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Many problems in pure and applied mathematics reduce to a problem of common fixed point of
some self-mapping operators which are defined on metric spaces. One of the generalizations of
metric spaces is the partial metric space in which self-distance of points need not to be zero but the
property of symmetric and modified version of triangle inequality is satisfied. In this paper, some
well-known results on common fixed point are investigated and generalized to the class of partial
metric spaces.

1. Introduction and Preliminaries

Partial metric spaces, introduced by Matthews [1, 2], are a generalization of the notion of
the metric space in which in definition of metric the condition d(x, x) = 0 is replaced by the
condition d(x, x) ≤ d(x, y). Different approaches in this area have been reported including
applications of mathematical techniques to computer science [3–7].

In [2], Matthews discussed some properties of convergence of sequences and proved
the fixed point theorems for contractive mapping on partial metric spaces: any mapping T
of a complete partial metric space X into itself that satisfies, where 0 ≤ k < 1, the inequality
d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X, has a unique fixed point. Recently, many authors (see
e.g., [8–16]) have focused on this subject and generalized some fixed point theorems from the
class of metric spaces to the class of partial metric spaces.

The definition of partial metric space is given by Matthews (see e.g., [1]) as follows.

Definition 1.1. Let X be a nonempty set and let p : X ×X → R
+
0 satisfy

(PM1) x = y ⇐⇒ p(x, x) = p
(
y, y

)
= p

(
x, y

)
,

(PM2) p(x, x) ≤ p
(
x, y

)
,
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(PM3) p
(
x, y

)
= p

(
y, x

)
,

(PM4) p
(
x, y

) ≤ p(x, z) + p
(
z, y

) − p(z, z)

(1.1)

for all x, y, and z ∈ X, where R
+
0 = [0,∞). Then the pair (X, p) is called a partial metric space

(in short PMS) and p is called a partial metric on X.

Let (X, p) be a PMS. Then, the functions dp, dm : X ×X → R
+
0 given by

dp

(
x, y

)
= 2p

(
x, y

) − p(x, x) − p
(
y, y

)
,

dm

(
x, y

)
= max

{
p
(
x, y

) − p(x, x), p
(
x, y

) − p
(
y, y

)} (1.2)

are (usual) metrics on X. It is clear that dp and dm are equivalent. Each partial metric p on
X generates a T0 topology τp on X with a base of the family of open p-balls {Bp(x, ε) : x ∈
X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0. A basic
example of partial metric is (R+

0 , p), where p(x, y) = max{x, y}. One can easily deduce that
dp(x, y) = |x − y| = dm(x, y).

Example 1.2 (See [1, 2]). Let X = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) =
max{b, d} −min{a, c}. Then (X, p) is a partial metric spaces.

We give same topological definitions on partial metric spaces.

Definition 1.3 (see e.g., [1, 2, 13]). (i) A sequence {xn} in a PMS (X, p) converges to x ∈ X if
and only if p(x, x) = limn→∞p(x, xn).

(ii) A sequence {xn} in a PMS (X, p) is called a Cauchy sequence if and only if
limn,m→∞p(xn, xm) exists (and finite).

(iii)A PMS (X, p) is said to be complete if every Cauchy sequence {xn} inX converges,
with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞p(xn, xm).

(iv) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0, there
exists δ > 0 such that f(B(x0, δ)) ⊂ B(f(x0), ε).

The following lemmas will be frequently used in the proofs of the main results.

Lemma 1.4 (see e.g., [1, 2, 13]). (A) A sequence {xn} is Cauchy in a PMS (X, p) if and only if {xn}
is Cauchy in a metric space (X, dp).

(B) A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞

dp(x, xn) = 0 ⇐⇒ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm), (1.3)

where x is a limit of {xn} in (X, dp).

Remark 1.5. Let (X, p) be a PMS. Therefore,

(A) if p(x, y) = 0, then x = y;

(B) if x /=y, then p(x, y) > 0.
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This follows immediately from the definition and can easily be verified by the reader.

Lemma 1.6 (See e.g., [15]). Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0.
Then limn→∞p(xn, y) = p(z, y) for every y ∈ X.

In this paper, we extend some common fixed point theorems for two self-mappings
without commuting property from the class of usual metric spaces (see e.g., [17]) to the
class of partial metric spaces (see Theorems 2.6 and 2.2). We also consider some common
fixed point theorems with commuting property on partial metric spaces (see Theorem 2.7,
Corollary 2.8).

2. Main Results

We first recall the definition of a common fixed point of two self-mappings.

Definition 2.1. Let (X, p) be a PMS and S, T two self-mappings on (X, p). A point z ∈ X is said
to be a common fixed point of S and T if Sz = Tz = z.

In the sequel, we give the first results about a common fixed point theorem. We prove
the existence and uniqueness of a common fixed point of two self-mappings under certain
conditions. Notice that here the operators need not commute with each other.

Theorem 2.2. Suppose that (X, p) is a complete PMS and T , S are self-mappings onX. If there exists
an r ∈ [0, 1) such that

p(Tx,Sy) ≤ rM(x, y) (2.1)

for any x, y ∈ X, where

M
(
x, y

)
= max

{
p(Tx, x), p

(
Sy, y

)
, p
(
x, y

)
,
1
2
[
p
(
Tx, y

)
+ p

(
Sy, x

)]
}
, (2.2)

then there exists z ∈ X such that Tz = Sz = z.

Proof. Let x0 ∈ X. Define the sequence {xn}∞n=1 in a way that x2 = Tx1 and x1 = Sx0 and
inductively

x2k+2 = Tx2k+1, x2k+1 = Sx2k for k = 0, 1, 2, . . . . (2.3)

If there exists a positive integer N such that x2N = x2N+1, then x2N is a fixed point of S and
hence a fixed point of T . Indeed, since x2N = x2N+1 = Sx2N , then

Sx2N = Sx2N+1 = S2x2N =⇒ x2N = Sx2N = Sx2N+1 = x2N+1. (2.4)
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Also, due to (2.1)we have

p(x2N+2, x2N+1) = p(Tx2N+1, Sx2N) ≤ rM(x2N+1, x2N), (2.5)

where

M(x2N+1, x2N) = max
{
p(Tx2N+1, x2N+1), p(Sx2N, x2N), p(x2N+1, x2N),

1
2
[
p(Tx2N+1, x2N) + p(Sx2N, x2N+1)

]
}

= max
{
p(Tx2N+1, x2N+1), p(x2N, x2N), p(x2N+1, x2N),

1
2
[
p(Tx2N+1, x2N) + p(x2N+1, x2N+1)

]
}

= p(Tx2N+1, x2N+1) = p(Tx2N+1, x2N) = p(x2N+2, x2N+1).

(2.6)

Thus we have (2.5) implies (1 − r)p(x2N+2, x2N+1) ≤ 0. Since r < 1, then p(x2N+2, x2N+1) = 0,
which yields that Tx2N+1 = x2N+2 = x2N+1. Notice that x2N+1 = x2N is the fixed point of S.
As a result, x2N+1 = x2N is the common fixed point of S and T . A similar conclusion holds if
x2N+1 = x2N+2 for some positive integerN. Therefore, we may assume that xk /=xk+1 for all k.
If k is odd, due to (2.1), we have

p(xk+1, xk+2) = p(Txk, Sxk+1) ≤ rM(xk, xk+1), (2.7)

where

M(xk, xk+1) = max
{
p(xk+1, xk), p(xk+2, xk+1), p(xk, xk+1),

1
2
[
p(xk+1, xk+1) + p(xk+2, xk)

]
}
.

(2.8)

In view of (PM4), we have

p(xk+1, xk+1) + p(xk+2, xk) ≤ p(xk+2, xk+1) + p(xk+1, xk). (2.9)

Thus, (2.8) turns into

M(xk, xk+1) = max
{
p(xk+1, xk), p(xk+2, xk+1), p(xk, xk+1),

1
2
[
p(xk+2, xk+1) + p(xk+1, xk)

]
}

= max
{
p(xk+1, xk), p(xk+2, xk+1)

}
.

(2.10)

If M(xk, xk+1) = p(xk+2, xk+1), then since r < 1, the inequality (2.7) yields a
contradiction. Hence,M(xk, xk+1) = p(xk+1, xk) and by (2.7)we have

p(xk+2, xk+1) ≤ rp(xk+1, xk). (2.11)
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If k is even, the same inequality (2.11) can be obtained analogously.
We get that {p(xk, xk+1)} is a nonnegative, nonincreasing sequence of real numbers.

Regarding (2.11), one can observe that

p(xk, xk+1) ≤ rkp(x0, x1), ∀k = 0, 1, 2, . . . . (2.12)

Consider now

dp(xk+1, xk+2) = 2p(xk+1, xk+2) − p(xk+1, xk+1) − p(xk+2, xk+2)

≤ 2p(xk+1, xk+2)

≤ 2rk+1p(x0, x1).

(2.13)

Hence, regarding (2.12), we have limk→∞dp(xk+1, xk+2) = 0. Moreover,

dp(xk+1, xk+s) ≤ dp(xk+s−1, xk+s) + · · · + dp(xk+1, xk+2)

≤ 2rk+sp(x0, x1) + · · · + 2rn+1p(x0, x1).
(2.14)

After standard calculation, we obtain that {xk} is a Cauchy sequence in (X, dp) that is,
dp(xk, xm) → 0 as k,m → ∞. Since (X, p) is complete, by Lemma 1.4, (X, dp) is complete
and the sequence {xk} is convergent in (X, dp) to, say, z ∈ X.

Again by Lemma 1.4,

p(z, z) = lim
k→∞

p(xk, z) = lim
k,m→∞

p(xk, xm). (2.15)

Since {xk} is a Cauchy sequence in (X, dp), we have limk,m→∞dp(xk, xm) = 0. We assert that
limk,m→∞p(xk, xm) = 0. Without loss of generality, we assume that n > m. Now observe that

p(xn+2, xn) ≤ p(xn+2, xn+1) + p(xn+1, xn) − p(xn+1, xn+1)

≤ p(xn+2, xn+1) + p(xn+1, xn).
(2.16)

Analogously,

p(xn+3, xn) ≤ p(xn+3, xn+2) + p(xn+2, xn) − p(xn+2, xn+2)

≤ p(xn+3, xn+2) + p(xn+2, xn).
(2.17)

Taking into account (2.16), the expression (2.17) yields

p(xn+3, xn) ≤ p(xn+3, xn+2) + p(xn+2, xn+1) + p(xn+1, xn). (2.18)

Inductively, we obtain

p(xm, xn) ≤ p(xm, xm−1) + · · · + p(xn+2, xn+1) + p(xn+1, xn). (2.19)
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Due to (2.12), the expression (2.19) turns into

p(xm, xn) ≤ rm−1p(x1, x0) + · · · + rn+1p(x1, x0) + rnp(x1, x0)

≤ rn
(
1 + r + rm−n−1

)
p(x1, x0).

(2.20)

Regarding r < 1, by simple calculations, one can observe that

lim
k,m→∞

p(xk, xm) = 0. (2.21)

Therefore, from (2.15), we have

p(z, z) = lim
k→∞

p(xk, z) = lim
k,m→∞

p(xk, xm) = 0. (2.22)

We assert that Tz = z. On the contrary, assume Tz/= z. Then p(z, Tz) > 0. Let {x2k(i)}
be a subsequence of {x2k} and hence of {xk}. Due to (2.1), we have

p
(
Sx2k(i), Tz

) ≤ rM
(
x2k(i), z

)
, (2.23)

where

M
(
x2k(i), z

)
= max

{
p
(
x2k(i), x2k(i)+1

)
, p(Tz, z), p

(
x2k(i), z

)
,
1
2
[
p
(
Tz, x2k(i)

)
+ p

(
z, x2k(i)+1

)]
}
.

(2.24)

Letting k → ∞ and taking into account (2.22), the expression (2.24) implies that

M
(
x2k(i), z

)
= max

{
0, p(Tz, z), 0,

1
2
p(Tz, z)

}
= p(Tz, z). (2.25)

Thus,

p(z, Tz) ≤ rp(Tz, z). (2.26)

Since r < 1, we have p(Tz, z) = 0. By Remark 1.5, we get Tz = z. Analogously, if we choose a
subsequence {x2k(i)+1} of {x2k+1}, we obtain Sz = z. Hence Tz = Sz = z.

Remark 2.3. We notice that Theorem 2.2 can be obtained from Theorem 2.1 in [18] or Theorem
5 in [19] by simple manipulations.

However, explicit proof of Theorem 2.2 has a crucial role in the proofs of
Proposition 2.5, Theorems 2.6 and 2.7.

These results cannot be obtained from thementioned papers [18, 19].
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Example 2.4. Let X = [0, 1] and p(x, y) = max{x, y}. Then (X, p) is a complete PMS. Clearly, p
is not a metric. Suppose S, T : X → X such that Sx = Tx = x/3 and r = 1/2. Without loss of
generality, assume x ≥ y. Then

p
(
Tx, Sy

)
= max

{
x

3
,
y

3

}
=

x

3

≤ 1
2
M

(
x, y

)
,

(2.27)

where

M
(
x, y

)
= max

{
x, y, x,

1
2
[
x + p

(
y, Sx

)]
}

= x. (2.28)

Thus, all conditions of Theorem 2.2 are satisfied, and 0 is the common fixed point of S and T .

Proposition 2.5. Suppose (X, p) is a complete PMS and T , S are self-mappings on X. If there exists
an r ∈ [0, 1) such that

p
(
Tmx, Sny

) ≤ rM
(
x, y

)
(2.29)

for any x, y ∈ X and some positive integersm,n, where

M
(
x, y

)
= max

{
p(Tmx, x), p

(
Sny, y

)
, p
(
x, y

)
,
1
2
[
p
(
Tmx, y

)
+ p

(
Sny, x

)]
}
, (2.30)

then there exists z ∈ X such that Tmz = Snz = z.

Proof. Let x0 ∈ X. As in the proof of the previous theorem, we define a sequence {xn}∞n=1 in a
way that x2 = Tmx1 and x1 = Snx0; we get inductively

x2k+2 = Tmx2k+1, x2k+1 = Snx2k for k = 0, 1, 2, . . . . (2.31)

If there exists a positive integer N such that x2N = x2N+1, then x2N is a fixed point of Tm

and hence a fixed point of Sn. A similar conclusion holds if x2N+1 = x2N+2 for some positive
integer N. Therefore, we may assume that xk /=xk+1 for all k.

If k is odd, due to (2.29), we have

p(xk+1, xk+2) = p(Tmxk, S
nxk+1) ≤ rM(xk, xk+1), (2.32)

where

M(xk, xk+1) = max
{
p(xk+1, xk), p(xk+2, xk+1), p(xk, xk+1),

1
2
[
p(xk+1, xk+1) + p(xk+2, xk)

]
}
.

(2.33)
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By means of (PM4), we have

p(xk+1, xk+1) + p(xk+2, xk) ≤ p(xk+2, xk+1) + p(xk+1, xk). (2.34)

Thus, (2.33) becomes

M(xk, xk+1) = max
{
p(xk+1, xk), p(xk+2, xk+1), p(xk, xk+1),

1
2
[
p(xk+2, xk+1) + p(xk+1, xk)

]
}

= max
{
p(xk+1, xk), p(xk+2, xk+1)

}
.

(2.35)

If M(xk, xk+1) = p(xk+2, xk+1), then since r < 1, the inequality (2.32) yields a
contradiction. Hence,M(xk, xk+1) = p(xk+1, xk) and by (2.32), we have

p(xk+2, xk+1) ≤ rp(xk+1, xk). (2.36)

If k is even, analogously we obtain the same inequality (2.36).
We obtain that {p(xk, xk+1)} is a nonnegative, nonincreasing sequence of real numbers.

Regarding (2.36), one has

p(xk, xk+1) ≤ rkp(x0, x1), ∀k = 0, 1, 2, . . . . (2.37)

Consider now

dp(xk+1, xk+2) = 2p(xk+1, xk+2) − p(xk+1, xk+1) − p(xk+2, xk+2)

≤ 2p(xk+1, xk+2)

≤ 2rk+1p(x0, x1).

(2.38)

Hence, regarding (2.37), we have limk→∞dp(xk+1, xk+2) = 0. Moreover,

dp(xk+1, xk+s) ≤ dp(xk+s−1, xk+s) + · · · + dp(xk+1, xk+2)

≤ 2rk+sp(x0, x1) + · · · + 2rk+1p(x0, x1)
(2.39)

which implies that {xk} is a Cauchy sequence in (X, dp), that is, dp(xk, xm) → 0 as k,m →
∞. Since (X, p) is complete, by Lemma 1.4, (X, dp) is complete and the sequence {xk} is
convergent in (X, dp) to, say, z ∈ X.

By Lemma 1.4,

p(z, z) = lim
k→∞

p(xk, z) = lim
k,m→∞

p(xk, xm). (2.40)

Since {xk} is a Cauchy sequence in (X, dp), we have

lim
k,m→∞

dp(xk, xm) = 0. (2.41)
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We claim that limk,m→∞p(xk, xm) = 0. Following the steps (2.16)–(2.22) in the proof of
Theorem 2.2, we conclude the result. Thus,

2p(xm, xn) − p(xm, xm+1) − p(xn, xn+1) ≤ 2p(xm, xn) − p(xm, xm) − p(xn, xn)

= dp(xm, xn).
(2.42)

Thus, letting n,m → ∞ in view of (2.37), (2.41), the expression (2.42) yields that
limk,m→∞p(xk, xm) = 0. Therefore, from (2.40)we have

p(z, z) = lim
k→∞

p(xk, z) = lim
k,m→∞

p(xk, xm) = 0. (2.43)

We assert that Tmz = z. Assume the contrary, that is, Tmz/= z, then p(z, Tmz) > 0. Let
{x2k(i)} be a subsequence of {x2k} and hence of {xk}. Due to (2.29), we have

p
(
Snx2k(i), T

mz
) ≤ rM

(
x2k(i), z

)

≤ rmax
{
p
(
x2k(i), x2k(i)+1

)
, p(Tmz, z),

p
(
x2k(i), z

)
,
1
2
[
p
(
Tmz, x2k(i)

)
+ p

(
z, x2k(i)+1

)]
}
.

(2.44)

Letting k → ∞ and taking into account (2.43), the expression (2.44) implies that

p(z, Tmz) ≤ rmax
{
0, p(Tmz, z), 0,

1
2
p(Tmz, z)

}
≤ rp(Tmz, z). (2.45)

Since r < 1, we have p(Tmz, z) = 0. By Remark 1.5, we get Tmz = z. Analogously, if we choose
a subsequence {x2k(i)+1} of {x2k+1}, we obtain Snz = z. Hence Tmz = Snz = z.

The following theorem is a generalization of a common fixed point theorem that
requires no commuting criteria (see e.g., [17]).

Theorem 2.6. Suppose (X, p) is a complete PMS and T, S are self-mappings on X. If there exists an
r ∈ [0, 1) such that

p
(
Tmx, Sny

) ≤ rM
(
x, y

)
(2.46)

for any x, y ∈ X and some positive integersm,n, where

M
(
x, y

)
= max

{
p(Tmx, x), p

(
Sny, y

)
, p
(
x, y

)
,
1
2
[
p
(
Tmx, y

)
+ p

(
Sny, x

)]
}
, (2.47)

then T and S have a unique common fixed point z ∈ X.
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Proof. Due to Proposition 2.5, we have

Tmz = Snz = z. (2.48)

We claim that z is a common fixed point of S and T . From (2.46) and (2.48), it follows
that

p(Tz, z) = p(TTmz, Snz) = p(TmTz, Snz) ≤ rM(Tz, z), (2.49)

where

M(Tz, z) = max
{
p(TmTz, Tz), p(Snz, z), p(Tz, z),

1
2
[
p(TmTz, z) + p(Snz, Tz)

]
}

= max
{
p(TTmz, Tz), p(z, z), p(Tz, z),

1
2
[
p(TTmz, z) + p(z, Tz)

]
}

= max
{
p(Tz, Tz), p(Tz, z),

1
2
[
p(Tz, z) + p(z, Tz)

]
}

= max
{
p(Tz, Tz), p(Tz, z)

}
.

(2.50)

Due to (PM3), we have p(Tz, Tz) ≤ p(Tz, z). Hence

M(Tz, z) = max
{
p(Tz, Tz), p(Tz, z)

}
= p(Tz, z). (2.51)

Regarding the assumption r < 1 and the expression (2.49), we get p(Tz, z) ≤ rp(Tz, z) which
implies that p(Tz, z) = 0, and by Remark 1.5, we obtain Tz = z. Analogously, one can show
that Sz = z. Hence, Tz = Sz = z.

For the uniqueness of the common fixed point z, assume the contrary. Suppose w is
another common fixed point of S and T . Then,

p(z,w) = p(Tmz, Snw) ≤ rM(z,w), (2.52)

where

M(z,w) = max
{
p(Tmz, z), p(Snw,w), p(z,w),

1
2
[
p(Tmz,w) + p(Snw, z)

]
}

= max
{
p(z, z), p(w,w), p(z,w),

1
2
[
p(z,w) + p(w, z)

]
}

= p(z,w).

(2.53)

Therefore, p(z,w) ≤ rp(z,w). Since 0 ≤ r < 1, one has p(z,w) = 0 which yields z = w by
Remark 1.5. Hence, z is a unique common fixed point of S and T .
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Theorem 2.7. Let (X, p) be a complete PMS. Suppose that T, S, F, and G are self-mappings on X,
and F and G are continuous. Suppose also that T, F and S, G are commuting pairs and that

T(X) ⊂ F(X), S(X) ⊂ G(X). (2.54)

If there exists an r ∈ [0, 1), and m,n ∈ N such that

p
(
Tx, Sy

) ≤ rM
(
x, y

)
(2.55)

for any x, y in X, where

M
(
x, y

)
= max

{
p(Tx,Gx), p

(
Sy, Fy

)
, p
(
Gx, Fy

)
,
1
2
[
p
(
Tx, Fy

)
+ p

(
Sy,Gx

)]
}
, (2.56)

then T , S, F, and G have a unique common fixed point z in X.

Proof. Fix x0 ∈ X. Since T(X) ⊂ F(X) and S(X) ⊂ G(X), we can choose x1, x2 in X such that
y1 = Fx1 = Tx0 and y2 = Gx2 = Sx1. In general, we can choose x2n−1, x2n in X such that

y2n−1 = Fx2n−1 = Tx2n−2, y2n = Gx2n = Sx2n−1, n = 1, 2, . . . . (2.57)

We claim that the constructive sequence {yn} is a Cauchy sequence. If there exists
a positive integer N such that yN = yN+1, then yN = yN+1 = yN+2 = · · · = yN+k for all
k ∈ N. Therefore, {yn} is a Cauchy sequence and we proved claim. Thus, we may assume that
yn /=yn+1 for all n.

By (2.55) and (2.57),

p
(
y2n+1, y2n+2

)
= p(Fx2n+1, Gx2n+2)

= p(Tx2n, Sx2n+1)

≤ rM(x2n, x2n+1),

(2.58)

where

M(x2n, x2n+1) = max
{
p(Tx2n, Gx2n), p(Sx2n+1, Fx2n+1), p(Gx2n, Fx2n+1),

1
2
[
p(Tx2n, Fx2n+1) + p(Sx2n+1, Gx2n)

]
}

= max
{
p(Tx2n, Sx2n−1), p(Sx2n+1, Tx2n), p(Sx2n−1, Tx2n),

1
2
[
p(Tx2n, Tx2n) + p(Sx2n+1, Sx2n−1)

]
}
.

(2.59)
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Due to (PM4), we have

p(Sx2n−1, Sx2n+1) + p(Tx2n, Tx2n) ≤ p(Sx2n−1, Tx2n) + p(Sx2n+1, Tx2n). (2.60)

Hence

M(x2n, x2n+1) = max
{
p(Tx2n, Sx2n−1), p(Sx2n+1, Tx2n)

}
. (2.61)

But if M(x2n, x2n+1) = p(Sx2n+1, Tx2n), then by (2.58)

p(Sx2n+1, Tx2n) ≤ rp(Sx2n+1, Tx2n), r ∈ [0, 1), (2.62)

which implies p(Sx2n+1, Tx2n) = 0. Thus, M(x2n, x2n+1) = p(Sx2n−1, Tx2n), and consequently,

p(Sx2n+1, Tx2n) ≤ rp(Sx2n−1, Tx2n), (2.63)

or, equivalently,

p
(
y2n+2, y2n+1

) ≤ rp
(
y2n+1, y2n

)
. (2.64)

Analogously, one can show that

p
(
y2n+3, y2n+2

) ≤ rp
(
y2n+2, y2n+1

)
. (2.65)

Indeed, from (2.55) and (2.57),

p
(
y2n+3, y2n+2

)
= p(Sx2n+1, Tx2n+2) ≤ rM(x2n+1, x2n+2), (2.66)

where

M(x2n+2, x2n+1) = max
{
p(Tx2n+1, Gx2n+1), p(Sx2n+2, Fx2n+2), p(Gx2n+1, Fx2n+2),

1
2
[
p(Tx2n+1, Fx2n+2) + p(Sx2n+2, Gx2n+1)

]
}

= max
{
p(Tx2n+2, Sx2n+1), p(Sx2n+1, Tx2n), p(Sx2n+1, Tx2n),

1
2
[
p(Tx2n+2, Tx2n) + p(Sx2n+1, Sx2n+1)

]
}

= max
{
p(Tx2n+2, Sx2n+1), p(Sx2n+1, Tx2n)

}
.

(2.67)

If M(x2n+2, x2n+1) = p(Tx2n+2, Sx2n+1) = p(y2n+3, y2n+2), then by (2.66), we have a
contradiction. ThusM(x2n+2, x2n+1) = p(Sx2n+1, Tx2n) = p(y2n+2, y2n+1)which proves (2.65).
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Thus, we conclude that p(yn+1, yn) ≤ rp(yn, yn−1), for all n ∈ N.
By elementary calculation, regarding 0 < r < 1, we conclude that {yn} is a Cauchy

sequence. Since {X, d} is complete, {yn} converges to a point z ∈ X. Consequently, the
subsequences {Tmx2n}, {Snx2n−1}, {Gx2n}, and {Fx2n−1} converge to z.

Regarding that T , F and S, G are commuting pairs and the continuity of G and F, the
sequences {FFx2n−1}, {SFx2n−1} tend to Fz, and the sequences {GGx2n}, {TGx2n} tend to Gz,
as n → ∞.

Thus,

p(Gz, Fz) = lim
n→∞

p(TGx2n, SFx2n−1) ≤ r lim
n→∞

M(Gx2n, Fx2n−1), (2.68)

where

M(Gx2n, Fx2n−1) = max
{
p(TGx2n, GGx2n), p(SFx2n−1, FFx2n−1), p(GGx2n, FFx2n−1),

1
2
[
p(TGx2n, FFx2n−1) + p(GGx2n, S

nFx2n−1)
]
}
.

(2.69)

Since limn→∞M(Gx2n, Fx2n−1) = p(Gz, Fz), one has p(Gz, Fz) ≤ rp(Gz, Fz), that is,
Gz = Fz. Analogously, one obtains

Tz = Sz = Fz = Gz. (2.70)

To conclude the proof, consider

p(z, Fz) = lim
n→∞

p(Fx2n−1, SFx2n−1) = lim
n→∞

p(Tx2n−2, SFx2n−1) ≤ r lim
n→∞

M(x2n−2, Fx2n−1),

(2.71)

where

M(x2n−2, Fx2n−1) = max
{
p(Tx2n−2, Gx2n−2), p(SFx2n−1, FFx2n−1), p(Gx2n−2, FFx2n−1),

1
2
[
p(Tx2n−2, FFx2n−1) + p(SFx2n−1, Gx2n−2)

]
}
,

(2.72)

Letting n → ∞ in (2.72) and having in mind (2.70), we get that limn→∞M(x2n−2, Fx2n−1) =
p(z, Fz). Due to (2.71), we have Fz = z. Thus, we have

Tz = Sz = Fz = Gz = z. (2.73)
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We assert that z is unique. Suppose on the contrary that there is another common fixed
point w of S, T , F, and G. Then p(z,w) = p(Tz, Sw) ≤ rM(z,w), where

M(z,w) = max
{
p(Tz,Gz), p(Sw, Fw), p(Gz, Fw),

1
2
[
p(Tz, Fw) + p(Sw,Gz)

]
}

= max
{
p(z, z), p(w,w), p(z,w),

1
2
[
p(z,w) + p(w, z)

]
}

= p(z,w).

(2.74)

Since M(z,w) = p(z,w),

p(z,w) ≤ rp(z,w). (2.75)

Therefore, p(z,w) = 0, and by Remark 1.5, we have z = w. Hence z is the unique common
fixed point of S, T , F, and G.

Regarding the relation between Theorems 2.2 and 2.6, one concludes the following
corollary in view of Theorem 2.7.

Corollary 2.8. Let (X, p) be a complete PMS. Suppose thatA, B, F, and G are self-mappings on X,
and F and G are continuous. Suppose also that A, B, and F, G are commuting pairs and also A and
G commutes each other and

A(X) ⊂ F(X), B(X) ⊂ G(X). (2.76)

If there exists r ∈ [0, 1), and m,n ∈ N such that

p
(
Amx, Bny

) ≤ rM
(
x, y

)
(2.77)

for any x, y in X, where

M
(
x, y

)
= max

{
p(Amx,Gx), p

(
Bny, Fy

)
, p
(
Gx, Fy

)
,
1
2
[
p
(
Amx, Fy

)
+ p

(
Bny,Gx

)]
}
,

(2.78)

then A, B, F, and G have a unique common fixed point z in X.

Proof. Due to Theorem 2.7,

Amz = Bnz = Fz = Gz = z. (2.79)

Following the steps of the proof of Theorem 2.7 with T = Am, S = Bn, we get (2.70) which is
equivalent to (2.79). Thus, Am, Bn, F, and G have a unique common fixed point z in X.

We claim that

Az = Bz = z. (2.80)
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By (2.79),

p(Az, z) = p(AAmz, Bnz) = p(AmAz, Bnz) ≤ r lim
n→∞

M(Az, z), (2.81)

where

M(Az, z) = max
{
p(AmAz,GAz), p(Bnz, Fz), p(GAz, Fz),

1
2
[
p(AmAz, Fz) + p(Bnz,GAz)

]
}

= max
{
p(AAmz,AGz), p(z, z), p(AGz, z),

1
2
[
p(AAmz, z) + p(z,AGz)

]
}

= max
{
p(Az,Az), 0, p(Az, z),

1
2
[
p(Az, z) + p(z,Az)

]
}

= p(Az, z).
(2.82)

Hence, (2.81) is equivalent to p(Az, z) ≤ rp(Az, z) which yields p(Az, z) = 0, that is,
Az = z. Analogously, one can get Bz = z. Indeed, By (2.79),

p(z, Bz) = p(Amz, BBnz) = p(Amz, BnBz) ≤ r lim
n→∞

M(z, Bz), (2.83)

where

M(z, Bz) = max
{
p(Amz,Gz), p(BnBz, FBz), p(Gz, FBz),

1
2
[
p(Amz, FBz) + p(BnBz,Gz)

]
}

= max
{
p(z, z), p(Bz, FBz), p(z, FBz),

1
2
[
p(z, FBz) + p(Bz, z)

]
}

= max
{
0, p(Bz, Bz), p(z, Bz),

1
2
[
p(Bz, z) + p(z, Bz)

]
}

= p(Bz, z).
(2.84)

Hence, (2.83) is equivalent to p(Bz, z) ≤ rp(Bz, z) which yields p(z, Bz) = 0, that is, z = Bz.
Hence,

Az = Bz = z. (2.85)

Combining (2.80) and (2.85), we obtain Gz = Fz = Az = Bz = z.
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