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This paper focuses on newmeasures of performance in single-server Markovian queueing system.
These measures depend on the moments of order statistics. The expected value and the variance
of the maximum (minimum) number of customers in the system as well as the expected value and
the variance of the minimum (maximum) waiting time are presented. Application to an M/M/1
model is given to illustrate the idea and the applicability of the proposed measures.

1. Introduction

Queueing systems have found wide applications in modeling and analysis of computer and
communication systems, and several other engineering systems in which single server is
attached to one or more workstations. The study of queueing systems has often been con-
cerned with the busy period and the waiting time, because they play a very significant role
in the understanding of various queueing systems and their management. A busy period in
a queuing system normally starts with the arrival of a customer who finds the system empty
and ends with the first time at which the system becomes empty again. The length of a busy
period of an M/M/1 queue with constrained workload is discussed by Kinateder and Lee
[1] using Laplace transform. Draief and Mairesse [2] analyzed the service times of customers
in an M/M/1 queue depending on their position in a busy period. They provided a law of
the service of a customer at the beginning, at the end, or in the middle of the busy period by
considering a family of polynomial generating seires associated with Dyck paths of length
2n. Details about using a busy period in an M/M/1 queue can be found in Guillemin and
Pinchon [3] and references therein. Takagi and Tarabia [4] provided an explicit probability
density function of the length of a busy period starting with i customers for more general
model M/M/1/L, where L is the capacity of the system; see also Tarabia [5]. Al Hanbali and
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Boxma [6] studied the transient behaviour of a state-dependent M/M/1/L queue during the
busy period. Virtual waiting time at time t is defined to be the time that imaginary customers
would have to wait before service if they arrived in a queueing system at instant t. Gross and
Harris [7, Section 2.3] gave a derivation of the steady-state virtual waiting time distribution
for an M/M/c model. The virtual waiting time distribution was first formulated for discrete
time queues by Neuts [8] for the single-server case. Berger and Whitt [9] provided various
approximation and simulation techniques for several different queueing processes (waiting
time, virtual waiting time, and the queue length). For more general queue models in waiting
time, see A. Brandt andM. Brandt [10]. A recursive procedure for computing the moments of
the busy period for the single-server model can be found in Tarabia [5]. Limit theorems are
proved by investigating the extreme values of the maximum queue length, the waiting time
and virtual waiting time for different queue models in literature. Serfozo [11] discussed the
asymptotic behavior of themaximum value of birth-death processes over large time intervals.
Serfozo’s results concerned the transient and recurrent birth-death processes and related
M/M/c queues. Asmussen [12] introduced a survey of the present state of extreme value
theory for queues and focused on the regenerative properties of queueing systems, which
reduced the problem to study the tail of the maximum of the queueing process {X(t)} during
a regenerative cycle τ , where {X(t)} is in discrete or continuous time. Artalejo et al. [13]
presented an efficient algorithm for computing the distribution for the maximum number of
customers in orbit (and in the system) during a busy period for theM/M/c retrial queue. The
main idea of their algorithm is to reduce the computation of the distribution of the maximum
customer number in orbit by computing certain absorption probabilities. For more details
in extreme value in queues, see Park [14] and Minkevičius [15] together with the references
contained therein.

Our motivation is to obtain some complementary measures of performance of an
M/M/1 queue. The expected value and the variance of the minimum (maximum) number
of customers in system as well as the expected value and the variance of the minimum
(maximum) waiting time are discussed.

Let us divide the number of arrival customers into k intervals, and let Xj be the
number of customers in each interval. The corresponding order statistics is defined by Xi:k.
Three special cases are introduced: (a) i = k, defines the maximum number of customers
presented in the system, (b) i = 1, defines the minimum number of customers in the system,
and (c) i = k = 1, defines the regular performance measures. So, our interest is to compute
μ1:k = E(XMin), σ2

1:k = Var(XMin), μk:k = E(XMax), and σ2
k:k = Var(XMax)whereXMin = Min{Xi}

and XMax = Max{Xi}, for 1 ≤ i ≤ k. Also, let Ti be the waiting time in the interval i. The
expected value and the variance of the minimum (maximum) waiting times are computed,
respectively, as ν1:k = E(TMin), α2

1:k = Var(TMin), νk:k = E(TMax), and α2
k:k = Var(TMax)

where TMin = Min{Ti} and TMax = Max{Ti}, for 1 ≤ i ≤ k. The remainder of this paper is
organized as follows. The model description and some important theorems in order statistics
are given in Section 2. The proposed performance measures are obtained in Section 3.
Numerical results and conclusion are presented in Section 4.

2. Model and Description

Consider a single-server queue with interarrival time and service time which are exponen-
tially distributed with rates λ and μ, respectively. Let Q(t) be the number of customers in the
system at time t. We define

pn(t) = Pr{Q(t) = n/Q(0) = i}. (2.1)
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Then, the governing differential-difference equations of the system under consideration are
given by

dp0(t)
dt

= −λp0(t) + μp1(t),

dpn(t)
dt

= −(λ + μ
)
pn(t) + μpn+1(t) + λpn−1(t), n ≥ 1.

(2.2)

Taking the limit as t → ∞ when ρ = λ/μ < 1 yields

pn = ρn
(
1 − ρ

)
, n = 0, 1, 2, . . . . (2.3)

See, for example, Gross and Harris [7].
Let Q be the number of customers in the system. Define the cumulative distribution

function (cdf) of Q as

F(x) = Pr{Q ≤ x} =
x∑

n=0

pn. (2.4)

In steady-state case for M/M/1 queue, we can write

F(x) = 1 − ρx+1. (2.5)

In the following, we state two of the needed theorems. These two theorems can be found in
Arnold et al. [16, page 43] and Barakat and Abdelkader [17], respectively. The first theorem
gives expressions for the first twomoments of the ith order statistics,Xi:k, in a sample of size k
in discrete case, and the second theorem deals with the rth moments of Xi:k in a continuous
case.

Theorem 2.1. Let S, the support of the distribution, be a subset of nonnegative integers. Then,

E(Xi:k) = μi:k =
∞∑

x=0
[1 − Fi:k(x)],

E
(
X2

i:k

)
= μ

(2)
i:k = 2

∞∑

x=0

x[1 − Fi:k(x)] + μi:k,

(2.6)

whenever the moment on the left-hand side is assumed to exist.
Hence, the variance is given by

σ2
i:k = μ

(2)
i:k − μ2

i:k. (2.7)
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In the case of independent identically distributed (iid) random variables, the expected value and the
variance of the maximum are given by

μk:k =
∞∑

x=0

[
1 − (F(x))k

]
, (2.8)

μ
(2)
k:k = 2

∞∑

x=0

x
[
1 − (F(x))k

]
+ μk:k, (2.9)

σ2
k:k = μ

(2)
k:k − μ2

k:k. (2.10)

Similarly, the expected value and the variance of the minimum are given by

μ1:k =
∞∑

x=0
[1 − F(x)]k, (2.11)

μ
(2)
1:k = 2

∞∑

x=0

x[1 − F(x)]k + μ1:k, (2.12)

σ2
1:k = μ

(2)
1:k − μ2

1:k, (2.13)

where Fn:n(x) = [F(x)]n and F1:n(x) = 1 − [1 − F(x)]n.

Theorem 2.2. Let Xi, 1 ≤ i ≤ k be a non-negative r.v.’s with d.f.’s Fi(x). Then, the rth moment of the
ith order statistics in a sample of size k is given by

μ
(r)
i:k = r

∫∞

0
xr−1(1 − Fi:k(x))dx. (2.14)

In the case of iid random variables, when i = n and i = 1, one gets respectively,

μ
(r)
k:k = r

∫∞

0
xr−1
(
1 − [F(x)]k

)
dx, (2.15)

μ
(r)
1:k = r

∫∞

0
xr−1(1 − F(x))kdx. (2.16)

3. Performance Measures

This section is devoted to introduce the proposed performance measures which are often
useful for investigating the behaviour of a queueing system. Themean and the variance of the
minimum (maximum) number of customers in system aswell as themean and the variance of
the minimum (maximum)waiting times are derived. The following lemma and consequence
theorems give a procedure for the computations of these measures.
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Lemma 3.1. Let Xi be iid random variables; the cdf for the maximum Fk:k(x) and the minimum
F1:k(x) are given by

Fk:k(x) =
(
1 − ρx+1

)k
, (3.1)

F1:k(x) = 1 − ρk(x+1). (3.2)

Proof. From the definitions of the cdf’s of Xk:k and X1:k, we have

Fk:k(x) = [F(x)]k,

F1:k(x) = 1 − [1 − F(x)]k.
(3.3)

Plugging the value of F(x) from (2.5) into the last two equations, we get (3.1) and (3.2). This
completes the proof.

3.1. The Mean and the Variance of the Minimum and the Maximum Number
of Customers in the System

We are now ready to formulate our results.

Theorem 3.2. The expected value and the variance of the minimum number of customers in the
system are given by

μ1:k =
ρk

1 − ρk
,

σ2
1:k =

ρk

(
1 − ρk

)2 .

(3.4)

Proof. Using (2.11) and (3.2), we get

μ1:k =
∞∑

x=0

ρk(x+1) =
ρk

1 − ρk
. (3.5)

Applying (2.12) and (3.2), the second-order moment is given by

μ
(2)
1:k = 2

∞∑

x=0

xρk(x+1) +
ρk

1 − ρk

=
ρk
(
ρk + 1

)

(
1 − ρk

)2 .

(3.6)
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Hence, according to (2.13), the variance of the minimum is given by

σ2
1:k =

ρk
(
ρk + 1

)

(
1 − ρk

)2 −
(

ρk

1 − ρk

)2

,

σ2
1:k =

ρk

(
1 − ρk

)2 .

(3.7)

Theorem 3.3. The mean and the variance of the maximum number of customers in the system are
given by

μk:k =
k∑

i=1

(−1)i+1
(
k

i

)
ρi

1 − ρi
, (3.8)

σ2
k:k =

k∑

i=1

(−1)i+1
(
k

i

)
ρi
(
ρi + 1

)

(
1 − ρi

)2 −
(

k∑

i=1

(−1)i+1
(
k

i

)
ρi

1 − ρi

)2

. (3.9)

Proof. Applying (2.8) and (3.1), then expanding (1 − ρx+1)k binomially, we obtain

μk:k =
∞∑

x=0

(

1 −
k∑

i=0
(−1)i

(
k

i

)(
ρx+1
)i
)

=
∞∑

x=0

k∑

i=1

(−1)i+1
(
k

i

)(
ρx+1
)i
,

μk:k =
k∑

i=1

(−1)i+1
(
k

i

)
ρi

1 − ρi
.

(3.10)

Applying (2.9) and (3.1), the second-order moment is given by

μ
(2)
k:k = 2

∞∑

x=0

x

[
1 −
(
1 − ρx+1

)k]
+ μk:k

= 2
∞∑

x=0

x

[

1 −
(

1 +
k∑

i=1

(−1)i
(
k

i

)(
ρx+1
)i
)]

+ μk:k

= 2
k∑

i=1

(−1)i+1
(
k

i

) ∞∑

x=0

xρ(x+1)i + μk:k



Journal of Applied Mathematics 7

= 2
k∑

i=1

(−1)i+1
(
k

i

) (
ρi
)2

(
1 − ρi

)2 + μk:k

=
k∑

i=1

(−1)i+1
(
k

i

)
ρi
(
1 + ρi

)

(
1 − ρi

)2 .

(3.11)

of σ2
k:k in Theorem 2.1, we get (3.9) and hence the proof.

Employing the above procedure,similar results can be obtained for the minimum and
maximum queue length as stated in the following two corollaries.

Corollary 3.4. The mean and the variance of the minimum queue length are given by

μ′
1:k =

ρ2k

1 − ρk
,

σ ′
1:k =

ρ2k
(
3 − ρk − ρ2k

)

(
1 − ρk

)2 .

(3.12)

Corollary 3.5. The mean and the variance of the maximum queue length are given by

μ′
k:k =

k∑

i=1

(−1)i+1
(
k

i

)
ρ2i

1 − ρi
,

σ
′2
k:k =

k∑

i=1

(−1)i+1
(
k

i

)
ρ2i
(
3 − ρi

)

(
1 − ρi

)2 −
(

k∑

i=1

(−1)i+1
(
k

i

)
ρ2i

1 − ρi

)2

.

(3.13)

According to Lemma 3.1 and the definitions of the expected value and the variance in
Theorem 2.1, the proof of the above formulas can be easily established.

3.2. The Minimum and the Maximum Waiting Time in the Queue

Other useful performance measures are the mean and the variance of the minimum and
maximum waiting time in the queue. The cumulative probability distribution of the waiting
time for the M/M/1 queue is given by

Wq(t) =

⎧
⎨

⎩

(
1 − ρ

)
, t = 0,

(
1 − ρe−μ(1−ρ)t

)
, t > 0.

(3.14)
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The expected waiting time in the queue is

Wq =
λ

μ
(
μ − λ

) . (3.15)

Theorem 3.6. The rth moments of the minimum waiting time in the queue are given by

υ
(r)
1:k =

Γ(r + 1)ρk
[
kμ
(
1 − ρ

)]r . (3.16)

Proof. Using (2.16) and (3.14), we have

υ
(r)
1:k = r

∫∞

0
tr−1
[
1 −Wq(t)

]
dt

= rρk
∫∞

0
tr−1e−kμ(1−ρ)tdt

=
rρkΓ(r)

[
kμ
(
1 − ρ

)]r .

(3.17)

The following corollary follows from Theorem 3.6.

Corollary 3.7. The mean and the variance of the minimum waiting time are given by

υ1:k =
ρk

[
kμ
(
1 − ρ

)] ,

υ
(2)
1:k =

2ρk
[
kμ
(
1 − ρ

)]2 .

(3.18)

Then, the variance is

α2
1:k = υ

(2)
1:k − (υ1:k)2 =

ρk
(
2 − ρk

)

[
kμ
(
1 − ρ

)]2 . (3.19)

Theorem 3.8. The rth moments of the maximum waiting time in the queue are given by

υ
(r)
k:k =

k∑

j=1

(−1)j+1
(
k

j

)

ρj
Γ(r + 1)

[
jμ
(
1 − ρ

)]r . (3.20)



Journal of Applied Mathematics 9

Proof. Using (2.15) and (3.14), we can write

υ
(r)
k:k = r

∫∞

0
tr−1
(
1 − (Wq(t)

)k)
dt

= r

∫∞

0
tr−1
(
1 −
(
1 − ρe−μ(1−ρ)t

)k)
dt

= r

∫∞

0
tr−1

⎛

⎝1 −
k∑

j=0
(−1)j

(
k

j

)

ρje−jμ(1−ρ)t

⎞

⎠dt

=
k∑

j=1

(−1)j+1
(
k

j

)

ρj
Γ(r + 1)

[
jμ
(
1 − ρ

)]r .

(3.21)

The following corollary follows from Theorem 3.8.

Corollary 3.9. The mean and the variance of the maximum waiting time are given by

υk:k =
k∑

j=1

(−1)j+1
(
k

j

)
ρj

jμ
(
1 − ρ

) ,

α2
k:k =

k∑

j=1

(−1)j+1
(
k

j

)
2ρj

[
jμ
(
1 − ρ

)]2 −
⎛

⎝
k∑

j=1

(−1)j+1
(
k

j

)
ρj

jμ
(
1 − ρ

)

⎞

⎠

2

.

(3.22)

Proof. Set r = 1 and r = 2 in (3.20), and using the definition of the variance, we get (3.22).

Since μk:k and μ′
k:k give the sum of the expected value of the maximum number of cus-

tomers in the system and queue, we compute the expected value of the maximum number of
customers in the system and queue during each interval k, respectively, by

Δμk = μk:k − μk−1:k−1,

Δμk = μk:k − μk−1:k−1,
(3.23)

with conventional μ0:k = μ′
0:k = 0 and

ρ = Δμk −Δμ′
k. (3.24)

Similarly, the expected value of the maximumwaiting time in the queue during each interval
k is computed by

Δυk = υk:k − υk−1:k−1. (3.25)
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Table 1: The expected values of the maximum number of customers in the system and queue.

k Δμk Δμ′
k

ρ = Δμk −Δμ′
k

1 5 4.16666 0.83333
2 2.72727 2.58838 0.1388
3 1.82817 1.80502 0.023148
4 1.37125 1.36739 0.003858
5 1.09697 1.09632 0.000643
6 0.914135 0.914028 0.0001071
7 0.783545 0.783527 0.00001786
8 0.685602 0.685599 2.97687E − 6
9 0.609424 0.609423 4.96145E − 7
10 0.548481 0.548481 8.26908E − 8
11 0.49862 0.49862 1.37818E − 8
12 0.457068 0.457068 2.29703E − 9
13 0.421909 0.421909 3.82887E − 10
14 0.391772 0.391772 6.38263E − 11
15 0.365654 0.365654 1.07789E − 11

Table 2: The expected values of the minimum number of customers in the system and queue.

k μ1:k μ′
1:k k μ1:k μ′

1:k

1 5 4.16667 6 0.503529 0.168631
2 2.27273 1.57828 7 0.38712 0.108038
3 1.37363 0.794923 8 0.303047 0.0704791
4 0.931446 0.449193 9 0.240397 0.0465906
5 0.671899 0.270021 10 0.192614 0.0311082

4. Numerical Results

To demonstrate the applicability of the results obtained in the previous sections, some nu-
merical results have been presented in the form of tables showing the effectiveness and the
applicability of the proposed measures. We have considered M/M/1 queue with λ = 5 and
μ = 6. Table 1 summarizes the values of Δμk, Δμ′

k
and ρ for each interval k. Table 2 gives the

minimum number of customers in the system (queue) in each interval k. Finally, Table 3
shows the expected values of the maximum waiting time in the queue.

Remarks. The obtained results in Tables 1–3 show that the expected value of the maximum
(minimum) number of customers decreases gradually with the increasing number of inter-
vals. Also, it is noted that the system will be almost empty in the 13rd interval. That is,
the customer will get the service immediately when she (or he) arrived and will leave the
system before the second arrival. This result agrees with the fact that the service rate is greater
than the arrival rate. Similar conclusion can be deduced form Table 3. The traffic intensity ρ
decreases gradually to zero as the number of intervals increases.

5. Conclusions

In this paper, we have considered the Markovian queueing model with a single-server and
infinite system capacity. The paper presents some complementary measures of performance
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Table 3: The expected values of the maximum waiting time in the queue.

k Δνk Approx. k Δνk Approx.
1 0.83333 50 minutes 11 0.09090 5 minutes
2 0.486112 30 minutes 12 0.083333 5 minutes
3 0.33179 20 minutes 13 0.07692 5 minutes
4 0.249807 15 minutes 14 0.071428 5 minutes
5 0.199974 12 minutes 15 0.066667 4 minutes
6 0.166663 10 minutes 16 0.0625 4 minutes
7 0.142856 9 minutes 17 0.05882 3 minutes
8 0.125 7 minutes 18 0.055556 3 minutes
9 0.12 6 minutes 19 0.05263 3 minutes
10 0.1 6 minutes 20 0.05 3 minutes

which are depending on the methods of order statistics. The expected value and the variance
of the minimum (maximum) number of customers in the system (queue) as well as the rth
moments of the minimum (maximum) waiting time in the queue are derived. Clearly, the
expected value of the number of customers in the system (queue) as well as the expected
waiting time can be obtained as special cases from our proposed measures when k = 1.
Although this work is currently restricted to the M/M/1 model, it can be applied to other
queueing models.
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