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The nonlinear two-dimensional forced-convection boundary-layer magneto hydrodynamic
(MHD) incompressible flow of nanofluid over a horizontal stretching flat plate with variable
magnetic field including the viscous dissipation effect is solved using the homotopy perturbation
method (HPM). In the present work, our results of the HPM are compared with the results of
simulation using the finite difference method, Keller’s box-scheme. The comparisons of the results
show that the HPM has the capability of solving the nonlinear boundary layer MHD flow of
nanofluid with sufficient accuracy.

1. Introduction

Recently, lots of attention are devoted toward the semianalytical solution of real-life
mathematical modeling that is inherently nonlinear differential equations with variable
coefficients. Most of the nonlinear differential equations do not have an analytical solution.
However, so far there have been many researchers that attempted to solve the nonlinear
differential equations by using numeric methods. Using the numeric methods, a tremendous
amount of CPU time as well as huge memory is required. Semianalytical methods
which are more suitable than the numerical methods are applied for the solution of
nonlinear nonhomogeneous partial differential equations [1–7]. Comparing with other
methods, the Semianalytical methods have the advantage of simplicity when applying to
solve complicated nonlinear problems. The HPM, ADM, and VIM methods are used to
solve the nonhomogeneous variable coefficient partial differential equations with accurate
approximation. Consequently, to extend the validity of the solution to a broader range, one
needs to handle huge amount of computational effort. The most powerful Semianalytical
method to the solution of nonhomogeneous variable coefficient partial differential equations
is the homotopy perturbation method (HPM).
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He [8–12] developed the homotopy perturbation method for solving linear, nonlinear,
and initial and boundary value problems by combining the standard homotopy and the
perturbation methods. The homotopy perturbation method was formulated by taking the
full advantage of the standard homotopy and perturbation methods and has been modified
later by some scientists to obtain more accurate results, rapid convergence, and to reduce the
amount of computation [13–16].

Recently, some of researchers have solved many problems in different fields of
engineering. Singh et al. [17] solved space-time fractional solidification in a finite slab with
HPM. Ajadi and Zuilino [18] applied HPM to reaction-diffusion equations with source term.
They concluded that rapid convergence is obtained to the exact solution by HPM. Slota [19]
applied the HPM to Stefan solidification heat equation problem, and his results show that
HPM is a capable method for solving the problems under consideration.

The basic motivation of this paper is to solve a two-dimensional forced-convection
boundary-layer MHD problem formed by a magneto hydrodynamic (MHD) incompressible
nanofluid flow in the presence of variable magnetic field over a horizontal flat plate including
the viscous dissipation term using the HPM. The two-dimensional forced-convection
boundary-layer MHD problem is also simulated with the numerical Keller’s box-scheme
[20], and the results of simulation are compared with the results obtained by solving the
problem using the HPM. In the present problem, a nanoincompressible fluid in the presence
of a variable magnetic field and the viscous dissipation effect over a horizontal stretching
flat plate are considered. The results are compared with the previous results of numerical
simulation. To our knowledge, there have been no results reported so far for the boundary
layer flow of nanofluid, using the HPM method, including the MHD with variable magnetic
field, and viscous dissipation effect.

2. Basic Idea of Homotopy Perturbation Method

The homotopy perturbation method (HPM) is originally initiated by He [1–9]. This is a
combination of the classical perturbation technique and homotopy technique. The basic idea
of the HPM for solving nonlinear differential equations is as follows: consider the following
nonlinear differential equation:

L(u) = 0 (2.1)

subject to boundary condition

B

(
u,
∂u

∂n

)
= 0, (2.2)

where L is a general nonlinear differential operator and B is a boundary operator.
Usually the main differential equation does not include the small parameter; however,

to construct a homotopy, the nonlinear operator is divided into two parts, the first part
includes the linear operator, L, and the second part includes the nonlinear operator, N.
Therefore, (2.1) is rewritten as

L(u) +N(u) = 0. (2.3)
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We now write the homotopy that constructed by He [1–9] as follows:

H
(
v, p
)
= L(v) + pN(v) − (1 − p)L(u0) = 0, (2.4)

where p is called the homotopy parameter which is usually assumed to vary between [0, 1]. In
(2.4), when p is equal to 1 it converts back to the main differential equation (2.1), and in case
where p is equal to zero, (2.4) gives the zero-order approximation of the main differential
equation (2.1). According to the perturbation method, the approximate solution to (2.4) is
expressed as a series of the power of the homotopy parameter p as

v = v0 + pv1 + p2v2 + p
3v3 + · · · , (2.5)

where in the limit when p approaches 1, (2.5) becomes

u = lim
p→ 1

v= v0 + v1 + v2 + v3 + · · · . (2.6)

3. Mathematical Formulation

The governing two-dimensional forced-convection boundary-layer flow over a horizontal
stretching flat plate including the viscous dissipation term is written as

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=

1
ρnf

(
μnf

∂2u

∂y2
− σB(x)2u

)
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= αnf · ∂

2T

∂y2
+

μnf(
ρCp

)
nf

(
∂u

∂y

)2

. (3.3)

Equation (3.1) describes the continuity equation, where u and v are the velocity components
in the x and y directions, respectively, (see Figure 1). Equation (3.2) describes the two-
dimensional momentum equation in the presence of a variable magnetic field, where u and
v are the x and y components of velocity, respectively, μnf and ρnf are the dynamic viscosity
and the density of the nanofluid, respectively, σ is the electrical conductivity, and B(x)
is the variable magnetic field acting in the perpendicular direction to the horizontal flat
plate. Equation (3.3) describes the two-dimensional energy equation including the viscous
dissipation term, where, u, v, and T are the x and y components of velocity and temperature,
respectively, αnf is the thermal diffusivity, and (ρCp)nf is the heat capacitance of the nanofluid.

The boundary conditions are defined as

u = uw = bxm, v = 0, T = Tw, at y = 0,

u −→ 0, T −→ T∞, as y −→ ∞,
(3.4)



4 Journal of Applied Mathematics

y

x

u

B(x)

Tw − T∞

U∞, T∞

Figure 1: Schematic of the physical model and coordinate system.

where uw is the x-component of velocity on the horizontal flat plate, b and m are constants,
and Tw and T∞ are the plate and ambient temperatures, respectively. The nanofluid properties
such as the density, ρnf, the dynamic viscosity, μnf, the heat capacitance, (ρCp)nf, and the
thermal conductivity, knf, are defined in terms of fluid and nanoparticles properties as in
[21],

ρnf =
(
1 − φ)ρf + φρs,

μnf =
μf

(1 − φ)2.5
,

knf
kf

=
ks + 2kf − 2φ

(
kf − ks

)
ks + 2kf + 2φ

(
kf − ks

) ,
(
ρCp

)
nf =

(
1 − φ)(ρCp

)
f
+ φ
(
ρCp

)
s
,

αnf =
knf(
ρCp

)
nf

,

(3.5)

where ρf is the density of fluid, ρs is the density of nanoparticles, φ is defined as the volume
fraction of the nanoparticles, μf is the dynamic viscosity of fluid, (ρCp)f is the thermal
capacitance of fluid, (ρCp)s is the thermal capacitance of nanoparticles, and kf and ks are
the thermal conductivities of fluid and nanoparticles, respectively.

The variable magnetic field is defined as [22, 23]

B(x) = B0

√
xm−1, (3.6)

where B0 andm are constant.
The following dimensionless similarity variable is used to transform the governing

equations into the ordinary differential equations

η =
y

x
Rex1/2,

Rex =
ρfuw(x)

μf
x.

(3.7)
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The dimensionless stream function and dimensionless temperature are defined as

f
(
η
)
=
ψ
(
x, y
)
(Rex)1/2

uw(x)
,

θ
(
η
)
=

T − T∞
Tw − T∞ ,

(3.8)

where the stream function ψ(x, y) is defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.9)

By applying the similarity transformation parameters, the momentum equation (3.1) and the
energy equation (3.2) can be rewritten as

f ′′′ +

((
1 − φ) + φ

(
ρs
ρf

))(
1 − φ)2.5

(
m + 1
2

)2

ff ′′

−
((

1 − φ) + φ
(
ρs
ρf

))(
1 − φ)2.5(m)f ′2 −

[(
1 − φ)2.5Mn

]
f ′ = 0,

θ′′ +

⎛
⎝(1 − φ) + φ

(
ρCp

)
s(

ρCp

)
f

⎞
⎠Prfθ′ +

EcPr(
1 − φ)2.5 = 0.

(3.10)

Therefore, the transformed boundary conditions are

f ′(0) = 1, f(0) = 0, θ(0) = 1, f ′(∞) = 0, θ(∞) = 0. (3.11)

The dimensionless parameters of Mn, Pr, Ec, and Rex are the magnetic parameter, Prandtl,
Eckert, and Reynolds numbers, respectively. They are defined as

Mn =
σ · B2

0

ρf · b , Pr =

(
ρCp

)
f

kef
υf , Ec =

uw(x)2

CpΔT
, Rex =

ρfuw(x)
μf

x. (3.12)

Equation (3.10) is rewritten as

f ′′′ +Aff ′′ − Bf ′2 − Cf ′ = 0, (3.13)

θ′′ +Dfθ′ + Ef ′′2 = 0. (3.14)

The boundary conditions for f and θ in (3.13) and (3.14) are as follows:

f ′(0) = 1, f(0) = 0, θ(0) = 1, f ′(∞) = 0, θ(∞) = 0, (3.15)
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where coefficients, A, B, C, D, and E are written as

A =

((
1 − φ) + φ

(
ρs
ρf

))(
1 − φ)2.5

(
m + 1
2

)2

,

B =

((
1 − φ) + φ

(
ρs
ρf

))(
1 − φ)2.5(m),

C =
[(
1 − φ)2.5Mn

]
,

D =

⎛
⎝(1 − φ) + φ

(
ρCp

)
s(

ρCp

)
f

⎞
⎠Pr,

E =
EcPr(
1 − φ)2.5 .

(3.16)

4. The HPM Applied to the Problem

We are ready now to apply the HPM to solve the similarity nonlinear ordinary differential
equations (3.13) and (3.14) with boundary conditions defined as in (3.11). First we construct
a homotopy for each of (3.13) and (3.14) as follows:

(
1 − p)(f ′′′ − f ′′′

0
)
+ p
(
f ′′′ +Aff ′′ − Bf ′2 − Cf ′

)
= 0, (4.1)

(
1 − p)(θ′′ − θ′′0) + p

(
θ′′ +Dfθ′ + Ef ′′2

)
= 0. (4.2)

The approximation for each of f and θ in terms of the power series of homotopy parameter
p is written as

f = f0 + pf1 + p2f2 + p3f3 + · · · =
n∑
i=1

pifi, (4.3)

θ = θ0 + pθ1 + p2θ2 + p3θ3 + · · · =
n∑
i=1

piθi. (4.4)

Substituting (4.3) and (4.4) into (4.1) and (4.2), respectively, and after manipulations, the
coefficients of terms of different powers for p are written as follows:

p0 :f ′′′
0 = 0, θ′′0 = 0,

f ′
0(0) = 1, f ′

0
(
η∞
)
= 0, f0(0) = 0, θ0(0) = 1, θ0

(
η∞
)
= 0,

p1 :Af0f ′′
0 −ABf0′2 + f ′′′

1 + f ′′′
0 −Kf ′

0 = 0, θ′′0 +Df0θ
′
0 + θ

′′
1 + Ef

′′2
0 = 0,

f ′
1(0) = 0, f ′

1

(
η∞
)
= 0, f1(0) = 0, θ1(0) = 0, θ1

(
η∞
)
= 0,
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p2 : −Kf ′
1 − 2ABf ′

1f
′
0 + f

′′′
2 +Af0f ′′

1 +Af1f ′′
0 = 0, Df1θ

′
0 + 2Ef ′′

0f
′′
1 + θ′′2 +Df0θ

′
0 = 0,

f ′
2(0) = 0, f ′

2
(
η∞
)
= 0, f2(0) = 0, θ2(0) = 0, θ2

(
η∞
)
= 0,

p3 : −Kf ′
2 − 2ABf ′

0f
′
2 + f

′′′
3 +Af1f ′′

1 +Af2f ′′
0 = 0,

Df2θ
′
0 +Df1θ

′
1 + Ef

′′2
1 +Df0θ′2 + θ

′′
3 + 2Ef ′′

0f
′′
2 = 0,

f ′
3(0) = 0, f ′

3
(
η∞
)
= 0, f3(0) = 0, θ3(0) = 0, θ3

(
η∞
)
= 0.

(4.5)

The above sets of recursive ordinary differential equations along with their boundary
conditions are solved using the MAPLE software. Some samples of these functions obtained
by the MAPLE software are brought to the reader’s attention as follows:

f0
(
η
)
= η − 1

10
η2,

f1
(
η
)
= −7.333333333

100000
η5 +

1.833333333
1000

η4 − 6.875000000
100

η2,

f2
(
η
)
= −1.056349206

10000000
η8 +

4.225396825
1000000

η7 − 4.03333333
100000

η6

− 1.008333333
10000

η5 +
1.260416667

1000
η4 +

4.501488101
1000

η2,

f3
(
η
)
= − 1.600529100

10000000000
η11 +

8.802910053
1000000000

η10 − 1.514100529
10000000

η9

+
5.743898810
10000000

η8 +
5.809920634
1000000

η7 − 2.772916667
100000

η6

− 2.805927579
100000

η5 − 8.252728185
100000

η4 +
3.197932176

1000
η2,

f4
(
η
)
= − 2.398776866

10000000000000
η14 +

1.679143807
100000000000

η13 − 4.131499118
10000000000

η12

+
3.693701059
1000000000

η11 +
4.599520498
1000000000

η10 − 2.081888227
10000000

η9

+
4.091584733
10000000

η8 +
1.616748748
1000000

η7 +
1.815600201
1000000

η6

+
9.229301027
1000000

η5 − 5.862875656
100000

η4 − 2.794411931
1000

η2,

f5
(
η
)
= − 3.539668656

10000000000000000
η17 +

3.008718359
100000000000000

η16 − 9.621663665
10000000000000

η15

+
1.336240956
100000000000

η14 − 4.703056270
100000000000

η13 − 6.487744707
10000000000

η12
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+
5.258958021
1000000000

η11 +
1.973384501
1000000000

η10 − 5.793349681
100000000

η9

− 4.024040085
100000000

η8 − 5.317835354
10000000

η7 +
1.289832644
1000000

η6

− 1.022487452
1000000

η5 +
5.123088540

100000
η4 +

1.227506044
1000

η2,

θ0
(
η
)
= 1 − 1

5
η,

θ1
(
η
)
= − 197

250000
η4 +

197
12500

η3 − 611
250000

η2 − 3541
12500

η,

θ2
(
η
)
= − 243689

65625000000
η7 +

381234399997
3000000000000000

η6 − 20923179307
20000000000000

η5 − 2571375199
1200000000000

η4

+
4353487
187500000

η3 − 1568233333
200000000000

η2 +
18522049449
448000000000

η,

θ3
(
η
)
= − 1348247347

90000000000000000
η10 +

128997197
180000000000000

η9 − 600744859
56000000000000

η8

+
68494603

2100000000000
η7 +

1127538653
3000000000000

η6 − 3252643783
2000000000000

η5 − 2291723651
4000000000000

η4

− 546104693
300000000000

η3 − 926887907
250000000000

η2 +
11162966633099
201600000000000

η,

θ4
(
η
)
= − 4078298911

78000000000000000000
η13 +

1051026059
330000000000000000

η11 +
2184149803

4500000000000000
η10

+
309004361

180000000000000
η9 − 1846846597

56000000000000
η8 +

2550925297
42000000000000

η7

+
219441079

1200000000000
η6 − 582975921

20000000000000
η5 +

186565583
150000000000

η4

− 2901970381
600000000000

η3 +
239346723
80000000000

η2 − 698438049321211
9225216000000000

η,

θ5
(
η
)
= − 1944523579

12000000000000000000000
η16 +

833864223
70000000000000000000

η15

− 368935767
1137500000000000000

η14 +
184656149

52000000000000000
η13 − 2568874313

6600000000000000000
η12

− 3176798263
11000000000000000

η11 +
1479712693

900000000000000
η10 +

128033843
90000000000000

η9

− 536161247
28000000000000

η8 +
1526910869

140000000000000
η7 − 2319614257

15000000000000
η6

+
6768377991

20000000000000
η5 − 2079006273

4000000000000
η4 +

308834747
50000000000

η3

− 4211857587
2000000000000

η2 +
191966732445473917
3690086400000000000

η.

(4.6)
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Figure 2: Comparison of dimensionless velocity profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0.1, m = 0, Pr = 6.2, ϕ = 0.2,
and Mn = 0.2.

Table 1: Thermophysical properties of water and nanoparticles.

Physical properties Fluid (water) Nanoparticles Al2O3

ρ (kgm−3) 997.1 3970

Cp (J kg−1 K−1) 4179 765

k (Wm−1 K−1) 0.613 40

These functions, f and θ, are calculated for the case where, Ec = 0.1, m = 0, Pr = 6.2,
ϕ = 0.2, and Mn = 0.2. The physical properties of the fluid, water, and the nanoparticles,
aluminum oxide (Al2O3), are given in Table 1.

5. Numerical Method

The differential equations, (3.13) and (3.14), along with the boundary conditions, (3.15),
are split into five first-order differential equations by introducing new dependent variables.
The five split first-order differential equations are discretized using the first-order backward
finite difference scheme, the so-called Keller’s box method [20]. The discretized form of
the five split differential equations are linearized using the Newton’s method [24–26]. The
discretized and linearized equations form a system of block-tridiagonal equations which are
solved using the block-tridiagonal-elimination technique [26]. A step size of Δη = 0.005
is selected to satisfy the convergence criterion of 10−4 in all cases. In our simulation, η∞
is chosen to be equal to 5 in order to suffice for taking into account the full effect of
boundary layer growth. Then the differential equations, (3.13) and (3.14), along with the
boundary conditions, (3.15), are solved using the HPM. The recursive differential equations
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Figure 3: Comparison of dimensionless temperature profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0.1, m = 0, Pr = 6.2, ϕ = 0.2, and
Mn = 0.2.

with the relevant boundary conditions resulting from the HPM are solved using the MAPLE
software.

6. Results and Discussions

Table 2 shows the comparison between the results obtained from HPM and the results
obtained from the numerical method (NM) at Ec = 0.1,m = 0, Pr = 6.2, ϕ = 0.2, and Mn = 0.2.
The comparison of the results obtained from the HPM and the results obtained from the NM
shows excellent agreements at different values of the similarity parameter. Figure 2 shows
the comparison of dimensionless velocity profiles versus the normalized coordinates using
the Keller’s box numerical method with the results obtained by the HPM at Ec = 0.1, m = 0,
Pr = 6.2, ϕ = 0.2, and Mn = 0.2. The results obtained from the HPM are reported for three
different sums of terms, S = 4, 8, and 12, in the HPM series solution. It is obvious from
Figure 2 that as the number of sums of terms in the HPM series solution increases, the results
approach towards the profile obtained from the NM. The mean discrepancies between the
results of velocity obtained from the HPM for S = 12 and the results obtained from the
NM are at most 2%. Figure 3 shows the comparison of dimensionless temperature profiles
versus the normalized coordinates using the Keller’s box numerical method with the results
obtained by the HPM at Ec = 0.1,m = 0, Pr = 6.2, ϕ = 0.2, and Mn = 0.2. The results obtained
from the HPM are reported for three different sums of terms, S = 4, 8, and 12, in the HPM
series solution. As the number of sums of terms in the HPM series solution increases the
agreement between the results obtained from the HPM and the results obtained from the NM
is more pronounced. The mean discrepancies between the results of temperature obtained
from the HPM for S = 12 and the results obtained from the NM are less than 5%. Figure 4
shows the comparison of dimensionless velocity profiles versus the normalized coordinates
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Table 2: Comparison between HPM and NM at Ec = 0.1,m = 0, Pr = 6.2, ϕ = 0.2, and Mn = 0.2.

NM HPM

η f ′ θ f ′ θ

0 1 1 1 1

0.2 0.9110 0.9134 0.911545 0.914671

0.4 0.8272 0.8276 0.827806 0.830011

0.6 0.7481 0.7442 0.748988 0.747524

0.8 0.6744 0.6643 0.675187 0.668484

1 0.606 0.5889 0.606404 0.593911

1.2 0.5427 0.5185 0.542561 0.524578

1.4 0.4844 0.4536 0.483516 0.461022

1.6 0.4309 0.3944 0.429079 0.403573

1.8 0.3819 0.3408 0.379026 0.352385

2 0.3373 0.2928 0.333116 0.307456

2.2 0.2966 0.2499 0.291102 0.268638

2.4 0.2596 0.2121 0.252741 0.235634

2.6 0.2260 0.1786 0.217807 0.207977

2.8 0.1955 0.1493 0.186097 0.185003

3 0.1679 0.1237 0.157437 0.165822

3.2 0.1428 0.1015 0.131683 0.149317

3.4 0.1202 0.0822 0.108713 0.134198

3.6 0.0994 0.0656 0.088417 0.119118

3.8 0.0806 0.0512 0.070676 0.102891

4 0.0635 0.0388 0.055326 0.084773

4.2 0.0479 0.0281 0.042121 0.064787

4.4 0.0336 0.0130 0.030677 0.043964

4.6 0.0205 0.0112 0.020429 0.024391

4.8 0.0085 0.0044 0.010565 0.008861

5 0 0 0 0

using the Keller’s box numerical method with the results obtained by the HPM at Ec = 0.1,
m = 0, Pr = 6.2, ϕ = 0.2, and Mn = 0. The results obtained from the HPM are reported for
three different number of sums of terms, S = 4, 8, and 12, in the HPM series solution. As the
number of sums of terms in the HPM series solution increases the agreement between the
results of dimensionless velocity obtained from the HPM and the results obtained from the
NM is more pronounced. The results of velocity obtained from the HPM for S = 8 and 12
and the results obtained from the NM are almost the same. Figure 5 shows the comparison of
dimensionless temperature profiles versus the normalized coordinates using the Keller’s box
numerical method with the results obtained by the HPM at Ec = 0.1, m = 0, Pr = 6.2, ϕ = 0.2,
and Mn = 0. The results obtained from the HPM are reported for three different sums of
terms, S = 4, 8, and 12, in the HPM series solution. However, as the number of sums of terms
in the HPM series solution increases, the agreement between the results obtained from the
HPM and the results obtained from the NM is more apparent. For the temperature profiles,
the mean discrepancies between the results obtained from the HPM when S = 12 and the
results obtained from the NM are at most 8%, whereas the discrepancies between the results
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Figure 4: Comparison of dimensionless velocity profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0.1, m = 0, Pr = 6.2, ϕ = 0.2,
and Mn = 0.
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Figure 5: Comparison of dimensionless temperature profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0.1, m = 0, Pr = 6.2, ϕ = 0.2, and
Mn = 0.

obtained for velocity from HPM and NM are negligible at the same conditions. The reason
of this behavior is due to the complex nonlinearity that exists in the nature of the governing
equations whichmakes it so difficult to exactly realize the obsessive interaction existing in the
problem. Figure 6 shows the comparison between dimensionless velocity profiles versus the
normalized coordinates using the Keller’s box numerical method and the results obtained by
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Figure 6: Comparison of dimensionless velocity profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0, m = 0, Pr = 6.2, ϕ = 0.2,
and Mn = 0.2.

the HPM at Ec = 0,m = 0, Pr = 6.2, ϕ = 0.2, and Mn = 0.2. The results obtained from the HPM
are reported for three different sums of terms S = 4, 8, and 12 in the HPM series solution.
Figure 7 shows the comparison of dimensionless temperature profiles versus the normalized
coordinates using the Keller’s box numerical method with the results obtained by the HPM
at Ec = 0.1, m = 0, Pr = 6.2, ϕ = 0.2, and Mn = 0.2. The results obtained from the HPM
are reported for three different sums of terms, S = 4, 8, and 12, in the HPM series solution.
It is obvious that as the number of sums of terms in the HPM series solution increases, the
results approach toward the profile obtained from the NM. The mean discrepancies between
the results of velocity obtained from the HPM for S = 12 and the results obtained from the
NM are at most 5%. Figure 8 shows the comparison between dimensionless velocity profiles
versus the normalized coordinates using the Keller’s box numerical method with the results
obtained by the HPM at Ec = 0.1, m = 0.1, Pr = 6.2, ϕ = 0.2, and Mn = 0.2. The results
obtained from the HPM are reported for three different numbers of sums of terms, S = 4, 8,
and 12, in the HPM series solution. One can realize from Figure 8, as the number of sums of
terms in the HPM series solution increases, the results approach toward the profile obtained
from the NM. The mean discrepancies between the results of velocity obtained from the
HPM for S = 12 and the results obtained from the NM are at most 5%. Figure 9 shows
the comparison of dimensionless temperature profiles versus the normalized coordinates
using the Keller’s box numerical method with the results obtained by the HPM at Ec = 0.1,
m = 0.1, Pr = 6.2, ϕ = 0.2, and Mn = 0.2. The results obtained from the HPM are reported
for three different numbers of sums of terms, S = 4, 8, and 12, in the HPM series solution.
As the number of sums of terms in the HPM series solution increases, the results approach
towards the profile obtained from the NM. The mean discrepancies between the results of
velocity obtained from the HPM for S = 12 and the results obtained from the NM are at most
4%.
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Figure 7: Comparison of dimensionless temperature profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0, m = 0, Pr = 6.2, ϕ = 0.2, and
Mn = 0.2.
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Figure 8: Comparison of dimensionless velocity profiles versus the normalized coordinates using the
Keller’s box numerical method with the results obtained by HPM at Ec = 0.1, m = 0.1, Pr = 6.2, ϕ = 0.2,
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7. Conclusions

In this work, the nonlinear two-dimensional forced-convection boundary-layer magneto
hydrodynamic (MHD) incompressible flow of nanofluid over a horizontal stretching flat
plate with variable magnetic field including the viscous dissipation effect is solved using
the homotopy perturbation method (HPM). The results are justified and compared with
the results obtained from the numerical method (NM). Our results obtained from the HPM,
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Keller’s box numerical method with the results obtained by HPM at Ec = 0.1, m = 0.1, Pr = 6.2, ϕ = 0.2,
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when the number of sums of terms in the HPM series solution increases, showed amonotonic
convergence towards the results using the NM. The results obtained from the HPM show at
most less than 8% mean deviations when compared with the results obtained from the NM.
For the nonlinear MHD problem, this is encouraging because these results are only achieved
by including at most S = 12 number of sums of terms in the HPM series solution.

Nomenclature

B(x): Magnetic field
b: Constant parameter
Ec: Eckert number
(Cp)s: Thermal capacitance of solid
(Cp)f : Thermal capacitance of fluid
f : Dimensionless velocity variable
ks: Thermal conductivity of nanoparticles
kf : Thermal conductivity of fluid
m: Index of power law velocity
Mn: Magnetic parameter
Pr: Prandtl number
Re: Reynolds number
S: No. of terms in the HPM
T : Absolute temperature
T∞: Constant temperature of the fluid far away from the plate
Tw: Given temperature at the plate
u: Velocity in x-direction
v: Velocity in y-direction
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uw: Velocity of the plate
x: Horizontal coordinate
y: Vertical coordinate.

Greek Symbols

σ: Electrical conductivity
θ: Dimensionless temperature
ψ: Stream function
μf : Fluid viscosity
ϕ: Nanoparticles volume fraction
ρs: nanoparticles density
ρf : Fluid density.
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