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In 2000, Biehl et al. proposed a fault-based attack on elliptic curve cryptography. In this paper, we
refined the fault attack method. An elliptic curve E is defined over prime field Fp with base point
P ∈ E(Fp). Applying the fault attack on these curves, the discrete logarithm on the curve can be
computed in subexponential time of Lp(1/2, 1 + o(1)). The runtime bound relies on heuristics con-
jecture about smooth numbers similar to the ones used by Lenstra, 1987.

1. Introduction

In 1996, a fault analysis attack was introduced by Boneh et al. [1]. Biehl et al. [2] proposed the
first fault-based attack on elliptic curve cryptography [3, 4]. Their basic idea is to change the
input points, elliptic curve parameters, or the base field in order to perform the operations
in a weaker group where solving the elliptic curve discrete logarithm problem (ECDLP) is
feasible. A basic assumption for this attack is that one of the two parameters of the govern-
ing elliptic curve equation is not involved for point operations formulas. In this way, the com-
putation could be performed in a cryptographically less secure elliptic curve.

In [2], it is claimed that the attacker can get the secret multiplier kwith subexponential
time, but the authors did not give the proof or even an outline of the proof. I find that this is
not a trivial result. Since the distribution of the cardinality of elliptic curves over finite field
Fq is not uniform in the interval [q + 1 − 2√q, q + 1 + 2√q].

In practice, in order to get a better function, the cryptosystem may be based on some
special family of elliptic curve. Here, we assume that the fault attack is restricted on the fol-
lowing elliptic curve defined over prime field Fp:

y2 = x3 +Ax2 + B, (1.1)
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which is denoted by EA,B. In this paper, we prove that the attacker can get the secret multiplier
k with subexponential time when the fault attack is restricted to the elliptic curve family of
EA,B. It is noted that we can get a simpler proof when the fault attack is based on the general
elliptic curves.

In Section 2, the fault attack method is described in detail and some improvements of
the fault attack are introduced. Firstly, we can control the order of the fault point in EA, ̂B by a
suitable choice of the random key d. On the other hand, some points in EA,B can be chosen as
fault point to increase the probability of success of the fault attack.

Our analysis depends on the number of �EA, ̂B(Fp) with ̂B ∈ Fp. In Section 3, we re-
search the isomorphism classes of the elliptic curves expressed by form (1.1). By Deuring [5],
we find that the density of �EA, ̂B(Fp)with ̂B ∈ Fp in [p + 1 − 2√p, p + 1 + 2√p] is large enough
to ensure our method success.

The analysis of our method in this paper shows that the performance of the algorithm
is largely determined by the density of numbers built up from small primes in the neighbor-
hood of p + 1 and the number of isomorphism classes of the elliptic curves which can be
expressed by form (1.1). If a reasonable conjecture concerning the density of smooth integers
is assumed, then the following can be proved.

Suppose that 0 ≤ α ≤ 1 and c is a positive constant; let Lx(α, c) denote

exp
(

c
(

logx
)α(log logx

)1−α)
. (1.2)

There is a function K :R>0 → R>0 with K(x) = Lx(1/2, 1 + o(1)) for x → ∞. Then, with a
suitable choice of parameters, ECDLP in the family of elliptic curves (1.1) can be determined
by the attacker with probability at least 1 − e−h within time K(p)M(p), where M(p) =
O((log p)11) and h is the number of times Algorithm 2 is applied.

The paper is organized as follows. In Section 2, we describe the scalar multiplication
algorithm and elliptic curve discrete logarithm problem and refine the fault attack method.
In Section 3, we discuss the isomorphism class of elliptic curves expressed by form (1.1). In
Section 4, the efficiency of the attack algorithm is considered.

2. Preliminaries

2.1. Scalar Multiplication Algorithm

Let EA,B be an elliptic curve of form (1.1) defined over finite field Fp with p /= 2, 3 and
Pi =: (xi, yi) ∈ EA,B(Fp), i = 1, 2, 3, such that P1 +P2 = P3. The algorithm below is a description
of the elliptic curve scalar multiplication (ECSM) on curves defined in its most common
form:

x3 = λ2 −A − x1 − x2,
y3 = −y1 − (x3 − x1)λ

(2.1)
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with

λ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

3x2
1 + 2Ax1

2y1
if x1 = x2, and y1 = y2,

y1 − y2

x1 − x2
, otherwise.

(2.2)

The fault attack is based on the fact that the curve coefficient B is not used in any of the
addition formulas given above.

2.2. Elliptic Curve Discrete Logarithm Problem

Let E be an elliptic curve and P = (xP , yP ) ∈ E. Given Q = (xQ, yQ) ∈ 〈P〉, the discrete loga-
rithm problem asks for the integer k such that Q = kP .

If the order of the base point P does not contain at least a large prime factor, then it is
possible to use an extension for ECC of the Silver-Pohlig-Hellman algorithm [6] to solve the
ECDLP as presented in Algorithm 1. Let n be the order of the base point P with a prime factor
n =

∏j−1
i=0p

ei
i , where pi < pi+1, i = 0, . . . , j − 2.

Without losing generality, we assume that the order of the base point P is a prime num-
ber which is large enough for practical cryptosystems.

2.3. Fault Attack

In this section, we consider the following EC ElGamal cryptosystem. Let EA,B be an elliptic
curve of form (1.1) defined over a prime field Fp. Given a point P = (xP , yP ) ∈ EA(Fp), we
assume that Q = (xQ, yQ) = kP is the public key and 1 ≤ k < ord(P) the secret key of some
user, where ord(P) denotes the order of the base point P .

Encryption: Input message m, choose 1 < d < ord(P) randomly, and return
(dP, xdQ

⊕

m).

Decryption: Input (H,m′), compute kH, and return (m′
⊕

xkH).

The fault attack is that the attacker randomly chooses an elliptic curve EA, ̂B defined
over prime field Fp, finds a point ̂P = (x

̂P , y ̂P ) ∈ EA, ̂B(Fp), and inputs (d ̂P,m′) to the decryp-
tion oracle, then the attacker can get the x-coordinate of kd ̂P . Having xkd ̂P , we compute ykd ̂P

by

ykd ̂P =
√

x3
kd ̂P

+Ax2
kd ̂P

+ ̂B. (2.3)

In practice, we can compute EA, ̂B and ̂P ∈ EA, ̂B(Fp) as follows. Fix an element x
̂P ∈ Fp,

for any y
̂P ∈ Fp, and define

̂B =: y2
̂P
− x3

̂P
−Ax2

̂P
. (2.4)
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Input: P ∈ E(Fp), Q ∈ 〈P〉, n =
∏j−1

i=0p
ei
i , where pi < pi+1, i = 0, . . . , j − 2.

Output: k mod n.
(1) For i = 0 to j − 1 do

(1.1) Q′ ← O, ki ← 0.
(1.2) Pi ← (n/pi)P .
(1.3) For t = 0 to (ei − 1) do

(1.3.1) Qt,i ← (n/pt+1
i )(Q +Q′).

(1.3.2) Wt,i ← logPi
Qt,i.{ECDLP in a subgroup of order ord(Pi).}

(1.3.3) Q′ ← Q′ −Wt,ip
t
iP .

(1.3.4) ki ← ki + pt
iWt,i.

(2) Use the CRT to solve the system of congruences k ≡ ki mod p
ei
i .

This gives us k mod n
(3) Return (k)

Algorithm 1: Silver-Pohlig-Hellman algorithm for solving the ECDLP.

Input: EA and P = (xP , yP ) ∈ EA(Fp), Q = (xQ, yQ) = kP ,
w is a parameter to be chosen later and q is the order of point P .
Output: Scalar k partially with a probability.
(1) Randomly choose x

̂P , y ̂P ∈ Fp.
(1.1) ̂B ← y2

̂P
− x3

̂P
−Ax2

̂P
.

(2) ̂P ← (x
̂P , y ̂P ).

(2.1) Obtain n = ord( ̂P) in elliptic curve EA, ̂B(Fp).
(2.2) Choose an integer 1 < d < ord( ̂P), compute d ̂P .

(3) Apply decryption oracle to compute xkd ̂P .
(3.1) ykd ̂P ←

√

x3
kd ̂P

+Ax2
kd ̂P

+ ̂B.
(4) If all the prime factors of n are smaller than w, then

(4.1) Utilize Algorithm 2 with (d ̂P, kd ̂P, n) to obtain k mod n.
(5) Return (k mod n)

Algorithm 2: Basic fault attack on ECSM algorithm.

Let EA, ̂B be an elliptic curve of form (1.1) as follows:

y2 = x3 +Ax2 + ̂B, (2.5)

clearly ̂P =: (x
̂P , y ̂P ) ∈ EA, ̂B(Fp).

Having the points pair d ̂P, kd ̂P ∈ EA, ̂B(Fp), one can obtain k mod n, where n =
ord(d ̂P). This would be possible if all the prime factors of �EA, ̂B(Fp) are smaller than order of
P . The complete attack procedure is presented as Algorithm 2.

By repeating Algorithm 2, then applying CRT, we can get k from the congruences
k mod n. The following lemma is useful for us to increase the efficiency of Algorithm 2.

Lemma 2.1. Let E be an elliptic curve defined over finite filed Fq. Then,

E
(

Fq

) � Zn1 × Zn2 (2.6)

with n1 | n2 and n1 | q − 1.
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For giving an elliptic curve EA, ̂B defined over finite field Fp, we assume that EA, ̂B(Fq) �
Zn1 × Zn2 . Then there exists a point ̂P such that ord( ̂P) = n2. The number of such points is
n1φ(n2), where φ(·) is the Euler function. Let n2 = n2wn

′
2, where n2w is the product of all the

prime factors of n2 which are smaller than w. If, in Step (2.2), we choose d satisfying n′2 | d
and (d, n2w) = 1, then the order of d ̂P is a w smooth integer.

Certainly, of course, we can choose a point ̂P in EA,B(Fp). The procedure of choosing
such a point is similar as above.

3. The Isomorphism Classes

In this section, we count the number of isomorphism classes over Fp of elliptic curves (1.1)
defined over a prime field Fp.

It is easy to see that the discriminantΔ and the j invariant of the formula (1.1) are equal
to −16((4/27)A4(1 −A2) + 4A2B + 27B2) and −(43A6)/Δ, respectively. Hence, the number of
elliptic curves over the prime field Fp with A fixed is the number of B ∈ Fp with

4
27

A4
(

1 −A2
)

+ 4A2B + 27B2
/= 0. (3.1)

Let T be the number of the solutions of the following equation in Fp:

27x2 + 4A2x +
4
27

A4
(

1 −A2
)

= 0. (3.2)

It is easy to see that T ≤ 2. Hence, we conclude that the number of elliptic curves over Fp with
B fixed is equal to p − T .

EA,B is isomorphic to EA, ̂B if and only if there exists an admissible transform:

x = u2x + r,

y = u3y + u2sx + t,
(3.3)

where r, s, t ∈ Fp and u ∈ F
∗
p. Therefore, EA,B

∼= EA, ̂B if and only if there exist u ∈ F
∗
p, r ∈ Fp

such that the following conditions hold:

(i) u6 = 1 and A = Au4 + 3u4r;

(ii) 3u2r2 + 2u2rA = 0 and Ar2 + r3 + ̂B = B.

Given A,B, ̂B, let T ′ denote the number of the solutions (u, r) of (i) and (ii); it is easy to see
that T ′ ≤ 6. For any p /= 2, 3, the number of the automorphism of elliptic curve EA,B is at most
3. Hence, we have

∑

EA, ̂B

′ 1

�Aut
(

EA, ̂B

) ≥ p − T
6

, (3.4)
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where
∑′

EA, ̂B
is over a set of representatives of the isomorphism classes. We express this by

writing

�′
{

EA, ̂B : EA, ̂B elliptic curve of form (1.1) with ̂B ∈ Fp

}

∼=Fp

, (3.5)

and in similar expression below, �′ denotes the weighted cardinality, the isomorphism class
of EA, ̂B being counted with the weight 1/(�Aut(EA, ̂B)).

For any elliptic curve E over Fp, we have

�E
(

Fp

)

= p + 1 − t, with t ∈ Z, |t| ≤ 2
√

p, (3.6)

which is obtained by a theorem of Hasse. Let, conversely, p be a prime > 3 and let t be an
integer satisfying |t| ≤ 2√p. Then, the weighted number of elliptic curves E over Fp with
�E(Fp) = p + 1 − t, up to isomorphism is given by a formula that is basically due to Deuring
[5]; see also [7–9]:

�′
{

E : E elliptic curve over Fp, �E
(

Fp

)

= p + 1 − t}
∼=Fp

= H
(

t2 − 4p
)

, (3.7)

where H(t2 − 4p) denotes the Kronecker class number of t2 − 4p.
For the Kronecker class number, the following result is useful.

Lemma 3.1 (see [10]). There exist effectively computable positive constants c1, c2 such that for each
z ∈ Z>1 there is Δ∗ = Δ∗(z) < −4 such that

c1
√−Δ
log z

≤ H(Δ) ≤ c2
√
−Δ log|Δ|log log|Δ| (3.8)

for all Δ ∈ Z with −z ≤ Δ < 0, Δ ≡ 0, or 1 mod 4, except that the left inequality may be invalid if
Δ0 = Δ∗, where Δ0 is the fundamental discriminant associated with Δ.

Let

�′
{

EA, ̂B : ̂B ∈ Fp, �EA, ̂B

(

Fp

)

= p + 1 − t
}

∼=Fp

=: Ht. (3.9)

In order to apply Algorithm 2, we divide Fp into two parts Sp

QR and S
p

NQR as follows:

S
p

QR =
{

̂B : ̂B ∈ Fp, and x3
̂P
+Ax2

̂P
+ ̂B is a quadratic residue in Fp

}

,

S
p

QNR =
{

̂B : ̂B ∈ Fp, and x3
̂P
+Ax2

̂P
+ ̂B is a quadratic nonresidue in Fp

}

.

(3.10)
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Since Ht ≤ H(t2 − 4p), Lemma 2.1 cannot be applied directly in the following estimation. In
order to apply Lemma 2.1, Sp

QR should be partitioned into two parts Sp

QR1 and S
p

QR2 as follows:

S
p

QR1 =
{

̂B : ̂B ∈ S
p

QR, �EA, ̂B

(

Fp

)

= p + 1 − t,with Ht ≥
√
p

log p

}

,

S
p

QR2 =
{

̂B : ̂B ∈ S
p

QR, �EA, ̂B

(

Fp

)

= p + 1 − t,with Ht <

√
p

log p

}

.

(3.11)

Let

T
p

QR1 =
{

s : s ∈ Z, and there exists ̂B ∈ S
p

QR1 such that s = �EA, ̂B

(

Fp

)

}

. (3.12)

Theorem 3.2. There exist an effectively computable positive constant c3 such that, for each prime
number p > 3, the following assertion is valid. If S is a set of integers s ∈ T

p

QR1 with

∣

∣s − (p + 1
)∣

∣ ≤√

p, (3.13)

then

�
{

EA, ̂B : ̂B ∈ S
p

QR1, �EA, ̂B

(

Fp

) ∈ S
}∼=Fp ≥ c3

(

�S − 2)
√
p

log p
. (3.14)

Proof. The proof of Theorem 3.3 is similar to the proof of (1.9) in [10]; for self-containdeness,
we give it here. The left-hand side of the inequality equals

∑

t∈Z, p+1−t∈S
Ht. (3.15)

Applying Lemma 3.1 with z = 4p, we note that |t2 − 4p| ≥ 3p if p + 1 − t ∈ S. Since S ⊆ T
p

QR1,
it suffices to prove that there are at most two integers t, |t| ≤ √p, for which the fundamental
discriminant associated with t2−4p equalsΔ∗. Let L =

√
Δ∗, and let t be such an integer. Then,

the zeros α, α of

X2 − tX + p (3.16)

belong to the ring of integers OL of L. Also, αα = p, and by the unique prime ideal factori-
zation in OL and the fact thatA∗ = {1,−1} (becauseΔ∗ < −4) this determines α up to conjuga-
tion and sign. Hence, t = α + α is determined up to sign, as required. This completes the
proof.

Theorem 3.3. There is a positive effectively computable constant c4 such that, for each prime number
p > 3, the following assertion is valid. Let S be a set of integers s ∈ T

p

QR1 with

∣

∣s − (p + 1
)∣

∣ ≤√

p, (3.17)
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and let y
̂P be defined as above. Then, the numberN of pair ( ̂B, x

̂P ) ∈ F
2
p for which

4A2 + 27 ̂B /= 0, �EA, ̂B

(

Fp

) ∈ S, (3.18)

where x3
̂P
+Ax2

̂P
+ ̂B = y2

̂P
, is at least c4(�S − 2)(√p3/ log p).

Proof. The number to be estimated equals the number of pairs ( ̂B, y
̂P ) ∈ F

2
p for which EA, ̂B is

an elliptic curve over Fp with (x
̂P , y ̂P ) ∈ EA, ̂B(Fp) and �EA, ̂B(Fp) ∈ S. Each elliptic curve EA

over Fp is isomorphic to EA, ̂B for exactly T ′/�AutE, value of A ∈ Fp. Each EA, ̂B exactly gives
rise to two points (x

̂P , y ̂P ). Thus, the number to be estimated equals

∑

EA, ̂B

′ 2T ′

�Aut
(

EA, ̂B

) , (3.19)

where the sum ranges over the elliptic curves EA, ̂B over Fp, up to isomorphism, for which
�EA, ̂B(Fp) ∈ S. Applying Theorem 3.2, we obtain the result.

Theorem 3.4. There exists a positive effectively computable constant c5 such that, for each prime
number p > 3, the following assertion is valid. Let

Sw =
{

s ∈ T
p

QR1 :
∣

∣s − (p + 1
)∣

∣ <
√

p, and each prime dividing s is ≤ w
}

, (3.20)

and let y
̂P be defined as above. Then, the numberN of triple ( ̂B, x

̂P ) ∈ F
2
p for which

4A2 + 27 ̂B /= 0, �EA, ̂B

(

Fp

) ∈ Sw, (3.21)

where x3
̂P
+Ax2

̂P
+ ̂B = y2

̂P
, is at least c5(�Sw − 2√p3/ log p).

Proof. This can be deduced from Theorem 3.3 immediately.

Theorem 3.5. There exists a positive effectively computable constant c6 such that the cardinality of
T
p

QR1 is at least c6
√
p/(log p(log logp)).

Proof. The map

φ : Fp �−→ Fp
̂B �−→ x3

̂P
+Ax2

̂P
+ ̂B (3.22)

is a bijective map. By the definition of Sp

QR and S
p

QNR, we have �S
p

QR = �S
p

QNR = (p − 1)/2.
By (3.6), the trace t of any elliptic curve E over Fp satisfies |t| ≤ 2√p; hence, the cardinality of
S
p

QR2 is at most

2
√

p

√
p

log p
≤ 2

p

log p
. (3.23)



Journal of Applied Mathematics 9

Therefore, the cardinality of Sp

QR1 is

S
p

QR − S
p

QR2 ≥ p − 2 p

log p
. (3.24)

From the discussion about the isomorphism classes of elliptic curves and the fact that Ht ≤
H(t2 − 4p), we have

�T
p

QR1 ≥
�S

p

QR1 − T
H(Δ)

. (3.25)

Applying Lemma 2.1, we get the proof of the result.
Let T1 = T

p

QR1

⋂

(p + 1 − √p, p + 1 +√p). Our attack method depends on the following
reasonable heuristic assumption.

Heuristic Assumption: The set Tp

QR1 is uniformly distributed in the interval (p + 1 −
2√p, p + 1 + 2√p).

By the assumption, one can deduce that �Tp

QR1 ≈ 2�T1.

Theorem 3.6. There exists an effectively computable constant c7 > 1 with the following property. Let
w ∈ Z>1 and

�Sw =
{

s ∈ T
p

QR1 :
∣

∣s − (p + 1
)∣

∣ <
√

p, and each prime dividing s is ≤ w
}

. (3.26)

Let f(w) = �Sw/�T1 denotes the probability that a random integer in the interval (p+ 1−√p, p+ 1+√
p) has all its prime factors < w. The probability of success of Algorithm 2 on input P,Q ∈ EA,B,w

is at least 1 − c−hf(w)/(log p)2(log log p)
7 , where h is the number of times that Algorithm 2 is applied.

Proof. By Theorem 3.5, the failure probability of repeating Algorithm 2 h times equals (1 −
N/p2)h, where

N

p2
≥ c5

�Sw − 2
�T1

�T1√
p log p

≥ c5f(w)
�T1√
p log p

≥ c5c6
f(w)

(

log p
)2(log log p

)

. (3.27)

It follows that

(

1 − N

p2

)h

≤ e−c5c6h(f(w)/((log p)2(log log p))). (3.28)

Consequently, the desired result follows.

4. Efficiency

In the case of factoring, the best rigorously analyzed result is Corollary 1.2 of [11], which
states that all prime factors of n that are less than w can be found in time Lw(2/3, c)log

2n.
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Schoof [12] presents a deterministic algorithm to compute the number of Fp-points of an
elliptic curve that is defined over a finite field Fp and takes O(log9p) elementary operations.

Theorem 3.6 shows that, in order to have a reasonable chance of success, one should
choose the number h of the same order of magnitude as O((log p)2(log log p)/f(w)). In
Algorithm 2, for any y

̂P , we can obtain ̂B ∈ S
p

QR. From the discussion in Theorem 3.6, the

probability of ̂B ∈ S
p

QR2 is approximately 1/ log p. Hence, the cases of ̂B ∈ S
p

QR2 are neglected,
which does not affect the analysis result. Therefore, the time spent on Algorithm 2 is
O(hLw(2/3, c)M(p)), where M(p) = O(log11p). The time required by Algorithm 2 is

√
w.

Hence, to minimize the estimated running time, the number w should be chosen such that
Lw(2/3, c)/f(w) +

√
w is minimal.

A theorem of Canfield et al. [13] implies the following result. Let α be a positive real
number. Then, the probability that a random positive integer s < x has all its prime factors
less than Lx(1/2, 1)

α is Lx(1/2, 1)
−1/2α+o(1) for x → ∞. The conjecture we need is that the

same result is valid if s is a random integer in the interval (x + 1 − √x, x + 1 +
√
x). Putting

x = p, we see that the conjecture implies that

f

(

Lp

(

1
2
, 1
)α)

= Lp

(

1
2
, 1
)−1/2α+o(1)

for p −→ ∞, (4.1)

for any fixed positive α, with f(w) = �Sw/�T1.
The following identities are useful for our estimation:

Lp(α, cα)Lp

(

β, cβ
)

= Lp

(

max
{

α, β
}

, cmax{α,β}
)

,

LLp(α,cα)
(

β, cβ
)

= Lp

(

αβ, cβc
β
α

)

,
(4.2)

where lower-order terms in the exponent are neglected.
With w = Lp(1/2, 1)

α, the conjecture would imply that

Lw(2/3, c)
f(w)

+
√
w = Lp

(

1
2
, 1
)1/2α+o(1)

+ Lp

(

1
2
, 1
)α/2

, for p −→ ∞, (4.3)

which suggests that for the optimal choice of w we have

w = Lp

(

1
2
, 1
)

,
Lw(2/3, c)

f(w)
= Lp

(

1
2
, 1
)1+o(1)

, for p −→ ∞. (4.4)

These arguments lead to the following conjectural running time estimation for solving
the discrete logarithm problem on elliptic curve of form (1.1) over prime field.

Theorem 4.1. There is a function K : R>0 → R>0 with

K(x) = Lx

(

1
2
, 1 + o(1)

)

for x −→ ∞ (4.5)
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such that the following assertion is true. Let p be a prime number that is not 2 or 3. Then, we can find
the discrete logarithm of Montgomery elliptic curve over prime filed Fp within time O(K(p)M(p)).
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[13] E. R. Canfield, P. Erdős, and C. Pomerance, “On a problem of Oppenheim concerning “factorisatio
numerorum”,” Journal of Number Theory, vol. 17, no. 1, pp. 1–28, 1983.


