-Marquardt-type methods for the solution of vertical complementarity
problem are introduced. The methods are based on a nonsmooth equation reformulation of the
vertical complementarity problem for its solution. Local and global convergence results and some
remarks about the two kinds of the Levenberg-Marquardt-type methods are also given. Finally,
numerical experiments are reported.

1. Introduction

In this paper, we consider the following kind of vertical complementarity problem:

Fi(x) ≥ 0, i = 1, . . . , m,

Πm
i=1F

j

i (x) = 0, j = 1, . . . , n,
(1.1)

where the functions Fi(x) : Rn → Rn are assumed to be continuously differentiable and
F
j

i (x) denotes the jth component of the function Fi(x). The above vertical complementarity
problem is of concrete background, for instance, the Karush-Kuhn-Tucker system of
nonlinear programs, complementarity problems, and many problems in mechanics and
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engineering. Whenm = 2, (1.1) is the generalized complementarity problem, which has been
considered in [1]. When x satisfied

min
j∈J1

{
F1
j (x)

}
= 0,

...

min
j∈Jn

{
Fn
j (x)

}
= 0,

(1.2)

x solves (1.1), where “min” denotes the componentwise minimum operator, Fi
j : Rn → R,

for, j ∈ Ji, i = 1, 2, . . . , n, are also continuously differentiable, and Ji, for i = 1, 2, . . . , n, are finite
index sets. Throughout this section, we denote

gi(x) = min
j∈Ji

Fi
j(x), x ∈ Rn, i = 1, 2, . . . , n,

G(x) =
(
g1(x), . . . , gn(x)

)T
, x ∈ Rn,

Ji =
{
j ∈ Ji | Fi

j(x) = gi(x)
}
, x ∈ Rn, i = 1, 2, . . . , n.

(1.3)

Thus, (1.2) can be briefly rewritten as

G(x) =
(
g1(x), . . . , gn(x)

)T = 0, (1.4)

which is nonsmooth equation. Nonsmooth equations are much more difficult than smooth
equations. Solving the above equations is a classical problem of numerical analysis, see [1–
11]. Many existing classical methods for smooth equations cannot be extended to nonsmooth
equations directly. Those difficult motivate us to seek higher-quality methods for nonsmooth
equations. One of the classical iterative methods for solving (1.4) is the Levenberg-
Marquardt-type method, which is based on the generalized Jacobian. The Levenberg-
Marquardt method and its variants are of particular importance also because of their locally
fast convergent rates. Levenberg-Marquardt method is also a famous method for nonlinear
equations, which can be regarded as a modification of Newton method [12–18]. In the
smoothing-type methods, some conditions are needed to ensure that the Jacobian matrix is
nonsingular; the Levenberg-Marquardt method does not need such conditions [12–19].

By the above analysis, the purpose of this paper is to consider using the Levenberg-
Marquardt-type methods for solving (1.1). We reformulate (1.1) as a system of nonsmooth
equations and present two kinds of the Levenberg-Marquardt-type methods for solving it.
The outline of the paper is as follows. In Section 2, we recall some background concepts and
propositions which will play an important role in the subsequent analysis of convergence
results. In Section 3, we give the two kinds of Levenberg-Marquardt-type methods and
present their local and global convergence results and some remarks. Finally, numerical
experiments and some final remarks about the numerical experiments are listed.

Throughout this paper,Rn denotes the space of n-dimensional real column vectors and
T denotes transpose. For any differentiable function f : Rn → R, ∇f(x) denotes the gradient
of f at x.
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2. Preliminaries

A locally Lipschitz function H : Rn → Rn is said to be semismooth at x provided that the
following limit

lim
V∈∂H(x+th′)
h′ →h, t→ 0+

Vh′ (2.1)

exists for any h ∈ Rn. The class of semismooth functions is very broad; it includes
smooth functions, convex functions, and piecewise smooth functions. Moreover, the sums,
differences, products, and composites of semismooth functions are also semismooth.
Maximum of a finite number of smooth functions are semismooth too.

Proposition 2.1. Function G in (1.4) is semismooth.

Proposition 2.2. The following statements are equivalent:

(i) H(x) is semismooth at x.

(ii) For V ∈ ∂H(x + h), h → 0.

Vh −H ′(x;h) = o(‖h‖). (2.2)

(iii) One has

lim
x+h∈DH, h→ 0

H ′(x + h;h) −H ′(x;h)
‖h‖ = 0. (2.3)

If for any V ∈ ∂H(x + h), h → 0,

Vh −H ′(x;h) = o
(
‖h‖1+p

)
, (2.4)

where 0 < p ≤ 1, then one saysH(x) is p-order semismooth at x. Obviously, p-order semismoothness
implies semismoothness. From [8], one knows that ifH(x) is semismooth at x, then, for any h → 0

H(x + h) −H(x) −H ′(x;h) = o(‖h‖). (2.5)

In [6], Gao considered a system of equations of max-type functions, which is the system
of equations of smooth compositions of max-type functions. For solving the systems of
equations, Gao take ∂� as a tool instead of the Clarke generalized Jacobian, B-differential,
and b-differential. Based on [6], we give the following ∂�G(x) for G in (1.4):

∂�G(x) =
{(

∇F1
j1
(x), . . . ,∇Fn

jn
(x)

)T | j1 ∈ J1(x), . . . , jn ∈ Jn(x), x ∈ Rn

}
. (2.6)

Obviously, ∂�G(x) is a finite set of points and can be easily calculated by determining Ji(x),
i = 1, . . . , n, and ∇Fi

ji
(x), ji ∈ Ji(x), i = 1, . . . , n. In what follows, we use (2.6) as a tool instead

of the Clarke generalized Jacobian and b-differential in the Levenberg-Marquardt method (I).
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Proposition 2.3. The ∂�G(x) defined as (2.6) is nonempty and compact set for any x, and the point
to set map is also upper semicontinuous.

Proposition 2.4. Suppose that G(x) and ∂�G(x) are defined by (1.4) and by (2.6), and all V ∈
∂�G(x) are nonsingular. Then there exists a scalar β > 0 such that

∥∥∥V −1
∥∥∥ ≤ β, ∀V ∈ ∂�G(x),

‖V ‖ ≤ γ, ∀V ∈ ∂�G(x), x ∈ N(x, ε),
(2.7)

holds for some constants γ > 0, ε > 0, and N(x, ε) is a neighbor of x.

By the continuously differentiable property ofG in (1.1), the above Proposition 2.4 can
be easily obtained.

Definition 2.5. One says that G is BD-regular at x if all elements in ∂G(x) are nonsingular.

Definition 2.6. M ∈ Rn×n is a P0 matrix if and only if there exists an index i ∈ {1, 2, . . . , n} such
that xi /= 0 and xi[Mx]i ≥ 0, for all x ∈ Rn, x /= 0.

3. The Levenberg-Marquardt-type Methods and
Their Convergence Results

In this section, we present two kinds of the Levenberg-Marquardt-type methods for
solving vertical complementarity problem (1.1). Firstly, we briefly recall some results on
the Levenberg-Marquardt-type method for the solution of nonsmooth equations and their
convergence results, see, for example, [7] and also [9, 10]. And we also give the new kinds of
the Levenberg-Marquardt methods for solving vertical complementarity problem (1.1) and
analyze their convergence results. We are now in the position to consider exact and inexact
versions of the Levenberg-Marquardt-type method.

Given a starting vector x0 ∈ Rn, let

xk+1 = xk + dk, (3.1)

where dk is the solution of the system

(
(Vk)TVk + σkI

)
d = −(Vk)TG(xk), Vk ∈ ∂�G(xk), σk ≥ 0. (3.2)

In the inexact versions of this method, dk can be given by the solution of the system

(
(Vk)TVk + σkI

)
d = −(Vk)TG(xk) + rk, Vk ∈ ∂�G(xk), σk ≥ 0, (3.3)

where rk is the vector of residuals, andwe can assume ‖rk‖ ≤ αk‖(Vk)
TG(xk)‖ for some αk ≥ 0.

We now give a local convergence Levenberg-Marquardt-type method (I) for (1.1) as
follows.
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3.1. The Levenberg-Marquardt Method (I)

Step 1. Given x0, ε > 0, λki ∈ Rn, 0 < |λki | < +∞.

Step 2. Solve the system to get dk,

(
(Vk)TVk + diag

(
λ
(k)
i gi(xk)

))
d = −(Vk)TG(xk) + rk, Vk ∈ ∂�G(x), (3.4)

for i = 1, · · ·n, and rk is the vector of residuals

‖rk‖ ≤ αk

∥∥∥(Vk)TG(xk)
∥∥∥, αk ≥ 0. (3.5)

Step 3. Set xk+1 = xk +dk; if ‖G(xk)‖ ≤ ε, terminate. Otherwise, let k := k + 1, and go to Step 2.

Based upon the above analysis, we give the following local convergence result. Similar
results have also been mentioned in [9].

Theorem 3.1. Suppose that {xk} is a sequence generated by the above method and there exist
constants a > 0, αk ≤ a for all k, and there exist constant M > 0, ‖diag(λ(k)i gi(x))‖ ≤ M < +∞.
Let x� be a BD-regular solution of G(x) = 0. Then the sequence {xk} converge Q-linearly to x� for
‖x0 − x�‖ ≤ ε.

Theorem 3.2. Suppose that {xk} is a sequence generated by the above method and there exist
constants a > 0, αk ≤ a for all k. ‖rk‖ ≤ αk‖G(xk)‖, αk ≥ 0. And suppose that there exist constants
M > 0, ‖diag(λ(k)i gi(x))‖ ≤ M < +∞. Then the sequence {xk} converge Q-linearly to x� for
‖x0 − x�‖ ≤ ε.

By Propositions 2.2, 2.3, and 2.4, we can get the proof of Theorem 3.2 similarly to [9,
Theorem 3.1], so we omit it.

Remark 3.3. Theorems 3.1 and 3.2 hold with ‖rk‖ = 0.

Remark 3.4. In the Levenberg-Marquardt method (I), if dk is computed by (3.3), Theorems
3.1, 3.2, and Remark 3.3 can also be obtained.

Whenm = 2 in (1.1), the vertical complementarity problem reduces to the well-known
generalized complementarity problem(GCP) in [1]. The GCP is to find x� ∈ Rn satisfying

F1(x) ≥ 0, F2 ≥ 0, F1(x)TF2(x) = 0, (3.6)

where Fi : Rn → Rn, i = 1, 2 and are continuously differentiable functions. If F1(x) = x,
then the generalized complementarity problem (GCP) is the nonlinear complementarity
problem (NCP). In the following, we give the Levenberg-Marquardt-type method (II) for
the generalized complementarity problem (GCP). The different merit function is based on
the well-known F-B function

ϕ(a, b) =
√
a2 + b2 − a − b. (3.7)
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Then G(x) = ϕ(F1, F2), and we denote the corresponding merit function as

Ψ(x) =
1
2
‖G(x)‖2, (3.8)

where Ψ is a continuously differentiable function. Now, we give the following Levenberg-
Marquardt-type method (II).

3.2. The Levenberg-Marquardt Method (II)

Step 1. Given a staring vector x0 ∈ Rn, ρ > 0, p > 2, β ∈ (0, 1/2), ε ≥ 0, λki ∈ Rn, 0 < |λki | < +∞.

Step 2. If Ψ(xk) ≤ ε, stop.

Step 3. Select an element Vk ∈ ∂G(xk), and find an approximate solution dk ∈ Rn of the
system

(
(Vk)TVk + diag

(
λ
(k)
i gi(xk)

))
d = −(Vk)TG(xk), Vk ∈ ∂G(x), (3.9)

where λ(k)i are the Levenberg-Marquardt parameters. If the condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p (3.10)

is not satisfied, set dk = −(Vk)
TG(xk).

Step 4. Find the smallest ik ∈ {0, 1, 2, · · · } such that

Ψ
(
xk + 2−i

k

dk

)
≤ Ψ(xk) + β2−i

k∇Ψ(xk)Tdk. (3.11)

Set xk+1 = xk + 2−i
k
dk, let k := k + 1, and go to Step 2.

Notice that if Vk is nonsingular in (3.9), the choice of λki = 0, at each step, is allowed
by the above algorithm. Then (3.9) is equivalent to the generalized Newton equation in
[4]. In what follows, as usual in analyzing the behavior of algorithms, we also assume that
the above Levenberg-Marquardt method (II) produces an infinite sequence of points. Based
upon the above analysis, we can get the following global convergence results about vertical
complementarity problem (1.1). The main proof of the following theorem is similar to [7,
Theorem 12]. But the system (3.9), which is used for the solution of dk, is different from [7,
Theorem 12].

Theorem 3.5. Suppose that there exist constants M > 0, ‖diag(λ(k)i gi(x))‖ ≤ M < +∞. Then each
accumulation point of the sequence {xk} generated by the above Levenberg-Marquardt method (II) is
a stationary point of Ψ.

Proof. Assume that {xk}K → x�. If there are infinitely many k ∈ K such that dk = −∇Ψ(xk),
then the assertion follows immediately from [5, Proposition 1.16]. Hence we can assume
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without loss of generality that if {xk}K is a convergent subsequence of {xk}, then dk is always
given by (3.9). We show that for every convergent subsequence {xk}K for which

lim
k∈K, k→∞

∇Ψ(xk)/= 0, (3.12)

there holds

lim sup
k∈K, k→∞

‖dk‖ < ∞,

lim sup
k∈K, k→∞

∣∣∣∇Ψ(xk)Tdk

∣∣∣ > 0
(3.13)

In the following, we assume that xk → x�. Suppose that x� is not a stationary point of Ψ. By
(3.9), we have

‖∇Ψ(xk)‖ =
∥∥∥
(
(Vk)TVk + diag

(
λ
(k)
i gi(xk)

))
dk

∥∥∥

≤
∥∥∥(Vk)TVk + diag

(
λ
(k)
i gi(xk)

)∥∥∥‖dk‖,
(3.14)

so

‖dk‖ ≥ ‖∇Ψ(xk)‖∥∥∥(Vk)TVk + diag
(
λ
(k)
i gi(xk)

)∥∥∥
. (3.15)

Note that the denominator in the above inequality is nonzero; otherwise by (3.14), we have
‖∇Ψ(xk)‖ = 0. xk would be a stationary point and the algorithm would have stopped. By
assumption ‖diag(λ(k)i gi(x))‖ ≤ M < +∞ and Proposition 2.4, there exists a constant k1 > 0
such that

∥∥∥(Vk)TVk + diag
(
λ
(k)
i gi(xk)

)∥∥∥ ≤ k1. (3.16)

From the above inequality and (3.13), we get

‖dk‖ ≥ 1 − αk

k1
‖∇Ψ(xk)‖ ≥ 1 − a

k1
‖∇Ψ(xk)‖. (3.17)

Formula (3.13) now readily follows from the fact that we are assuming that the direction
satisfies (3.10)with p > 2, while the gradient ∇Ψ(xk) is bounded on the convergent sequence
{xk}. If (12) is not satisfied, there exists a subsequence {xk}K′ of {xk}K

lim
k∈K′, k→∞

∣∣∣∇Ψ(xk)Tdk

∣∣∣ = 0. (3.18)
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This implies, by (3.10), that limk∈K′, k→∞‖dk‖ = 0. Together with (3.17) one implies

lim
k∈K′, k→∞

‖∇Ψ(xk)‖ = 0 (3.19)

contradicting (3.12). The sequence {dk} is uniformly gradient related to {xk} according
to the definition given in [5], and the assertion of the theorem also follows from [5,
Proposition 1.16]. We completed the proof.

Remark 3.6. In the Levenberg-Marquardt method (II), (3.11) can be replaced by the following
nonmonotone line search:

Ψ
(
xk + 2−i

k

dk

)
− max

0≤j≤m(k)
Ψ
(
xk−j

) ≤ β2−i
k∇Ψ(xk)Tdk, (3.20)

where m(0) = 0, m(k) = min{m(k − 1) + 1,M0}, and M0 is a nonnegative integer.

Remark 3.7. Let the assumptions of Theorem 3.5 hold. Equation (3.9) is replaced by (3.3). Then
each accumulation point of the sequence {xk} generated by the above Levenberg-Marquardt
method (II) is a stationary point of Ψ.

Remark 3.8. The assumption that there exist constantsM > 0, ‖diag(λ(k)i gi(x))‖ ≤ M < +∞ in
Theorems 3.1, 3.5, and Remark 3.7 can be easily obtained, for the continuously differentiable
of F in (1.1).

Remark 3.9. Let x� be a stationary point of Ψ, F ′
2(x�) nonsingular, and F ′

1(x�)F ′
2(x�)

−1 a P0

matrix. Then x� is a solution of GCP(F1, F2).

Remark 3.10. We can use ϕMS in [20] to construct merit function Ψ in the Levenberg-
Marquardt method (II).

Remark 3.11. We can use a family of new NCP functions based on the Fischer-Burmeister
function to construct merit function in the Levenberg-Marquardt method (II), which is
defined by

φp(a, b) = ‖(a, b)‖p − (a + b), (3.21)

where p is any fixed real number in the interval (1,+∞) and ‖(a, b)‖p denotes the p-norm
of (a, b). Numerical results based on the function φp for the test problems from MCPLIB
indicated that the algorithm has better performance in practice [21].

4. Numerical Tests and Final Remarks

In this section, in order to show the performance of the above Levenberg-Marquardt type
methods, we present some numerical results for the Levenberg-Marquardt method (I) and
the Levenberg-Marquardt method (II). The results indicate that the Levenberg-Marquardt
algorithms work quite well in practice. We coded the algorithms in Matlab 7.0. Some remarks
are also attached.
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Table 1

Step xk G(x)
1 (0.1000000, 0.7000000)T (0.0100000, 0.0050000)T

2 (0.0500998, 0.7000000)T (0.0025099, 0.0012549)T

3 (0.0250999, 0.7000000)T 1.0e − 003 ∗ (0.630004, 0.315002)T
4 (0.0125749, 0.7000000)T 1.0e − 003 ∗ (0.158130, 0.079065)T
5 (0.0063000, 0.7000000)T 1.0e − 004 ∗ (0.396906, 0.198453)T
6 (0.0031563, 0.7000000)T 1.0e − 005 ∗ (0.996230, 0.498115)T
7 (0.0015813, 0.7000000)T 1.0e − 005 ∗ (0.250052, 0.125026)T
8 (0.0007922, 0.7000000)T 1.0e − 006 ∗ (0.627630, 0.313815)T
9 (0.0003969, 0.7000000)T 1.0e − 006 ∗ (0.157534, 0.078767)T
10 (0.0001988, 0.7000000)T 1.0e − 007 ∗ (0.395410, 0.197705)T
11 (0.0000996, 0.7000000)T 1.0e − 008 ∗ (0.992475, 0.496237)T

Example 4.1. We consider the following vertical complementarity problem:

Fi(x) ≥ 0, i = 1, . . . , m,

Πm
i=1F

j

i (x) = 0, j = 1, . . . , n,
(4.1)

where the functions

F1(x1, x2) =
(
x2
1, x

2
1 + x2

2

)T
, F2(x1, x2) =

(
2x2

1 + 6,
1
2
x2
1

)T

. (4.2)

Both F1 and F2 are R2 → R2 continuously differentiable functions.

We use the Levenberg-Marquardt method (I) to compute Example 4.1. Results for
Example 4.1 with initial point x0 = (0.1, 0.7)T , αk ≡ 1 and λ1 = 0.01, λ2 = 0.01 are presented in
Table 1.

We use the Levenberg-Marquardt method (I) to compute Example 4.1. Results for
Example 4.1 with initial point x0 = (10, 10)T , and x0 = (100, 100)T , αk ≡ 1 and λ1 = 0.01,
λ2 = 0.01 are presented in Table 2.

When we compute dk by (3.3) in the Levenberg-Marquardt method (I) to compute
Example 4.1. Results for Example 4.1 with initial point x0 = (0.1, 0.7)T , x0 = (10, 10)T , and
x0 = (100, 100)T , αk ≡ 1 and λ1 = 0.01, λ2 = 0.01 are presented in Table 3.

Remark 4.2. From the numerical results for the Levenberg-Marquardt method (I) in Table 1,
Table 2, and Table 3, we can see that the modification of (3.4) in the Levenberg-Marquardt
method (I)works quite better in practice than (3.3)which has been used in [7].

Example 4.3. We consider the following vertical complementarity problem:

Fi(x) ≥ 0, i = 1, . . . , m,

Πm
i=1F

j

i (x) = 0, j = 1, . . . , n,
(4.3)
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Table 2

Step xk G(x)
x0 = (10, 10)T

1 (10.000000, 10.0000000)T (100.000000, 25.000000)T

2 (5.009980, 10.0000000)T (25.099900, 12.549950)T

3 (2.509990, 10.0000000)T (6.300049; 3.150024)T

4 (1.257499, 10.0000000)T (1.581306, 0.7906530)T

5 (0.630004; 10.0000000)T (0.396906, 0.198453)T

6 (0.315631, 10.0000000)T (0.099623, 0.049811)T

7 (0.158130, 10.0000000)T (0.025005, 0.012502)T

8 (0.079223, 10.0000000)T (0.006276, 0.003138)T
9 (0.039690, 10.0000000)T (0.001575, 0.000787)T

10 (0.019884, 10.0000000)T 1.0e − 003 ∗ (0.395410, 0.197705)T
11 (0.009962, 10.0000000)T 1.0e − 004 ∗ (0.992475, 0.496237)T
12 (0.004991, 10.0000000)T 1.0e − 004 ∗ (0.249110, 0.124555)T
13 (0.002500, 10.0000000)T 1.0e − 005 ∗ (0.625264, 0.312632)T
14 (0.001252, 10.0000000)T 1.0e − 005 ∗ (0.156940, 0.078470)T
15 (0.000627, 10.0000000)T 1.0e − 006 ∗ (0.393919, 0.196959)T
16 (0.000314, 10.0000000)T 1.0e − 007 ∗ (0.988734, 0.494367)T
17 (0.000157, 10.0000000)T 1.0e − 007 ∗ (0.248171, 0.124085)T
18 (0.0000789, 10.0000000)T 1.0e − 008 ∗ (0.6229079, 0.3114539)T

x0 = (100, 100)T

21 1.0e + 002 ∗ (0.0000009, 1.0000000)T 1.0e − 008 ∗ (0.985008, 0.492504)T

Table 3

Step xk G(x)
x0 = (0.1, 0.7)T

40 (0.007326, 0.700000)T 1.0e − 004 ∗ (0.536774, 0.268387)T
x0 = (10, 10)T

47 (0.007301, 10.000000)T 1.0e − 004 ∗ (0.533144, 0.266572)T
x0 = (100, 100)T

50 1.0e + 002 ∗ (0.000073, 1.000000)T 1.0e − 004 ∗ (0.537728, 0.268864)T

where the functions

F1(x1, x2) =
(
x2
1 + x2

2, x
2
2

)T
, F2(x1, x2) =

(
x2
1, x

2
1 +

1
2
x2
2 + 1

)T

. (4.4)

Both F1 and F2 are R2 → R2 continuously differentiable functions.
Now, we use the Levenberg-Marquardt method (II) to compute Example 4.3. For the

special construction of Example 4.3, we can use (2.6) to get the Clarke generalized Jacobian in
the Levenberg-Marquardt method (II). Results for Example 4.3 with initial point x0 = (1, 1)T ,
x0 = (10, 0.1)T , and x0 = (100, 10)T and λ1 = 0.01, λ2 = 1 are presented in Table 4.

Then we compute dk by (3.3) in the Levenberg-Marquardt method (II) to compute
Example 4.3. Results for Example 4.3 with initial point x0 = (1, 1)T , x0 = (10, 0.1)T , and x0 =
(100, 10)T and λ1 = 0.01, λ2 = 1 are presented in Table 5.
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Table 4

Step xk G(x)
x0 = (1, 1)T

3 (−0.001250, 1.000000)T 1.0e − 005 ∗ (0.156444, 0.156444)T
x0 = (10, 0.1)T

15 (0.099976, 0.100000)T (0.009995, 0.009995)T

x0 = (100, 10)T

17 (0.096868, 10.000000)T (0.009383, 0.009383)T

Table 5

Step xk G(x)
x0 = (1, 1)T

3 (−0.001250, 1.000000)T 1.0e − 005 ∗ (0.156444, 0.156444)T
x0 = (10, 0.1)T

15 (0.099989, 0.100000)T (0.009997, 0.009997)T

x0 = (100, 10)T

17 (0.097467, 10.000000)T (0.009499, 0.009499)T

Remark 4.4. From the numerical results for in the Levenberg-Marquardt method (II) in Table 4
and Table 5, we can see that the modification of (3.9) in the Levenberg-Marquardt method (II)
works quite as well as (3.3)which has been used in [7].
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