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We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert
a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from ∇-
monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a
regularized gap function is a solution of the penalized equilibrium problem. As an application, we
discuss a special case that arises from the Tikhonov regularization method for pseudomonotone
equilibrium problems.

1. Introduction

Let C be a nonempty closed-convex subset in R
n, and let f, g : C ×C → R be two bifunctions

satisfying f(x, x) = g(x, x) = 0 for every x ∈ C. Such a bifunction is called an equilibrium
bifunction. We consider the following bilevel equilibrium problem (BEP for short):

find x ∈ Sg such that f
(
x, y

) ≥ 0, ∀y ∈ Sg, (1.1)

where Sg = {u ∈ C : g(u, y) ≥ 0, ∀y ∈ C}, that is, Sg is the solution set of the equilibrium
problems

find u ∈ C such that g
(
u, y

) ≥ 0, ∀y ∈ C. (1.2)

As usual, we call problem (1.1) the upper problem and (1.2) the lower one. BEPs are special
cases of mathematical programs with equilibrium constraints. Sources for such problems can
be found in [1–3]. Bilevel monotone variational inequality, which is a special case of problem



2 Journal of Applied Mathematics

(1.1), was considered in [4, 5]. Moudafi in [6] suggested the use of the proximal point method
for monotone BEPs. Recently, Ding in [7] used the auxiliary problem principle to BEPs. In
both papers, the bifunctions f and g are required to be monotone on C. It should be noticed
that under the pseudomonotonicity assumption on g the solution-set Sg of the lower problem
(1.2) is a closed-convex set whenever g(x, ·) is lower semicontinuous and convex on C for
each x. However, the main difficulty is that, even the constrained set Sg is convex, it is
not given explicitly as in a standard mathematical programming problem, and therefore the
available methods (see, e.g., [8–14] and the references therein) cannot be applied directly.

In this paper, first, we propose a penalty function method for problem (1.1). Next, we
use a regularized gap function for solving the penalized problems. Under certain pseudo-
∇-monotonicity properties of the regularized bifunction, we show that any stationary point
of the gap function on the convex set C is a solution to the penalized subproblem. Finally,
we apply the proposed method to the Tikhonov regularization method for pseudomonotone
equilibrium problems.

2. A Penalty Function Method

Penalty function method is a fundamental tool widely used in optimization to convert a
constrained problem into unconstrained (or easier constrained) ones. This method was used
to monotone variational inequalities in [5] and equilibrium problems in [15]. In this section,
we use the penalty function method in the bilevel problem (1.1). First, let us recall some
well-known concepts on monotonicity and continuity (see, e.g., [16]) that will be used in the
sequel.

Definition 2.1. The bifunction φ : C × C → R is said to be as follows:

(a) strongly monotone on C with modulus β > 0 if

φ
(
x, y

)
+ φ

(
y, x

) ≤ −β∥∥x − y
∥∥2
, ∀x, y ∈ C, (2.1)

(b) monotone on C if

φ
(
x, y

)
+ φ

(
y, x

) ≤ 0, ∀x, y ∈ C, (2.2)

(c) pseudomonotone on C if

∀x, y ∈ C : φ
(
x, y

) ≥ 0 =⇒ φ
(
y, x

) ≤ 0, (2.3)

(d) upper semicontinuous at x with respect to the first argument on C if

lim
z→x

φ
(
z, y

) ≤ φ
(
x, y

)
, ∀y ∈ C, (2.4)
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(e) lower semicontinuous at y with respect to the second argument on C if

lim
w→y

φ(x,w) ≥ φ
(
x, y

)
, ∀x ∈ C. (2.5)

Clearly, (a)⇒(b)⇒(c).

Definition 2.2 (see [17]). The bifunction φ : C×C → R is said to be coercive on C if there exists
a compact subset B ⊂ R

n and a vector y0 ∈ B ∩ C such that

φ
(
x, y0

)
< 0, ∀x ∈ C \ B. (2.6)

Theorem 2.3 (see [18, Proposition 2.1.14]). Let φ : C × C → R be a equilibrium bifunction such
that φ(·, y) is upper semicontinuous on C for each y ∈ C and φ(x, ·) is lower semicontnous, convex
on C for each x ∈ C. Suppose that C is compact or φ is coercive on C, then there exists at least one
x∗ ∈ C such that φ(x∗, y) ≥ 0 for every y ∈ C.

The following proposition tells us about a relationship between the coercivity and the
strong monotonicity.

Proposition 2.4. Suppose that the equilibrium bifunction φ is strongly monotone on C, and φ(x, ·) is
convex, lower semicontinuous with respect to the second argument for all x ∈ C, then for each y ∈ C,
there exists a compact set B such that y ∈ B and φ(x, y) < 0 for all x ∈ C \ B.

Proof. Suppose by contradiction that the conclusion does not hold, then there exists an
element y0 ∈ C such that for every compact set B there is an element xB ∈ C \ B such that
φ(xB, y0) ≥ 0. Take B := Br as the closed ball centered at y0 with radius r > 1. Then there
exists xr ∈ C \ Br such that φ(xr, y0) ≥ 0. Let x be the intersection of the line segment [y0, xr]
with the unit sphere S(y0; 1) centered at y0 and radius 1. Hence, xr = y0 + t(r)(x − y0), where
t(r) > r. By the strong monotonicity of φ, we have

φ
(
y0, xr

) ≤ −φ(xr, y0
) − β

∥∥xr − y0
∥∥2 ≤ −φ(xr, y0

) − βt(r)2
∥∥x − y0

∥∥2
. (2.7)

Since φ(y0, ·) is convex on C, it follows that

φ
(
y0, x

) ≤ 1
t(r)

φ
(
y0, xr

)
+
t(r) − 1
t(r)

φ
(
y0, y0

)
, (2.8)

which implies that φ(y0, x) ≤ −βt(r)‖x − y0‖2 ≤ −βr. Thus,

φ
(
y0, x

) −→ −∞ as r −→ ∞. (2.9)

However, since φ(y0, ·) is lower semicontinuous on C, by the well-known Weierstrass
Theorem, φ(y0, ·) attains its minimum on the compact set S(y0; 1) ∩ C. This fact contradicts
(2.9).
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From this proposition, we can derive the following corollaries.

Corollary 2.5 (see [18]). If the bifunction φ is strongly monotone on C, and φ(x, ·) is convex, lower
semicontinuous with respect to the second argument for all x ∈ C, then φ is coercive on C.

Corollary 2.6. Suppose that the bifunction f is strongly monotone on C, and f(x, ·) is convex, lower
semicontinuous with respect to the second argument for all x ∈ C. If the bifunction g is coercive on
C then, for every ε > 0, the bifunction g + εf is uniformly coercive on C, for example, there exists a
point y0 ∈ C and a compact set B both independent of ε such that

g
(
x, y0

)
+ εf

(
x, y0

)
< 0, ∀x ∈ C \ B. (2.10)

Proof. From the coercivity of g, we conclude that there exists a compact B1 and y0 ∈ C
such that g(x, y0) < 0 for all x ∈ C \ B1. Since f is strongly monotone, convex, lower
semicontinuous on C, by choosing y = y0, from Proposition 2.4, there exists a compact
B2 such that f(x, y0) < 0 for all x ∈ C \ B2. Set B = B1 ∪ B2, then B is compact and
g(x, y0) + εf(x, y0) < 0 for all x ∈ C \ B.

Remark 2.7. It is worth to note that if both f , g are coercive and pseudomonotone on C, then
the function f + g is not necessary coercive or pseudomonotone on C.

To see this, let us consider the following bifunctions.

Example 2.8. Let f(x, y) := (x1y2 − x2y1)ex1 , g(x, y) := (x2y1 − x1y2)ex2 , and C = {(x1, x2) :
x1 ≥ −1, (1/10)(x1 − 9) ≤ x2 ≤ 10x1 + 9} then we have

(i) f(x, y), g(x, y) are pseudomonotone and coercive on C,

(ii) for all ε > 0 the bifunctions fε(x, y) = g(x, y)+εf(x, y) are neither pseudomonotone
nor coercive on C.

Indeed,

(i) if f(x, y) ≤ 0, then f(y, x) ≥ 0, thus f is pseudomonotone on C. By choosing y0 =
(y0

1 , 0), (0 < y0
1 ≤ 1) and B = {(x1, x2) : x2

1 + x2
2 ≤ r} (r > 1), we have f(x, y0) =

−x2y
0
1e

x1 < 0 for all y ∈ C \ B, which means that f is coercive on C. Similarly, we
can see that g is coercive on C,

(ii) by definition of f , we have that

fε
(
x, y

)
=
(
x2y1 − x1y2

)
(ex2 − εex1), ∀ε > 0. (2.11)

Take x(t) = (t, 2t), for all y(t) = (2t, t), then fε(x(t), y(t)) = 3t2(e2t − εet) > 0, whereas
fε(y(t), x(t)) = −3t2(et−εe2t) > 0 for t is sufficiently large. So fε is not pseudomonotone on C.

Now, we show that the bifunction fε(x, y) = (x2y1 − x1y2)(ex2 − εex1) is not coercive
on C. Suppose, by contradiction, that there exist a compact set B and y0 = (y0

1 , y
0
2) ∈ B ∩ C

such that fε(x, y0) < 0 for all x ∈ C \ B, then, by coercivity of fε, it follows, y0
1 , y

0
2 > 0 and

y0
1 /=y2

0. With x(t) = (t, kt), (t > 0), we have fε(x(t), y0) = t(ky0
1 − y0

2)(e
kt − εet). However

(i) if y0
1 > y0

2, then from 1 < k < 10 it follows that x(t) ∈ C and fε(x(t), y0) > 0 for t is
sufficiently large, which contradicts with coercivity,
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(ii) if y0
1 < y0

2, then, by choosing 1/10 < k < 1, we obtain x(t) ∈ C and fε(x(t), y0) > 0
for t is large enough. But this cannot happen because of the coercivity of fε.

Now, for each fixed ε > 0, we consider the penalized equilibrium problem PEP(C, fε)
defined as

find xε ∈ C such that fε
(
xε, y

)
:= g

(
xε, y

)
+ εf

(
xε, y

) ≥ 0, ∀y ∈ C. (2.12)

By SOL(C, fε), we denote the solution set of PEP(C, fε).

Theorem 2.9. Suppose that the equilibrium bifunctions f, g are pseudomonotone, upper semicontin-
uous with respect to the first argument and lower semicontinuous, convex with respect to the second
argument on C, then any cluster point of the sequence {xk} with xk ∈ SOL(C, fεk), εk → 0 is a
solution to the original bilevel problem (1.1). In addition, if f is strongly monotone and g is coercive
on C, then for each εk > 0 the penalized problem PEP(C, fεk) is solvable, and any sequence {xk} with
xk ∈ SOL(C, fεk) converges to the unique solution of the bilevel problem (1.1) as k → ∞.

Proof. Let {xk} be any sequence with xk ∈ SOL(C, fεk), and let x be any of its cluster points.
Without lost of generality, we may assume that xk → x as k → ∞. Since xk ∈ SOL(C, fεk),
one has

g
(
xk, y

)
+ εkf

(
xk, y

) ≥ 0, ∀y ∈ C. (2.13)

For any z ∈ Sg , we have g(z, y) ≥ 0, for all y ∈ C and in particular, g(z, xk) ≥ 0. Then, by the
pseudomonotonicity of g, we have g(xk, z) ≤ 0. Replacing y by z in (2.13), we obtain

g(xk, z) + εkf(xk, z) ≥ 0, (2.14)

which implies that

εkf(xk, z) ≥ −g(xk, z) ≥ 0 =⇒ f(xk, z) ≥ 0. (2.15)

Let k → ∞, by upper semicontinuity of f , we have f(x, z) ≥ 0 for all z ∈ Sg .
To complete the proof, we need only to show that x ∈ Sg . Indeed, for any y ∈ C, we

have

g
(
xk, y

)
+ εkf

(
xk, y

) ≥ 0, ∀y ∈ C. (2.16)

Again, by upper semicontinuity of f and g, we obtain in the limit, as εk → 0, that g(x, y) ≥
0 for all y ∈ C. Hence, x ∈ Sg .

Now suppose, in addition, that f is strongly monotone on C. By Corollary 2.6, fεk
is uniformly coercive on C. Thus, problem PEP(C, fεk) is solvable and, for all εk > 0, the
solution sets of these problems are contained in a compact set B. So any infinite sequence {xk}
of the solutions has a cluster point, say, x. By the first part, x is a solution of (1.1). Note that,
from the assumption on g, the solution set Sg of the lower equilibrium (EP

(
C, g

)
) is a closed,

convex, compact set. Since f is lower semicontinuous and convex with respect to the second
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argument and is strongly monotone on C, the upper equilibrium problem EP(Sg, f) has a
unique solution. Using again the first part of the theorem, we can see that xk → x as k →
∞

Remark 2.10. In a special case considered in [6], where both f and g are monotone, the
penalized problem (PEP) is monotone too. In this case, (PEP) can be solved by some existing
methods (see, e.g., [6, 11–14, 19]) and the references therein. However, when one of these two
bifunctions is pseudomonotone, the penalized problem (PEP), in general, does not inherit
any monotonicity property from f and g. In this case, problem (PEP) cannot be solved by the
above-mentioned existing methods.

3. Gap Function and Descent Direction

A well-known tool for solving equilibrium problem is the gap function. The regularized gap
function has been introduced by Taji and Fukushima in [20] for variational inequalities, and
extended byMastroeni in [11] to equilibrium problems. In this section, we use the regularized
gap function for the penalized equilibrium problem (PEP). As we have mentioned above,
this problem, even when g is pseudomonotone and f is strongly monotone, is still difficult to
solve.

Throughout this section, we suppose that both f and g are lower semicontinuous,
convex onCwith respect to the second argument. First, we recall (see, e.g., [11]) the definition
of a gap function for the equilibrium problem.

Definition 3.1. A function ϕ : C → R ∪ {+∞} is said to be a gap function for (PEP) if

(i) ϕ(x) ≥ 0, for all x ∈ C,

(ii) ϕ(x) = 0 if and only if x is a solution for (PEP).

A gap function for (PEP) is ϕ(x) = −miny∈Cfε(x, y). This gap function may not be
finite and, in general, is not differentiable. To obtain a finite, differentiable gap function,
we use the regularized gap function introduced in [20] and recently used by Mastroeni in
[11] to equilibrium problems. From Proposition 2.2 and Theorem 2.1 in [11], the following
proposition is immediate.

Proposition 3.2. Suppose that l : C × C → R is a nonnegative differentiable, strongly convex
bifunction on C with respect to the second argument and satisfies

(a) l(x, x) = 0 for all x ∈ C,

(b) ∇yl(x, x) = 0 for all x ∈ C.

Then the function

ϕε(x) = −min
y∈C

[
g
(
x, y

)
+ ε

[
f
(
x, y

)
+ l

(
x, y

)]]
(3.1)

is a finite gap function for (PEP). In addition, if f and g are differentiable with respect to the first
argument and ∇xf(x, y),∇xg(x, y) are continuous on C, then ϕε(x) is continuously differentiable
on C and

∇ϕε(x) = −∇xg
(
x, yε(x)

) − ε∇x

[
f
(
x, yε(x)

)
+ l

(
x, yε(x)

)]
= −∇xgε

(
x, yε(x)

)
, (3.2)
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where

gε
(
x, y

)
= g

(
x, y

)
+ ε

[
f
(
x, y

)
+ l

(
x, y

)]
,

yε(x) = arg min
y∈C

{
gε
(
x, y

)}
.

(3.3)

Note that the function l(x, y) := (1/2)〈M(y − x), y − x〉, where M is a symmetric
positive definite matrix of order n that satisfies the assumptions on l.

We need some definitions on ∇-monotonicity.

Definition 3.3. A differentiable bifunction h : C × C → R is called as follows:

(a) strongly ∇-monotone on C if there exists a constant τ > 0 such that,

〈∇xh
(
x, y

)
+∇yh

(
x, y

)
, y − x

〉 ≥ τ
∥
∥y − x

∥
∥2

, ∀x, y ∈ C, (3.4)

(b) strictly ∇-monotone on C if

〈∇xh
(
x, y

)
+∇yh

(
x, y

)
, y − x

〉
> 0, ∀x, y ∈ C, x /=y, (3.5)

(c) ∇-monotone on C if

〈∇xh
(
x, y

)
+∇yh

(
x, y

)
, y − x〉 ≥ 0, ∀x, y ∈ C, (3.6)

(d) strictly pseudo-∇-monotone on C if

〈∇xh
(
x, y

)
, y − x

〉 ≤ 0 =⇒ 〈∇yh
(
x, y

)
, y − x

〉
> 0, ∀x, y ∈ C, x /=y, (3.7)

(e) pseudo-∇-monotone on C if

〈∇xh
(
x, y

)
, y − x

〉 ≤ 0 =⇒ 〈∇yh
(
x, y

)
, y − x

〉 ≥ 0, ∀x, y ∈ C. (3.8)

Remark 3.4. The definitions (a), (b), and (c) can be found, for example, in [8, 11]. The
definitions (d) and (e), to our best knowledge, are not used before. From the definitions,
we have

(a) =⇒ (b) =⇒ (c) =⇒ (e), (a) =⇒ (b) =⇒ (d) =⇒ (e). (3.9)

However, (c) may not imply (d) and vice versa as shown by the following simple examples.

Example 3.5. Consider the bifunction h(x, y) = ex
2
(y2 − x2) defined on C ×C with C = R. This

bifunction is not ∇-monotone on C, because

〈∇xh
(
x, y

)
+∇yh

(
x, y

)
, y − x

〉
= 2ex

2(
y − x

)2(
x2 + xy + 1

)
(3.10)
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is negative for x = −1, y = 3. However, h(x, y) is strictly pseudo- ∇-monotone. Indeed, we
have

〈∇xh
(
x, y

)
, y − x

〉
= 2xex

2
(
y2 − x2 − 1

)(
y − x

) ≤ 0 ⇐⇒ x
(
y2 − x2 − 1

)(
y − x

) ≤ 0,

〈∇yh
(
x, y

)
, y − x

〉
= 2yex

2(
y − x

)
> 0 ⇐⇒ y

(
y − x

)
> 0.

(3.11)

It is not difficult to verify that

x
(
y2 − x2 − 1

)(
y − x

) ≤ 0 =⇒ y
(
y − x

)
> 0, as x /=y. (3.12)

Hence this function is strictly pseudo- ∇-monotone but is not ∇-monotone.
Vice versa, considering the bifunction h(x, y) = (y − x)TM(y − x) defined on R

n × R
n,

where M is a matrix of order n × n, we have the following:

(i) h is ∇-monotone, because

〈∇xh
(
x, y

)
+∇yh

(
x, y

)
, y − x

〉

=
〈
−(y − x

)T(
M +MT

)
+
(
y − x

)T(
M +MT

)
, y − x

〉
= 0, ∀x, y.

(3.13)

Clearly, h is not strictly-∇-monotone,

(ii) h is strictly pseudo ∇-monotone if and only if

〈∇xh
(
x, y

)
, y − x

〉
= −

〈(
y − x

)T(
M +MT

)
, y − x

〉
≤ 0 (3.14)

implies

〈∇yh
(
x, y

)
, y − x

〉
=
(
y − x

)T(
M +MT

)
, y − x〉 > 0, ∀x, y, x /=y. (3.15)

The latter inequality equivalent toM +MT is a positive definite matrix of order n × n.

Remark 3.6. As shown in [8] when h(x, y) = 〈T(x), y − x〉 with T a differentiable monotone
operator on C, h is monotone on C if and only if T is monotone on C, and in this case,
monotonicity of h on C coincides with ∇-monotonicity of h on C.

The following example shows that pseudomonotonicity may not imply pseudo-∇-
monotonicity.

Example 3.7. Let h(x, y) = −ax(y − x), defined on R+ × R+, (a > 0). It is easy to see that

h
(
x, y

) ≥ 0 =⇒ h
(
y, x

) ≤ 0, ∀x, y ≥ 0. (3.16)

Thus, h is pseudomonotone on R+.



Journal of Applied Mathematics 9

We have

〈∇xh
(
x, y

)
, y − x

〉
= −a(y − x

)(
y − 2x

)
< 0, ∀y > 2x > 0. (3.17)

But

〈∇yh
(
x, y

)
, y − x

〉
= −ax(y − x

)
< 0, ∀y > 2x > 0. (3.18)

So h is not pseudo-∇-monotone on R+.

From the definition of the gap function ϕε, a global minimal point of this function over
C is a solution to problem (PEP). Since ϕε is not convex, its global minimum is extremely
difficult to compute. In [8], the authors have shown that under the strict ∇-monotonicity a
stationary point is also a global minimum of gap function. By a counterexample, the authors
in [8] also pointed out that the strict ∇-monotonicity assumption cannot be relaxed to ∇-
monotonicity. The following theorem shows that the stationary property is still guaranteed
under the strict pseudo-∇-monotonicity.

Theorem 3.8. Suppose that gε is strictly pseudo- ∇-monotone on C. If x is a stationary point of ϕε

over C, that is,

〈∇ϕε(x), y − x
〉 ≥ 0, ∀y ∈ C. (3.19)

then x solves (PEP).

Proof. Suppose that x does not solve (PEP), then yε(x)/=x.
Since x is a stationary point of ϕε on C, from the definition of ϕε, we have

〈∇ϕε(x), y − x
〉
= −〈∇xgε

(
x, yε(x)

)
, yε(x) − x

〉 ≥ 0. (3.20)

By strict pseudo-∇-monotonicity of gε, it follows that

〈∇ygε
(
x, yε(x)

)
, yε(x) − x

〉
> 0. (3.21)

On the other hand, since yε(x) minimizes gε(x, ·) over C, we have

〈∇ygε
(
x, yε(x)

)
, yε(x) − x

〉 ≤ 0, (3.22)

which is in contradiction with (3.21).

To compute a stationary point of a differentiable function over a closed-convex set, we
can use the existing descent direction algorithms in mathematical programming (see, e.g.,
[8, 21]). The next proposition shows that if y(x) is a solution of the problem miny∈Cgε(x, y),
then y(x)−x is a descent direction onC of ϕε at x. Namely, we have the following proposition.
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Proposition 3.9. Suppose that gε is strictly pseudo-∇-monotone on C and x is not a solution to
Problem (PEP), then

〈∇ϕε(x), yε(x) − x
〉
< 0. (3.23)

Proof. Let dε(x) = yε(x) − x. Since x is not a solution to (PEP), then dε(x)/= 0. Suppose that,
by contradiction, dε(x) is not a descent direction on C of ϕε at x, then

〈∇ϕε(x), yε(x) − x
〉 ≥ 0 ⇐⇒ −〈∇xgε

(
x, yε(x)

)
, yε(x) − x

〉 ≥ 0, (3.24)

which, by strict pseudo-∇-monotonicity of gε, implies

〈∇ygε
(
x, yε(x)

)
, yε(x) − x

〉
> 0. (3.25)

On the other hand, since yε(x) minimizes gε(x, ·) over C, by the well-known optimality
condition, we have

〈∇ygε
(
x, yε(x)

)
, yε(x) − x

〉 ≤ 0, (3.26)

which contradicts (3.25).

Proposition 3.10. Suppose that g(x, ·) is strictly convex on C for every x ∈ C and g is strictly
pseudo-∇-monotone on C. If x ∈ C is not a solution of (PEP), then there exists ε > 0 such that
yε(x) − x is a descent direction of ϕε on C at x for all 0 < ε ≤ ε.

Proof. By contradiction, suppose that the statement of the proposition does not hold, then
there exist εk ↘ 0 and x ∈ C such that

〈∇ϕεk(x), yεk(x) − x
〉 ≥ 0 ⇐⇒ −〈∇xgεk

(
x, yεk(x)

)
, yεk(x) − x

〉 ≥ 0. (3.27)

Since gε(x, ·) is strictly convex differentiable on C, by Theorem 2.1 in [9], the function ε �→
yε(x) is continuous with respect to ε, thus yεk(x) tends to y0(x) as εk → 0, where y0(x) =
arg miny∈Cg(x, y). Since gεk(x, y) = g(x, y) + εkf(x, y) is continuously differentiable, letting
εk → 0 in (3.27), we obtain

−〈∇xg
(
x, y0(x)

)
, y0(x) − x

〉 ≥ 0. (3.28)

By strict pseudo-∇-monotonicity of g, it follows that

〈∇yg
(
x, y0(x)

)
, y0(x) − x

〉
> 0. (3.29)

On the other hand, since yεk(x)minimizes gεk(x, ·) over C, we have

〈∇ygεk
(
x, yεk(x)

)
, yεk(x) − x

〉 ≤ 0. (3.30)
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Taking the limit, we obtain

〈∇yg
(
x, y0(x)

)
, y0(x) − x

〉 ≤ 0, (3.31)

which contradicts (3.29).

To illustrate Theorem 3.8, let us consider the following examples.

Example 3.11. Consider the bifunctions g(x, y) = ex
2
(y2 − x2) and f(x, y) = 10x

2
(y2 − x2)

defined on R × R. It is not hard to verify that,

(i) g(x, y), f(x, y) are monotone, strictly pseudo-∇-monotone on R,

(ii) for all ε > 0 the bifunction g(x, y) + εf(x, y) is monotone and strictly pseudo-∇-
monotone on R and satisfying all of the assumptions of Theorem 3.8.

Example 3.12. Let f(x, y) = −x2 −xy + 2y2 and g(x, y) = −3x2y +xy2 + 2y3 defined on R+ ×R+

it is easy to see that,

(i) g, f are pseudomonotone, strictly ∇-monotone on R+,

(ii) for all ε > 0 the bifunction g(x, y) + εf(x, y) is pseudomonotone and strictly ∇-
monotosne on R+ and satisfying all of the assumptions of Theorem 3.8.

4. Application to the Tikhonov Regularization Method

The Tikhonov method [22] is commonly used for handling ill-posed problems. Recently, in
[23] the Tikhonov method has been extended to the pseudomonotone equilibrium problem

Find x∗ ∈ C such that g
(
x∗, y

) ≥ 0, ∀y ∈ C, (EP
(
C, g

)
)

where, as before, C is a closed-convex set in R
n and g : C → R is a pseudomonotone

bifunction satisfying g(x, x) = 0 for every x ∈ C.
In the Tikhonov regularization method considered in [23], problem (EP

(
C, g

)
) is

regularized by the problems

find x∗ ∈ C such that gε
(
x∗, y

)
:= g

(
x∗, y

)
+ εf

(
x∗, y

) ≥ 0, ∀y ∈ C, (EP
(
C, gε

)
)

where f is an equilibrium bifunction on C and ε > 0 and play the role of the regularization
bifunction and regularization parameter, respectively.

In [23], the following theorem has been proved.

Theorem 4.1. Suppose that f(·, y), g(·, y) are upper semicontinuous and f(x, ·), g(x, ·) are lower
semicontinuous convex on C for each x, y ∈ C and that g is pseudomonotone on C. Suppose further
that f is strongly monotone on C satisfying the condition

∃δ > 0:
∣∣f
(
x, y

)∣∣ ≤ δ‖x − xg‖∥∥y − x
∥∥, ∀x, y ∈ C, (4.1)

where xg ∈ C (plays the role of a guess solution) is given.
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Then the following three statements are equivalent:

(a) the solution set of (EP
(
C, gε

)
) is nonempty for each ε > 0 and limε→ 0+x(ε) exists, where

x(ε) is arbitrarily chosen in the solution set of (EP
(
C, gε

)
),

(b) the solution set of (EP
(
C, gε

)
) is nonempty for each ε > 0 and limε→ 0+ sup ‖x(ε)‖ < ∞,

where x(ε) is arbitrarily chosen in the solution set of (EP
(
C, gε

)
),

(c) the solution set of (EP
(
C, g

)
) is nonempty.

Moreover, if any one of these statements holds, then limε→ 0+x(ε) is equal to the unique solution
of the strongly monotone equilibrium problem EP(Sg, f), where Sg denotes the solution set of the
original problem (EP

(
C, g

)
).

Note that, when g is monotone on C, the regularized subproblems are strongly
monotone and therefore, they can be solved by some existing methods. When g is
pseudomonotone, the subproblems, in general, are no longer strongly monotone, even not
pseudomonotone. So solving them becomes a difficult task. However, the problem of finding
the limit point of the sequences of iterates leads to the unique solution of problem EP(Sg, f).

In order to apply the penalty and gap function methods described in the preceding
sections, let us take, for instant,

f
(
x, y

)
=
〈
x − xg, y − x

〉
. (4.2)

Clearly, f is both strongly monotone and strongly ∇-monotone with the same modulus 1.
Moreover, f satisfies the condition (4.1). Therefore, the problem of finding the limit point
in the above Tikhonov regularization method can be formulated as the bilevel equilibrium
problem

find x ∈ Sg such that f
(
x∗, y

) ≥ 0, ∀y ∈ Sg, (4.3)

which is of the form (1.1). Now, for each fixed εk > 0, we consider the penalized equilibrium
problem PEP(C, fεk) defined as

find xk ∈ C such that fεk
(
xk, y

)
:= g

(
xk, y

)
+ εkf

(
xk, y

) ≥ 0, ∀y ∈ C. (4.4)

As before, by SOL(C, fεk), we denote the solution set of PEP(C, fεk).
Applying Theorems 2.9 and 3.8, we obtain the following result.

Theorem 4.2. Suppose that the bifunction g satisfies the following conditions:

(i) g(x, ·) is convex, lower semicontinuous for all x ∈ C,

(ii) g is pseudomonotone and coercive on C.
Then for any εk > 0, the penalized problem PEP(C, fεk) is solvable, and any sequence {xk}
with xk ∈ SOL(C, fεk) for all k converges to the unique solution of the problem (4.3) as
k → ∞.
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(iii) In addition, if g(x, y) + εkf(x, y) is strictly pseudo- ∇-monotone on C (in particular,
g(x, y) is ∇-monotone), and xk is any stationary point of the mathematical program
minx∈Cϕk(x) with

ϕk(x) := min
y∈C

{
g
(
x, y

)
+ εkf

(
x, y

)}
, (4.5)

then {xk} converges to the unique solution of the problem (4.3) as k → ∞.

5. Conclusion

We have considered a class of bilevel pseudomonotone equilibrium problems. The main
difficulty of this problem is that its feasible domain is not given explicitly as in a standard
mathematical programming problem. We have proposed a penalty function method to
convert the bilevel problem into one-level ones. Then we have applied the regularized gap
function method to solve the penalized equilibrium subproblems. We have generalized the
pseudo-∇-monotonicity concept from ∇-monotonicity. Under the pseudo-∇-monotonicity
property, we have proved that any stationary point of the gap function is a solution to the
original bilevel problem. As an application, we have shown how to apply the proposed
method to the Tikhonov regularization method for pseudomonotone equilibrium problems.
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