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The interaction between fluid and structure occurs in a wide range of engineering problems. The
solution for such problems is based on the relations of continuum mechanics and is mostly solved
with numerical methods. It is a computational challenge to solve such problems because of the
complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The
way in which the interaction between fluid and solid is described gives the largest opportunity for
reducing the computational effort. One possibility for reducing the computational effort of fluid-
structure simulations is the use of one-way coupled simulations. In this paper, different problems
are investigated with one-way and two-way coupled methods. After an explanation of the solution
strategy for both models, a closer look at the differences between these methods will be provided,
and it will be shown under what conditions a one-way coupling solution gives plausible results.

1. Introduction

The interaction between fluids and solids is a phenomenon that can often be observed in
nature, for example, the deformation of trees or the movement of sand dunes caused by wind.

In almost the same manner, wind can interact with buildings, sometimes with
dramatic consequences, such as the collapse of the Tacoma-Narrows Bridge in November
1940.

These processes can only be calculated using laws and equations from different
physical disciplines. Examples like this, where the arising subproblems cannot be solved
independently, are called multiphysics applications. A very important class of these multi-
physics problems are fluid-structure interactions (FSIs), which are characterized by the
fact that the flow around a body has a strong impact on the structure, and vice versa;
the modification of the structure has a nonnegligible influence on the flow. Two disciplines
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involved in these kinds of multiphysics problems are fluid dynamics and structural dy-
namics, which can both be described by the relations of continuum mechanics.

On this note, FSI is a subset of multiphysics applications and is defined well by
Zienkiewicz and Taylor [1]:

Coupled systems and formulations are those applicable to multiple domains and dependent
variables which usually describe different physical phenomena and in which neither
domain can be solved while separated from the other and neither set of dependent variables
can be explicitly eliminated at the differential equation level.

Solution strategies for FSI simulations are mainly divided into monolithic and
partitioned methods; this paper will focus only on partitioned methods. Information on
partitioned methods can be found in the available literature [2-9], as well as information
on mixed methods [10]. Partitioned methods are divided into one-way and two-way
coupling. Two-way coupling is further divided into weakly and strongly coupled methods.
Those interested in the differences between strongly and weakly coupled methods can find
information in Vaassen et al. [11]. For instance, Pozarlik and Kok [12] compared one-way
and two-way coupling results for the vibration of a combustion chamber.

2. Numerical Approach

Our investigations were performed using a partitioned method. On the fluid side, ANSYS
CFX was used, and on the structure side, ANSYS Mechanical. ANSYS MEFX coupling
algorithm was used for the two-way coupled simulations.

3. Calculations for the Fluid Side

The solution of the fluid side is based on the continuity equation and the Navier-Stokes
equation. The Navier-Stokes equation, written in Einstein summation convention, is given
by (3.1). Further information about the solution for moving meshes can be found in Miinsch
and Breuer [13], especially the Arbitrary-Euler-Lagrange (AEL) formulation
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A solution for this equation requires a fine discretization in space and time. In engineering
problems, small scales are not within the scope of interest. To reduce the computational effort,
the solution variables are split into a mean value and a fluctuation value, as shown in (3.2)

p=p+¢. (3:2)

Using Reynolds averaging, we obtain (3.3), the Unsteady-Reynolds-Averaged-Navier-Stokes
equation
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In this equation, u;u; is the Reynolds stress tensor. Its value is calculated with turbulence
models, such as the k-¢, k-w, or SST model.

The continuity equation and the Navier-Stokes equations are solved using a finite
volume approach. Starting with the continuity equation in integral form (3.4), three terms
must be solved: the first term describes the change in mass in the control volume; the second
deals with the mass flux through the control volume boundary; the third describes the change
of the control volume throughout mesh deformation

%J‘ p-dV+Ip-Uj-dnj+jp-Wj-dnj:O. (3.4)
v s

4. Calculations for the Structure Side

The calculations for the structure side are based on the impulse conservation (4.1). It is solved
using a finite element approach, where a finite element is chosen for each specific problem

M-ii-+C-ii+K-ii=F. (4.1)

5. Coupling

Regardless of whether one-way or two-way coupling methods are used, the solutions are
based on a partitioned method where separate solutions for the different physical fields are
prepared. One field that has to be solved is fluid dynamics, the other is structure dynamics.
At the boundary between fluids and solids, the fluid-structure interface, information for the
solution is shared between the fluid solver and structure solver. The information exchanged
is dependent on the coupling method. For one-way coupling calculations, only the fluid
pressure acting at the structure is transferred to the structure solver. For two-way-coupling
calculations, the displacement of the structure is also transferred to the fluid solver.

In Figure 1, on the top the solution procedure is shown for one-way coupling. Initially,
the fluid field is solved until the convergence criteria are reached. The calculated forces at
the structure boundaries are then transferred to the structure side. Next, the structure side is
calculated until the convergence criterion is reached. Then, the fluid flow for the next time
step is calculated to convergence. The solution is finished when the maximum number of
time steps is reached.

The process flow chart for the strong two-way coupling algorithm is shown on
the bottom of Figure 1. Within one-time step during the transient simulation, a converged
solution for the flow field is required to provide the forces acting on the body. After
interpolating the forces from the fluid mesh to the surface mesh of the structure, a converged
solution of the structural dynamics will be attained under the effect of the acting forces. The
response of the structure to the emerging load represents a displacement of the structural grid
nodes. The displacements at the boundary between structure and fluid are interpolated to the
fluid mesh which leads to its deformation. This step closes one inner loop of the simulation.
For strong two-way-coupling simulations, these steps are repeated until the changes in the
flow forces and the structural displacements fall below a prescribed amount. Afterwards, a
new time step is launched. For weak two-way coupling simulations, the convergence at the
boundary between structure and fluid is not considered and a new time step is launched
directly.
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Figure 1: Solution algorithm for one- and strong two-way coupling.

Some general comments can be made about both methods. Often the advantage of
one method is a disadvantage of the other. In general, the two-way coupling solution is more
accurate, especially for larger deflections where the fluid field is strongly influenced by struc-
tural deformation. Strong two-way coupling solutions can be of second-order time accuracy
and are more stable (see Vaassen et al. [11]). The one-way coupling method does not guar-
antee energy conservation at the interface, but two-way does. A benefit of one-way coupling
simulation is significantly lower computational time. A second benefit is that deformation of
the fluid mesh does not need to be calculated, which provides a mesh of constant quality.

6. Mesh Deformation

In two-way coupling calculations, the deformation of the boundary between fluid and solid
deforms the fluid mesh. To calculate this deformation, the displacement diffusion algorithm
is used. The connections between the nodes are modelled as springs, each with a specific stiff-
ness. This stiffness can change from node to node; near boundaries, though, the mesh stiffness
is set very high. In the normal direction from the fluid-structure boundary, the first ten nodes
have displacements in the range of the boundary displacement. This provides high quality
meshes even in the boundary layer. In Figure 2, a Nondeformed mesh is shown on the left,
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Figure 3: Different coefficients for mesh stiffness.

and a deformed mesh on the right. In both cases, the mesh has a satisfying quality. Figure 3
shows a deformed mesh of high quality on the left and a mesh of lower quality on the right.

7. Simple Case for the Comparison between One- and
Strong Two-Way Coupling

The first test case is of very simple geometry and flow complexity. This benchmark case was
originally published by Wall [14] and was also investigated by Walhorn [15] and Steindorf
[16]. It consists of a square cylinder with a thin plate at the trailing side. The plate is
influenced by the wake behind the cylinder. The flow regime can be changed by varying the
inlet velocity. Two different materials are used for the plate, which leads to different natural
frequencies. For a given inlet velocity, van Karman vortexes develop at the square cylinder.
The shedding frequency is selected for both possibilities close to and further away from the
natural frequencies of the plate. The investigated geometry, including its mesh, is shown in
Figure 4. The different inlet velocities under investigation are shown in Table 1, and the nat-
ural frequencies of the plate are shown in Table 2. For evaluation of the results, the displace-
ment of the trailing edge of the plate divided by the height of the square cylinder is computed
over time. With a fast Fourier transformation (FFT), the frequencies of the oscillations are
determined. Unfortunately, there are no experimental studies that have been done on this
problem. Therefore, a comparison with the numerical results of Walhorn [15] is carried out.
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Figure 4: Simple case domain with boundary conditions.

Table 1: Investigated inlet conditions and material parameters.

No. Velocity (m/s) Shedding frequency (Hz) Plate

1 0.27 3.02 Plate 2
2 0.34 3.68 Plate 1
3 0.34 3.68 Plate 2
4 0.64 7.03 Plate 2

Table 2: Natural frequencies of plates 1 and 2.

i Natural frequency for plate 1 (Hz) Natural frequency for plate 2 (Hz)
1 3.07 0.78
2 15.13 3.03
3 19.2 3.84
4 10.74
5 18.52

8. Case Number 1: Inlet Velocity v = 0.27 m/s with
Material Parameters of Plate 2

In case Number 1, the vortex shedding frequency and the second natural frequency of the
plate are identical; therefore, the plate should oscillate at this frequency. The displacement
that occurs over time is shown in Figure 5, and the frequency spectrum of displacement is
shown in Figure 6. However, the two-way coupling solution shows that the plate oscillates
after a few seconds at the first natural frequency of f = 0.78 Hz. The maximum displacement,
calculated with the one-way coupling algorithm, shows a different behaviour in terms
of displacement. The displacement of the plate is periodically constant after 5s, and the
maximum displacement is one-fortieth the displacement that was calculated with the two-
way coupling solution. The frequency spectrum does not show this big difference, and the
mean frequency is the first natural frequency for both cases. In the one-way coupling solution,
the second natural frequency is present, but with a low magnitude.

In Figure 7, the displacement of the plate is shown at 155 for the one- (red) and two-
way (black) coupling solution.
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Figure 5: Displacement over time, v = 0.27 m/s, plate 2.
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Figure 6: Frequency spectrum, v = 0.27m/s, plate 2.

Figure 7: Comparison between deflections, v = 0.27m/s, plate 2.
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Figure 8: Displacement over time, v = 0.34 m/s, plate 1.
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Figure 9: Frequency spectrum, v = 0.34m/s, plate 1.

9. Case Number 2: Inlet Velocity v = 0.34m/s with
Material Parameters of Plate 1

In the second case, the vortex shedding frequency fr = 3.68Hz is close to the natural
frequency of plate 1 (fs = 3.07Hz). After two seconds, the trailing edge displacement of
the plate reaches a maximum of one and stays periodically constant in the two-way coupling
solution. In the one-way coupling solution, the maximum displacement is also one in the
first two seconds, but fades to 0.5 (see Figure 8). The frequency spectrum of the displacement
shows only one frequency, f = 3Hz, which can be assigned to the first natural frequency
for the two-way coupling case. The one-way coupling solution shows a second frequency,
f = 3.7Hz, which can be assigned to the vortex shedding frequency (see Figure 9).
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Figure 10: Comparison between deflections, v = 0.34m/s, plate 1.

In Figure 10, the displacement of the plate is shown at 15s for the one- (red) and two-
way (black) coupling solution.

10. Case Number 3: Inlet Velocity v = 0.34m/s with
Material Parameters of Plate 2

In case Number 3, the two-way coupling solution shows the expected behaviour near the
structure’s natural frequency. Starting with a small deflection, it grows in an exponential
manner until a maximum displacement of 0.5 is reached, which happens in about 10s. In
the one-way coupling solution, the deflection is also small at the beginning of the calculation,
but increases to an averaged maximum of 0.25. In both solution algorithms, the oscillating
frequency is near the third natural frequency of the plate (see Figure 12). The two-way
coupling solution shows good agreement with the numerical results from Walhorn [15],
which was calculated with a monolithic approach (shown in Figure 11).

11. Case Number 4: Inlet Velocity v = 0.64 m/s with
Material Parameters of Plate 2

In this case, the vortex shedding frequency is far from the natural frequencies of plate 2. The
behaviour—based on the two-way coupling algorithm—is quite different compared to cases
1-3. Here, the plate does not oscillate around zero, but instead vibrates around a mean value
of 0.2, as shown in Figure 13. The oscillating frequency of the plate is the vortex shedding
frequency of fr = 7.03 Hz (see Figure 14). The one-way coupling solution shows only a small,
low-magnitude oscillation. The oscillating frequency is 0.78 Hz, which is the first natural
frequency.

12. Summary of the Simple Case

This simple case shows that the solutions for one- and two-way coupling yield very different
results for the displacement. For cases in which the vortex shedding frequency is close to the
natural frequency of the plate, the history of displacement can be compared between one-
way and two-way coupling. In all cases in which the vortex shedding frequency is near the
natural frequency of the plate, the mean frequency of oscillation is the same. In case Number
4, where the vortex shedding frequency is at a distance from the natural frequency, the one-
way coupling solution cannot be compared to the two-way coupling solution in terms of
displacement magnitude or frequency of displacement.

13. Investigation of a Single-Blade Sewage Pump

Single-blade pumps are often used when a suspension of rough solids or cellulose in
water has to be transported. Such a commercial single-blade pump is shown in Figure 15.
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Figure 12: Frequency spectrum, v = 0.34m/s, plate 2.

Numerical and experimental investigations of single-blade pumps have been conducted at
the University of Duisburg-Essen [18-22]. A detailed comparison between the simulation
results of two-way coupling FSI and experimental results were published by Benra [23].
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Figure 14: Frequency spectrum, v = 0.64m/s, plate 2.

A model of the pump for the FSI simulation is shown in Figure 16. Apart from the
casing and impeller, part of the shaft was also taken into account for the flow simulation.
For structural analysis, the complete shaft and impeller were considered. Keeping the
correspondence of the coordinate system for both simulations, the values for load and mesh
deformation were exchanged during the FSI calculation process.

In physics, an individual blade may cause an uneven mass distribution over the
perimeter of an impeller. On the one hand, this leads to a stimulation of the vibrations
with the frequency of the rotor revolution due to mechanical imbalances. On the other
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Figure 15: Commercial single-blade pump [17].

Figure 16: Flow calculation model and structural calculation model.

hand, the flow around the blade produces a different pressure field on the surfaces of
the blade. The development of pressure around the suction surface leads to an uneven
pressure distribution at the rotor outlet for a single-blade rotor. The interaction between
the flow in the impeller and the casing during an impeller revolution results in a transient
pressure field which is periodic with the rotor revolution. This leads to a variable radial force,
which is indicated as a hydrodynamic imbalance. Mechanical and hydrodynamic imbalances
produce radial deflections of the pump shaft that can be recognized as vibrations at bearing
blocks. These vibrations will be transferred to the whole pumping set and equipment
components.

A FSI simulation is required to show the complete effect of such vibrations. The
impeller deflection changes the gap between the casing and impeller and strongly affects the
flow field. Then, the redistributed pressure field disturbs the vibration orbit of the impeller,
which generates a stronger impeller vibration than before. Such phenomena are described
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Figure 18: Comparison of calculated and measured deflection.

in Figure 17, which gives a comparison between one-way and weak two-way coupled calcu-
lations. It is important to compare the results with the experimental data, as can be seen in
Figure 17. The weak two-way coupled results show better agreement with the measurements,
especially in the 1st to 3rd coordinate quadrants. This supports the previous analysis that the
two-way coupled calculation offered results that were closer to physical observations.

A closer look at the two-way coupling simulation results and actual measurements
shows good agreement. For a full 360° rotation of the pump impeller, the deflection is shown
in the ¥ direction in the top picture; deflection is in the ¢ direction in the bottom picture
(Figure 18).
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14. Comparison of Solution Time

In Figure 19, a comparison of the solution time between the two methods is shown. For
every example, the same simulation times were compared. The additional time for a two-way
coupling simulation is between three to four times the solution time for a one-way coupling
simulation.

15. Conclusion

In this paper, problems concerning the interaction between fluids and structures were
solved with one-way and two-way coupling methods. For a simple case, it was shown
that the frequency of deflection was nearly the same for both methods if the vortex
shedding frequency was close to the natural frequency. For every case, the deflection of
the plate for the one-way coupling solution was much lower than it was for the two-way
coupling solution. For the case where the vortex shedding frequency was far from the
natural frequency, the results of the two algorithms were different in both frequency and
deflection.

The results of the investigation for the single-blade pump showed significant
differences between the one-way coupling solution and experimental results. The maximum
deflection was under-predicted by this method. For all impeller positions, the impeller
orbit curve showed nearly the same magnitude of displacement. The two-way coupling
solution algorithm could predict the impeller orbit curve for a wide range, except for the
high deflections in the 4th coordinate quadrant the method failed to predict the measured
deflections. Overall, the two-way coupling method yielded results that were close to reality,
whereas the one-way coupling algorithm gave plausible results only for specific values, in
some cases.
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Nomenclature

Arabic and Greek Letters

Height of square cylinder
Frequency
Force

: Mass

Static pressure
Time

Velocity
Volume
Deflection
Domain
Density
Boundary

Indices/Superscripts

I: Interface

F: Fluid

S: Structure

x, y, z: Cartesian coordinates.

Abbreviations

FSI:  Fluid-structure interaction
OWC: One-way coupling
TWC: Two-way coupling.
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