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Transitivity of generalized fuzzy matrices over a special type of semiring is considered. The semi-
ring is called incline algebra which generalizes Boolean algebra, fuzzy algebra, and distributive
lattice. This paper studies the transitive incline matrices in detail. The transitive closure of
an incline matrix is studied, and the convergence for powers of transitive incline matrices is
considered. Some properties of compositions of incline matrices are also given, and a new
transitive incline matrix is constructed from given incline matrices. Finally, the issue of the
canonical form of a transitive incline matrix is discussed. The results obtained here generalize
the corresponding ones on fuzzy matrices and lattice matrices shown in the references.

1. Introduction

Generalized transitive matrices [1] over a special type of semiring are introduced. The
semiring is called incline algebra. Boolean algebra, fuzzy algebra, and distributive lattice
are inclines. And the Boolean matrices, the fuzzy matrices, and the lattice matrices are the
prototypical examples of the incline matrices. Inclines are useful tools in diverse areas such
as design of switching circuits, automata theory, medical diagnosis, information systems, and
clustering. Besides inclines are applied to nervous system, probable reasoning, dynamical
programming, and decision theory.

Transitive matrices are an important type of generalized matrices which represent
transitive relation (see, e.g., [2–6]). Transitive relation plays an important role in clustering,
information retrieval, preference, and so on [5, 7, 8]. The transitivity problems of matrices
over some special semirings have been discussed by many authors (see, e.g., [9–17]). In
1982, Kim [18] introduced the concept of transitive binary Boolean matrices. Hashimoto [11]
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presented the concept of transitive fuzzy matrices and considered the convergence of powers
of transitive fuzzy matrices. Kołodziejczyk [10] gave the concept of s-transitive fuzzy
matrices and considered the convergence of powers of s-transitive fuzzymatrices. Tan [17, 19]
discussed the convergence of powers of transitive lattice matrices. Han and Li [1] studied
the convergence of powers of incline matrices. In [12, 13], the canonical form of a transitive
matrix over fuzzy algebra was established, and, in [14, 15, 17], the canonical form of a
transitive matrix over distributive lattice was characterized. In [9, 16, 20], some properties
of compositions of generalized fuzzy matrices and lattice matrices were examined.

In this paper, we continue to study transitive incline matrices. In Section 3, the
transitive closure of an incline matrix is discussed. In Section 4, the convergence of powers
of transitive incline matrices is considered. In Section 5, some properties of compositions of
inclinematrices are given and a new transitive inclinematrix is constructed from given incline
matrices. In Section 6, the issue of the canonical form of an incline matrix is further discussed.
Some results in this paper generalize the corresponding results in [14, 17, 20].

2. Definitions and Preliminary Lemmas

In this section, we give some definitions and lemmas.

Definition 2.1 (see [1]). A nonempty set L with two binary operations + and · is called an
incline if it satisfies the following conditions:

(1) (L,+) is a semilattice;

(2) (L, ·) is a commutative semigroup;

(3) x(y + z) = xy + xz for all x, y, z ∈ L;

(4) x + xy = x for all x, y ∈ L.

In an incline L, define a relation ≤ by x ≤ y ⇔ x + y = y. Obviously, xy ≤ x for all
x, y ∈ L. It is easy to see that ≤ is a partial order relation over L and satisfies the following
properties.

Proposition 2.2 (see [21]). Let L be an incline and a, b, c ∈ L. Then,

(1) 0 ≤ a ≤ 1;

(2) if a ≤ b, then a + c ≤ b + c, ac ≤ bc, ca ≤ cb;

(3) a ≤ a + b, and a + b is the least upper bound of a and b;

(4) ab ≤ a, ab ≤ b. In other words, ab is a lower bound of a and b;

(5) acb ≤ ab;

(6) a + b = 0 if and only if a = b = 0;

(7) ab = 1 if and only if a = b = 1.

Boolean algebra ({0, 1},∨,∧), fuzzy algebra ([0, 1],∨, T) (T is a t-norm) and distribu-
tive lattice are inclines. Let (L,≤) be a poset and a, b ∈ L. If a ≤ b or b ≤ a, then a and b are
called comparable. Otherwise, a and b are called incomparable, in notation, a ‖ b. If for any
a, b ∈ L, a and b are comparable, then L is linear and L is called a chain. An unordered poset
is a poset in which a ‖ b for all a/= b. A chain B in a poset L is a nonempty subset of L, which,
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as a subposet, is a chain. An antichain B in a poset L is nonempty subset which, as a subposet,
is unordered. The width of a poset L, denoted by w(L), is n, where n is a natural number, iff
there is an antichain in L of n elements and all antichains in L have ≤ n elements. A poset
(L,≤) is called an incline if L satisfies Definition 2.1. It is clear that any chain is an incline,
which is called a linear incline.

An element a of an incline L is said to be idempotent if a2 = a. The set of all idempotent
elements in L is denoted by I(L), that is, I(L) = {a ∈ L | a2 = a}.

A matrix is called an incline matrix if its entries belong to an incline. In this paper, the
incline (L,≤,+, ·) is always supposed to be a commutative incline with the least and greatest
elements 0 and 1, respectively. Let Mn(L) be the set of all n × n matrices over L. For any A in
Mn(L), we will denote by aij or Aij the element of L which stands in the (i, j)th entry of A.
For convenience, we will use N to denote the set {1, 2, . . . , n}, and Z+ denotes the set of all
positive integers.

For any A, B, C inMn(L) and a in L, we define

A + B = C iff cij = aij + bij for all i, j in N;

AB = C iff cij =
∑n

k=1 aikbkj for all i, j inN;

AT= C iff cij = aji for all i, j inN;

aA = C iff cij = aaij for all i, j in N;

A ≤ B iff aij ≤ bij for all i, j inN and A ≥ B iff B ≤ A;

In = (tij), where

tij =

{
1, i = j,

0, i /= j,
for i, j ∈N. (2.1)

For any A inMn(L), the powers of A are defined as follows:

A0 = In, Al = Al−1A, l ∈ Z+.

The (i, j)th entry of Al is denoted by al
ij(l ∈ Z+), and obviously

al
ij =

∑

1≤i1,i2,...,il−1≤n
aii1ai1i2 · · ·ail−1j . (2.2)

The following properties will be used in this paper.

(1) Mn(L) is a semigroup with the identity element In with respect to the multiplica-
tion;

(2) (Mn(L),+, ·) is a semiring.

IfA2 ≤ A, thenA is called transitive; ifA2 = A, thenA is called idempotent; ifAT = A,
then A is called symmetric; if A ≤ A2, then A is called increasing; if A ≥ In, then A is called
reflexive; if aii = 0 for all i ∈ N, then A is called irreflexive; if Am = 0 (m ∈ Z+), then A is
called nilpotent; if aij = 0 for i, j = 1, 2, . . . , n, then A is called the zero matrix and denoted by
0n; A is called a permutation matrix if exactly one of the elements of its every row and every
column is 1 and the others are 0.
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Let B ∈Mn(L). The matrix B is called the transitive closure of A if B is transitive and
A ≤ B, and, for any transitive matrix C in Mn(L) satisfying A ≤ C, we have B ≤ C. The
transitive closure of A is denoted by A+. It is clear that if A has a transitive closure, then it is
unique.

For any A ∈Mn(L)with index, the sequence

A,A2, A3, . . . , Al, . . . (2.3)

is of the form

A,A2, . . . , Ak−1 | Ak, . . . , Ak+d−1 | Ak, . . . , Ak+d−1 | · · · , (2.4)

where k = k(A) is the least integer such that Ak = Ak+d for some d > 0. The least integers
k = k(A), d = d(A) are called the index and the period of A, respectively.

The following definition will be used in this paper.

Definition 2.3. A matrix A = (aij) ∈Mn(L) is said to be

(1) row diagonally dominant if aij = aiiaij for all i, j ∈N;

(2) column diagonally dominant if aij = aijajj for all i, j ∈N;

(3) weakly diagonally dominant if for any i ∈ N, either aiiaij = aij for all j ∈ N or
aiiaji = aji for all j ∈N;

(4) strongly diagonally dominant if aij = aiiaij = aijajj for all i, j ∈N;

(5) nearly irreflexive if aiiaij = aii for all i, j ∈N.

Lemma 2.4. I(L) is a distributive lattice, where I(L) = {a ∈ L | a2 = a}.

The proof can be seen in [1].

3. Transitive Closure of an Incline Matrix

In this section, some properties of the transitive closure of an incline matrix are given and an
algorithm for computing the transitive closure of an incline matrix is posed.

Lemma 3.1. For any A inMn(L), we have A+ =
∑n

k=1 A
k.

The proof can be seen in [21].

Lemma 3.2. Let A ∈Mn(L). Then,

(1) for any i, j ∈ N with i /= j and any k ≥ n, there exists s (s ∈ {1, 2, . . . , n − 1}) such that
as
ij ≥ ak

ij ;

(2) for any i ∈N and any k ≥ n, there exists t ∈N such that at
ii ≥ ak

ii.

Proof. (1) Let T = aii1ai1i2 · · ·aik−1j be any term of ak
ij , where k ≥ n and 1 ≤ i, i1, i2, . . . , ik−1,

j ≤ n. Since the number of indices in T is greater than n, a repetition among them must occur.
Let us call the sequence of entries between two occurrences of one index a cycle. If we drop
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the cycle, a new expression T1 with m1 ≤ k entries is obtained. If m1 ≥ n, there must be a
cycle in T1, then we delete the cycle and obtain a new expression T2 with m2 ≤ m1 entries.
The deleting method can be applied repeatedly until the new expression Ts contains ms < n
entries. According to properties of the operation “·”, T ≤ T1 ≤ · · · ≤ Ts, but Ts is a term of the
(i, j)th entry as

ij of A
s for some s < n, we have T ≤ T1 ≤ · · · ≤ Ts ≤ as

ij , and so ak
ij ≤ as

ij . This
completes the proof.

(2) Let T = aii1ai1i2 · · ·aik−1i be any term of ak
ii, where k ≥ n+1 and 1 ≤ i, i1, i2, . . . , ik−1 ≤ n.

Since the number of indices in T is greater than n, there must be two indices iu and iv such
that iu = iv for some u, v (u < v). Then, we delete aiuiu+1 · · ·aiv−1iv from T and obtain a new
expression T1 = aii1ai1i2 · · ·aiu−1iuaiviv+1 · · ·aik−1i with m1 ≤ k entries. If m1 ≥ n + 1, there are
still two identical numbers in the subscripts i, i1, . . . , iu−1, iu, iv+1, . . . , ik−1, then we apply the
deletingmethod used in the above. Themethod can be applied repeatedly until the subscripts
left are pairwise different. Finally, we can get a new term Tt withmt ≤ n entries. According to
properties of the operation “·”, T ≤ T1 ≤ · · · ≤ Tt, but Tt is a term of the (i, i)th entry at

ii of A
t

for some t ≤ n, we have T ≤ T1 ≤ · · · ≤ Tt ≤ at
ii, and so ak

ii ≤ at
ii. This completes the proof.

Lemma 3.3. Let A ∈Mn(L). Then,

(1)
∑n

l=1 A
l ≥ Ak for any k ≥ 1;

(2)
∑n

l=1 A
l =
∑m

l=1 A
l for any m ≥ n.

Proof. From Lemma 3.2, the proof is obvious.

Proposition 3.4. If A+ is reflexive, then (A+)+ = A+.

Proof. Since A+ ≥ In, we have A+ ≤ (A+)2. On the other hand, by Lemmas 3.1 and 3.3, we see
that (A+)2 ≤ A+. Hence, (A+)+ = A+.

Proposition 3.5. For any A = (aij) ∈ Mn(L) with index, if A is column (or row) diagonally
dominant, then A+ = As, where As is transitive.

Proof. We only consider the case A is column diagonally dominant.
For any integer l > 0, we have Als ≤ As since As is transitive, and so als

ij ≤ as
ij , for all

i, j ∈ N. Since A is column diagonally dominant, we have al
ij = al

ijajjajj · · ·ajj ≤ als
ij (because

al
ijajjajj · · ·ajj is the sum of some term in als

ij ) ≤ as
ij . Hence,

∑n
l=1 a

l
ij ≤ as

ij , then A+ ≤ As. On
the other hand, since A+ =

∑n
l=1 A

l =
∑m

l=1 A
l for any m ≥ n, we have A+ ≥ As. Therefore,

A+ = As.

Corollary 3.6. For any A = (aij) ∈ Mn(L) with index, if A is strongly diagonally dominant, then
A+ = As, where As is transitive.

Proof. Obviously, any strongly diagonally dominant matrix is column (or row) diagonally
dominant. Hence, the conclusion follows from Proposition 3.5.

Proposition 3.7. For any A = (aij) ∈Mn(L) with index, if A is weakly diagonally dominant, then
A+ = As, where As is transitive.

Proof. Since As is transitive, we have As ≥ Als, and so as
ij ≥ als

ij , for any i, j ∈ N and any
integer l > 0. SinceA is weakly diagonally dominant, we have for any i ∈N, either aiiaij = aij

for all j ∈N or aiiaji = aji for all j ∈N.
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Let

al
ij =

∑

1≤i1,...,il−1≤n
aii1ai1i2 · · ·ail−1j

(∀ i, j ∈N
)
. (3.1)

Case 1. If ai1i1ai1j = ai1j for all j ∈N, we have ai1i1ai1i2 = ai1i2 . Then,

al
ij =

∑

1≤i1,...,il−1≤n
aii1ai1i2 · · ·ail−1j

=
∑

1≤i1,...,il−1≤n
aii1ai1i1 · · ·ai1i1ai1i2 · · ·ail−1j

≤ als
ij

(

since
∑

1≤i1,...,il−1≤n
aii1ai1i1 · · ·ai1i1ai1i2 · · ·ail−1j is the sum of some term in als

ij

)

≤ as
ij .

(3.2)

Case 2. If aji1ai1i1 = aji1 for all j ∈N, we have aii1ai1i1 = aii1 . Then,

al
ij =

∑

1≤i1,...,il−1≤n
aii1ai1i2 · · ·ail−1j

=
∑

1≤i1,...,il−1≤n
aii1ai1i1 · · ·ai1i1ai1i2 · · ·ail−1j

≤ als
ij

(

since
∑

1≤i1,...,il−1≤n
aii1ai1i1 · · ·ai1i1ai1i2 · · ·ail−1j is the sum of some term in als

ij

)

≤ as
ij .

(3.3)

From above, we see that al
ij ≤ als

ij ≤ as
ij for any i, j ∈ N. Hence,

∑n
l=1 a

l
ij ≤ as

ij , then
A+ ≤ As. On the other hand, since A+ =

∑n
l=1 A

l =
∑+∞

l=1 A, we have A+ ≥ As. Therefore,
A+ = As.

Proposition 3.8. Let A = (aij) ∈ Mn(L). If the entries of A satisfy aiiajk = ajk (1 ≤ i, j, k ≤ n),
then

(1) A2 ≤ A3;

(2) aii = a2
ii = · · · = an

ii for all i ∈N;

(3) A converges to Ak(A) with k(A) ≤ n − 1.
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Proof. (1) Since any term T of the (i, j)th entry a2
ij of A2 is of the form aii1ai1j , we have

a2
ij =

∑n
k=1 aikakj (1 ≤ i, j, k ≤ n). Because the hypothesis aiiajk = ajk, we can get a2

ij =
∑n

k=1 aikakkakj . Since aikakkakj is a term of a3
ij , we have a2

ij =
∑n

k=1 aikakkakj ≤ a3
ij .

Thus, A2 ≤ A3.
(2) Because the hypothesis aiiajk = ajk, we have aiiaii · · ·aii = aii. Hence,

aii ≤ as
ii =

∑

1≤i1,...,is−1≤n
aii1ai1i2 · · ·ais−1i ≤

∑

k∈N
aik =

∑

k∈N
aiiaik ≤

∑

k∈N
aii = aii, (3.4)

then aii = as
ii (for all s ∈N).

(3) Since A2 ≤ A3, we have Ak−1 ≤ Ak (for any integer k ≥ 3), and so An−1 ≤ An. Now
we prove that An−1 ≥ An. By (2), it is sufficient only to show that an−1

ij ≥ an
ij for i /= j. Let

an
ij =

∑

1≤i1,...,in−1≤n
aii1ai1i2 · · ·ain−1j

(∀ i, j ∈N
)
. (3.5)

Since the number of indices in aii1ai1i2 · · ·ain−1j is n + 1, there must be two indices iu and iv
such that iu = iv for some u, v(u < v). Then, aii1ai1i2 · · ·ain−1j ≤ aii1ai1i2 · · ·aiu−1iuaiviv+1 · · ·ain−1j .
Since aii1ai1i2 · · ·aiu−1iuaiviv+1 · · ·ain−1j is a term of a

n−(v−u)
ij , we have aii1ai1i2 · · ·ain−1j ≤

aii1ai1i2 · · ·aiu−1iuaiviv+1 · · ·ain−1j ≤ a
n−(v−u)
ij and so an

ij ≤ a
n−(v−u)
ij , that is,An ≤ Am(m = n−(v−u) <

n) ≤ An−1 (because Ak−1 ≤ Ak for any integer k ≥ 3). Therefore, An−1 = An. This proves the
proposition.

Lemma 3.9. Let A = (aij) ∈ Mn(L). If the entries of A satisfy aiiajk = ajk (1 ≤ i, j, k ≤ n), then
adj(A) = An−1.

The proof can be seen in [22].

Proposition 3.10. Let A = (aij) ∈ Mn(L). If the entries of A satisfy aiiajk = ajk (1 ≤ i, j, k ≤ n),
then (adjA)+ = An−1.

Proof. By the Proposition 3.8, we have An−1 = An. By Lemma 3.9, we can get adj(A) = An−1.
Thus, (adjA)+ = (An−1)+ = An−1.

Corollary 3.11. Let A = (aij) ∈Mn(L). If A is reflexive, then

(1) A ≤ A2;

(2) aii = a2
ii = a3

ii = · · · = an
ii = 1 for all i ∈N;

(3) A converges to Ak(A) with k(A) ≤ n − 1;
(4) (adjA)+ = An−1;

(5) ((adjA)+)+ = An−1.

Proof. From Propositions 3.10 and 3.8, the proof is obvious.
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Proposition 3.12. Let A = (aij) ∈Mn(L). If L has no nilpotent elements and A is nilpotent, then

(1) (adjA)2 = 0;

(2) (adjA)+ = adjA.

Proof. (1) The proof can be seen in [23].
(2) Form (1), the proof is obvious.

Proposition 3.13. Let A = (aij) ∈Mn(L), A+ = (tij)n×n, (In +A)+ = (t̃ij)n×n, then

(1) (In +A)+ = (In +A)n = In +
∑n

l=1 A
l;

(2) (In +A)+ = (In +A)n−1 = In +
∑n−1

l=1 Al;

(3) tij =
∑n

l=1 a
l
ij = t̃ij (for all i, j ∈N and i /= j).

Proof. (1) Since (In +A) is reflexive, we have (In +A) is increasing. By Lemma 3.1, we can get
the conclusion.

(2) By Corollary 3.11, (In +A) converges to (In +A)k(In+A) with k(In +A) ≤ n− 1. Thus,
the conclusion is obtained.

(3) From (1) and (2), the proof is obvious.

At the end of this section, we may establish the following algorithm to find the (A+)ij
(i /= j).

Let A ∈Mn(L), A+ = (tij)n×n, (In +A)+ = (t̃ij)n×n, and B = In +A.

Step 1. Compute successively

B2, B22 , . . . , B2p , . . . ,
(
p ∈ Z+

)
. (3.6)

In (3.6), find p ≤ k − 1 such that B2p−1 /=B2p , but B2p = B2p+1 . Then, (In +A)+ = B2p . Go to Step 2.

Step 2. Find (A+)ij (i /= j).
Let tij = t̃ij (i /= j). Stop.

4. Convergence of Powers of Transitive Incline Matrices

In this section, the convergence of powers of transitive incline matrices in Mn(L) will be
discussed.

Definition 4.1. Let A = (aij) ∈Mn(L). For any i, j ∈ N, if aijaik /=aik ⇒ aijakj = akj holds for
all k ∈N, then A is called a strongly transitive matrix.

Theorem 4.2. If A = (aij) ∈Mn(L) is a strongly transitive matrix, then A is transitive.

Proof. Since A is strongly transitive, for any i, j ∈ N, we have aijaik = aik for all k ∈ N or
aijaik /=aik and aijakj = akj for all k ∈N.

Case 1. For any i, j ∈N, suppose aijaik = aik for all k ∈N, then we can get aij ≥ aijaik = aik ≥
aikakj , so aij ≥

∑n
k=1 aikakj = a2

ij , which means that A is transitive.
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Case 2. For any i, j ∈ N, suppose aijaik /=aik and aijakj = akj for all k ∈ N, then we can get
aij ≥ aijakj = akj ≥ aikakj , so aij ≥

∑n
k=1 aikakj = a2

ij , which means thatA ≥ A2. This completes
the proof.

Remark 4.3. If A is transitive, but A is not necessary to be a strongly transitive matrix.

Example 4.4. Consider the cline L = {0, a, b, c, 1} whose diagram is as Figure 1.
Let now

A =

(
c a

b c

)

. (4.1)

Then, A2 ≤ A which means that A is transitive. But a11a12 = ca/=a12 = a (because
ca < a) � a11a21 = cb = a21 = b (because cb < b), which means that A is not a strongly
transitive matrix.

Theorem 4.5. Let A = (aij) ∈Mn(L). If A ≥ A2 and aii ∈ I(L) (for all i ∈N), then

(1) aii = a2
ii = · · · = an

ii for all i ∈N;

(2) A converges to Ak(A) with k(A) ≤ n.

Proof. (1) By the hypothesis A ≥ A2, it follows that Ak ≥ Ak+1 (for all k ∈ N). Hence, An ≥
An+1 and aii ≥ as

ii (for all s ∈N). Since aii ∈ I(L), we can get aii = aii · · ·aii ≤ as
ii (for all s ∈N).

Thus aii = as
ii and as

ii ∈ I(L).
(2) By (1), it is sufficient to verify An ≤ An+1.
Now, any term T of the (i, j)th entry an

ij of A
n is of the form aii1ai1i2 · · ·ain−1j , where 1 ≤

i1, i2, . . . , in−1 ≤ n. Since the number of indices in T is greater than n, there must be two indices
iu and iv such that iu = iv for some u, v (0 ≤ u < v ≤ n, i0 = i, in = j). Then, aii1ai1i2 · · ·ain−1j =
aii1ai1i2 · · ·aiu−1iuaiuiu+1 · · ·aiv−1ivaiviv+1 · · ·ain−1j ≤ aii1ai1i2 · · ·aiu−1iua

v−u
iuiu

aiviv+1 · · ·ain−1j (because
aiuiu+1 · · ·aiv−1iv is a term of av−u

iuiu
) = aii1ai1i2 · · · aiu−1iua

v−u
iuiu

av−u
iuiu

aiviv+1 · · ·ain−1j (because (1)

aii = as
ii (for all i, s ∈ N) and aii ∈ I(L)) ≤ a

n+(v−u)
ij (v − u ≥ 1) (because

aii1ai1i2 · · ·aiu−1iua
v−u
iuiu

av−u
iuiu

aiviv+1 · · ·ain−1j is the sum of some term in a
n+(v−u)
ij ) ≤ an+1

ij (because
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Ak ≥ Ak+1 for any k ∈ N). Thus, T ≤ an+1
ij , and so an

ij ≤ an+1
ij . Therefore, An ≤ An+1. This

completes the proof.

Corollary 4.6. If A = (aij) ∈Mn(L) is strongly transitive, then A converges to Ak(A) with k(A) ≤
n.

Proof. Since A is strongly transitive, by Theorem 4.2, we have A ≥ A2 and aii ∈ I(L) (for all
i ∈N), the conclusion is obtained.

Theorem 4.7. LetA = (aij) ∈Mn(L) be transitive. If B = (bij) ∈Mn(I(L)) and diag(A) ≤ B ≤ A,
where diag(A) = (cij) with cii = aii (for all i ∈N) and cij = 0 (i /= j, i, j ∈N). Then,

(1) B converges to Bk(B) with k(B) ≤ n;

(2) ifA satisfies akk ≥
∑n

i=1 aki (or akk ≥
∑n

i=1 aik) for some k inN, then B converges to Bk(B)

with k(B) ≤ n − 1;

(3) if B satisfies bkk ≥
∑n

i=1 bki (or bkk ≥
∑n

i=1 bik) for some k in N, then B converges to Bk(B)

with k(B) ≤ n − 1.

Proof. (1) Firstly, bii = aii (for all i ∈ N) since diag(A) ≤ B ≤ A. Since bii ∈ I(L), we have
aii ∈ I(L). By Theorem 4.5, we can get aii = a2

ii = · · · = an
ii for all i ∈N.

It follows that any term T of the (i, j)th entry bnij of B
n is of the form bii1bi1i2 · · · bin−1j ,

where 1 ≤ i1, i2, . . . , in−1 ≤ n. Since {i, i1, i2, . . . , in−1, j} ⊂ {1, 2, . . . , n} and n + 1 > n, there
are u, v such that iu = iv (0 ≤ u < v ≤ n, i0 = i, in = j). Then, T ≤ biuiu+1 · · · biv−1iv and
T ≤ bii1bi1i2 · · · biu−1iubiviv+1 · · · bin−1j . Since A is transitive, we have A ≥ Ak for all k ≥ 1, and so
aij ≥ ak

ij for all i, j ∈ N. Thus, bv−u−1iuiu
≥ biuiu (because B ∈ I(L)) = aiuiu = av−u

iuiu
≥ bv−uiuiu

(because
A ≥ B) ≥ biuiu+1 · · · biv−1iv ≥ T . Since bii1bi1i2 · · · biu−1iubv−u−1iuiu

biviv+1 · · · bin−1j is the sum of some term
in bn−1ij , we have bn−1ij ≥ bii1bi1i2 · · · biu−1iubv−u−1iuiu

biviv+1 · · · bin−1j ≥ T (because B ∈ In(L)), and so
bn−1ij ≥ bnij (because T is any term of bnij). Thus, B

n−1 ≥ Bn.
Certainly, Bn ≥ Bn+1 ≥ Bn+2 ≥ · · · .
On the other hand, for any term T = bii1 · · · bin−1j of bnij , there must be two indices

iu and iv such that iu = iv for some u, v (0 ≤ u < v ≤ n, i0 = i, in = j). Then, T =
bii1bi1i2 · · · bin−1j = bii1bi1i2 · · · biu−1iubiuiu+1 · · · biv−1iv biviv+1 · · · bin−1j ≤ bii1bi1i2 · · · biu−1iubv−uiuiu

biviv+1 · · · bin−1j
(because biuiu+1 · · · biv−1iv is a term of bv−uiuiu

) = bii1bi1i2 · · · biu−1iubv−uiuiu
bv−uiuiu

biviv+1 · · · bin−1j(because B ∈
Mn(I(L))) ≤ b

n+(v−u)
ij (because bii1bi1i2 · · · biu−1iubv−uiuiu

bv−uiuiu
biviv+1 · · · bin−1j is the sum of some term

in b
n+(v−u)
ij ;v − u ≥ 1) ≤ bn+1ij (because Bk ≥ Bk+1 for any k ≥ n − 1). Thus, T ≤ bn+1ij , and so

bnij ≤ bn+1ij . Therefore, Bn ≤ Bn+1.
Consequently, we have Bn = Bn+1. This completes the proof.
(2) By the proof of (1), we have Bn ≤ Bn−1. Hence, Bn−1 ≥ Bn ≥ Bn+1 ≥ Bn+2 ≥ · · · . In the

following, we will show that Bn−1 ≤ Bn. It is clear that any term T of the (i, j)th entry bn−1ij of
Bn−1 is of the form bii1bi1i2 · · · bin−2j , where 1 ≤ i, ii, i2, . . . , in−2, j ≤ n. Let i0 = i and in−1 = j.

Case 1. If iu = iv for some u and v (u < v, v − u ≥ 1), then T =
bii1bi1i2 · · · bin−2j = bii1bi1i2 · · · biu−1iubiuiu+1 · · · biv−1iv biviv+1 · · · bin−2j ≤ bii1bi1i2 · · · biu−1iubv−uiuiu

biviv+1 · · · bin−2j
(because biuiu+1 · · · biv−1iv is a term of bv−uiuiu

) = bii1bi1i2 · · · biu−1iubv−uiuiu
bv−uiuiu

biviv+1 · · · bin−2j (because

B ∈ Mn(I(L))) ≤ b
n−1+(v−u)
ij (because bii1bi1i2 · · · biu−1iubv−uiuiu

bv−uiuiu
biviv+1 · · · bin−2j is the sum of some
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term in b
n−1+(v−u)
ij ) ≤ bnij (because Bn−1 ≥ Bn ≥ Bn+1 ≥ · · · ). Thus, T ≤ bnij , and so bn−1ij ≤ bnij .

Therefore, Bn−1 ≤ Bn.

Case 2. Suppose that iu /= iv for all u/=v. By the hypothesis akk ≥
∑n

i=1 aki for some k, we have
biuiu = aiuiu ≥

∑n
i=1 aiui ≥

∑n
i=1 biui (because A ≥ B) ≥ biuiu+1 . Then, T = bii1bi1i2 · · · bin−2j =

bii1bi1i2 · · · biu−1iubiuiu+1biu+1iu+2 · · · bin−2j = bii1bi1i2 · · · biu−1iubiuiu+1biuiu+1biu+1iu+2 · · · bin−2j (because B ∈
Mn(I(L))) ≤ bii1bi1i2 · · · biu−1iubiuiu+1biuiubiu+1iu+2 · · · bin−2j(because biuiu ≥ biuiu+1) ≤ bnij (because
bii1bi1i2 · · · biu−1iubiuiu+1biuiubiu+1iu+2 · · · bin−2j is a term of bnij). Thus, T ≤ bnij , and so bn−1ij ≤ bnij .
Therefore, Bn−1 ≤ Bn.

The case of akk ≥
∑n

i=1 aik is similar to that of the hypothesis akk ≥
∑n

i=1 aki.
Consequently, we have Bn−1 = Bn.

(3) The proof of (3) is similar to that of (2). This completes the proof.

Theorem 4.7 generalizes and develops Theorem 4.1 of Tan [17].

5. Compositions of Transitive Matrices

In this section, we construct a transitive matrix from given incline matrices and construct a
new incline matrix with some special properties from transitive matrices. We know that any
idempotent matrix is also a transitive matrix.

Theorem 5.1. LetA = (aij) ∈Mn(L). IfA is transitive and row diagonally dominant, then B = (bij)
is idempotent, where bij = aijaji.

Proof. For any i, j in N, b2ij =
∑n

k=1 bikbkj =
∑n

k=1 aikakiakjajk =
∑n

k=1(aikakj)(ajkaki) ≤
∑n

k=1(aijaji) (because A ≥ A2) =
∑n

k=1 bij = bij . Thus, B2 ≤ B. On the other hand, since
b2ij =

∑n
k=1 bikbkj ≥ biibij = aiiaiiaijaji = aijaji (because A is row diagonally dominant) = bij .

Thus, B2 ≥ B. Therefore, B2 = B. This completes the proof.

Definition 5.2. A ◦D = C iff cij =
∏n

k=1(aik + dkj) for any i, j ∈N.

Theorem 5.3. LetA = (aij) ∈Mn(L) be a symmetric and nearly irreflexive matrix. Then, the matrix
M = C ◦A is idempotent, where C = (cij) with cii = ci ∈ L, cij = 0 (i /= j).

Proof. By the definitions of the matrices A, C, and M, we have

mij =

⎛

⎝
∏

l /= i

alj

⎞

⎠
(
ci + aij

)

=

⎛

⎝
∏

l /= i

ajl

⎞

⎠
(
ci + aij

)

=

⎧
⎪⎨

⎪⎩

aii +
∏

l /= i

alici, i = j,

ajj , i /= j.

(5.1)

The (i, j)th entry of M2 ism2
ij =
∑n

k=1 mikmkj .
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Case 1 (i /= j). In this case, m2
ij =

∑
k /= i,j mikmkj + miimij + mijmjj =

∑
k /= i,j akkajj + (aii +

∏
l /= ialici)ajj + ajj(ajj +

∏
l /= jaljcj) = ajj(

∑n
k=1 akk +

∏
l /= ialici +

∏
l /= jaljcj) = ajj (because

A is nearly irreflexive) = mij .

Case 2 (i = j). In this case,m2
ii =
∑

l /= i milmli+mii =
∑

l /= i allaii+aii+
∏

k /= iakici = aii+
∏

k /= iakici
(because A is nearly irreflexive) = mii.

Consequently, we can get M2 = M. Therefore, M = C ◦A is idempotent.

Theorem 5.3 generalizes Theorem 3.5 of Tan [20].

Lemma 5.4. Let A,B ∈Mm×n(L), C ∈Mn×l(L) and D ∈Mp×m(L). Then,

(1) (B ◦ C)T = CT ◦ BT ;

(2) If A ≤ B, then D ◦A ≤ D ◦ B and A ◦ C ≤ B ◦ C.

The proof is trivial.

Lemma 5.5. LetA = (aij) ∈Mm×n(L) be a nearly irreflexive matrix, thenA◦AT is nearly irreflexive
and symmetric.

Proof. Let S = A◦AT . Then, sii =
∏m

l=1(ail+ail) =
∏m

l=1ail = aii (becauseA is nearly irreflexive).
Thus, siisij = aii(

∏m
l=1(ail + ajl)) = aii = sii, that is, S = A ◦ AT is nearly irreflexive. By

Lemma 5.4, we have (A ◦AT )T = (AT )T ◦AT = A ◦AT .

Lemma 5.5 generalizes Theorem 3.3 of Tan [20].

Corollary 5.6. Let A = (aij) ∈ Mn(L) be a nearly irreflexive matrix. Then, C ◦ (A ◦ AT ) is
idempotent, where C = (cij) with cii = ci ∈ L, cij = 0 (i /= j).

Proof. It follows from Theorem 5.3 and Lemma 5.5.

Proposition 5.7. Let A = (aij) ∈Mn(L) be a symmetric and nearly irreflexive matrix. Then,

(1) A ◦A ≤ A;

(2) A ◦A is symmetric and nearly irreflexive.

Proof. (1) Let R = A ◦A. Then, rij =
∏n

l=1(ail + alj) ≤ aii + aij = aiiaij + aij (because A is nearly
irreflexive) = aij , so that A ◦A ≤ A.

(2) Let R = A ◦ A. Since rji =
∏n

l=1(ajl + ali) =
∏n

l=1(ail + alj) = rij , we have R is
symmetric. Since rii =

∏n
l=1(ail + ali) =

∏n
l=1ail = aii (because A is nearly irreflexive), we can

get riirij = aii(
∏n

l=1(ail + alj)) = aii = rii. Thus, R is nearly irreflexive.

Proposition 5.7 generalizes Proposition 3.1 of Tan [20].

Corollary 5.8. LetA = (aij) ∈Mn(L) be a symmetric and nearly irreflexive matrix. Then,C◦(A◦A)
is idempotent, where C = (cij) with cii = ci ∈ L, cij = 0 (i /= j).

Proof. It follows from Theorem 5.3 and Proposition 5.7.
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Corollary 5.8 generalizes Corollary 3.7 (1) of Tan [20].

Corollary 5.9. Let A = (aij) ∈ Mn(L) be a nearly irreflexive matrix. Then, (A ◦ AT ) ◦ C is
idempotent, where C = (cij) with cii = ci ∈ L, cij = 0 (i /= j).

The proof is trivial.
Corollary 5.9 generalizes Corollary 3.8 of Tan [20].

Proposition 5.10. Let A ∈Mn(L) be irreflexive and transitive. Then,

(1) A ◦AT = 0, 0 ∈Mn(L);

(2) AT ◦A = 0, 0 ∈Mn(L).

Proof. (1) Let R = A ◦ AT . Then, rij =
∏n

l=1(ail + ajl) ≤ (aii + aji)(aij + ajj) (because A is
irreflexive) = aijaji ≤ aii (because A is transitive) = 0. Therefore, R = 0.

The proof of (2) is similar to that of (1). This proves the Proposition.

Proposition 5.10 generalizes Proposition 3.9 of Tan [20].

Definition 5.11. An incline L̃ is said to be a Brouwerian incline if for any a, b ∈ L, there exists
an element b → a ∈ L̃ such that bx ≤ a⇔ x ≤ b → a.

Obviously, b → a is the largest element x ∈ L̃ satisfying bx ≤ a.

Definition 5.12. A← D = C iff cij =
∏n

k=1(dkj → aik) for any i, j ∈N.

Lemma 5.13. Let L̃ be a Brouwerian incline. Then, for any a ∈ L̃,

(1) a → a = 1;

(2) 1 → a = a.

The proof is trivial.

Theorem 5.14. Let A ∈Mm×n(L̃). Then, A← AT is reflexive and transitive.

Proof. Let R = A ← AT . Then, rij =
∏n

k=1(ajk → aik). Obviously, rii =
∏n

k=1(aik → aik) = 1
(by Lemma 5.13 (1)). Thus, R is reflexive. Furthermore, since ajk(alk → aik)(ajk → alk) =
(alk → aik)(ajk(ajk → alk) ≤ (alk → aik)alk ≤ aik, we have (alk → aik)(ajk → alk) ≤ ajk →
aik. Therefore, rilrlj =

∏n
k=1(alk → aik)(ajk → alk) ≤

∏n
k=1(ajk → aik) = rij , and so R2 ≤ R.

This proves the Theorem.

Theorem 5.14 generalizes Lemma 4.1 of Tan [20].

Theorem 5.15. Let A ∈Mn(I(L̃)). Then, the following conditions are equivalent.

(1) A is reflexive and transitive;

(2) A← AT = A.

Proof. (1) ⇒ (2). Let R = A ← AT . Then, rij =
∏n

k=1(ajk → aik) ≤ ajj → aij = 1 → aij = aij

(by Lemma 5.13(2)), and so R ≤ A. On the other hand, since aik ≥ aijajk for all i, j, k ∈ N, we
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have aij ≤ ajk → aik, and so aij ≤
∏n

k=1(ajk → aik) (because A ∈ Mn(I(L̃)))= rij , that is,
A ≤ R. Consequently, we have R = A← AT = A.

(2)⇒ (1). It follows from Theorem 5.14.

Theorem 5.15 generalizes Proposition 4.2 of Tan [20].

Theorem 5.16. Let A ∈Mm×n(L̃). Then, (A← AT )A = A.

Proof. Let R = (A ← AT )A. Then, rij =
∑m

k=1
∏n

l=1(akl → ail)akj ≤
∑m

k=1 akj(akj → aij) ≤∑m
k=1 aij = aij , so that R ≤ A. On the other hand, sinceA← AT is reflexive (by Theorem 5.14),

we have R = (A← AT )A ≥ A. Therefore, (A← AT )A = A.

Theorem 5.16 generalizes Lemma 4.3 of Tan [20].

6. On Canonical Form of an Incline Matrix

In this section, we will discuss the canonical form of an incline matrix. Let A be an n × n
incline matrix. If there exists an n × n permutation matrix P such that F = PAPT = (fij)
satisfies fij/<fji for i > j then, F is called a canonical form of A. The main results obtained
here generalize the previous results on canonical form of a lattice matrix (see, e.g., [17]) and
a fuzzy matrix (see, e.g., [12]).

Definition 6.1. Let A = (aij) ∈Mn(L). For any i, j, k ∈ N with i /= j, i /= k, j /= k, if aik > aki and
akj > ajk, we have aij > aji. Then, A is called a especially strongly transitive matrix.

Lemma 6.2. If A = (aij) ∈Mn(L) is especially strongly transitive matrix and A is put in the block
forms

A =

(
a11 α1

α2 A1

)

=

(
A2 β1

β2 ann

)

, (6.1)

where α1, α
T
2 , β1, β

T
2 ∈ L1×(n−1) and A1, A2 ∈ Mn−1(L), then A1, A2, and PAPT are especially

strongly transitive matrices for any permutation matrix P .

The proof is similar to that of Lemma 3.1 in [14].

Lemma 6.3. LetA = (aij) ∈Mm×n(L) and B = (bij) ∈Mn×m(L). IfA/<BT , thenAPT/<BTPT holds
for any n × n permutation matrix P .

The proof is omitted.

Theorem 6.4. If A = (aij) ∈Mn(L) is especially strongly transitive, then A has a canonical form.

The proof is similar to that of Theorem 3.1 in [14].

Theorem 6.5. Let L be an incline and n an integer with n ≥ 4. Then, for any n × n transitive matrix
A over L, there exists an n × n permutation matrix P such that F = PAPT satisfies fij/<fji for i > j
only if L is a linear incline.
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Proof. Suppose that L is not a linear incline. Then, w(L) ≥ 2, and so that there must be two
elements a and c in L such that a‖c. Therefore, ac < a < a + c and ac < c < a + c. Now, let
A = aE12 + cE23 + aE34 + cE41 + acJn ∈Mn(L), where Jn = (1)n×n.

It is easy to see that A2 ≤ A. This means A is transitive. Let P be any n × n
permutation matrix. Then, there exists a unique permutation τ of the set {1, 2, . . . , n} such
that P =

∑n
i=1 Eτ(i)i, and so PT =

∑n
i=1 Eiτ(i). Therefore, F = (fij)n×n = PAPT = aEτ(1)τ(2) +

cEτ(2)τ(3) + aEτ(3)τ(4) + cEτ(4)τ(1) + acJn. Thus, fτ(1)τ(2) = fτ(3)τ(4) = a, fτ(2)τ(3) = fτ(4)τ(1) = c and
fτ(2)τ(1) = fτ(4)τ(3) = fτ(3)τ(2) = fτ(1)τ(4) = ac. Since τ is a permutation, we have τ(i)/= τ(j)(i /= j).
By the hypothesis F = PAPT satisfies fij/<fji for i > j, we have τ(1) > τ(2), τ(2) > τ(3),
τ(3) > τ(4), and τ(4) > τ(1). This implies τ(1) > τ(1), which leads to a contradiction. This
proves the Theorem.

Theorem 6.5 generalizes Theorem 5.2 of Tan [17].

Remark 6.6. It is easy to verify that A always has a canonical form for any transitive matrix A ∈
M2(L).

Acknowledgments

This work was supported by the Foundation of National Nature Science of China (Grant no.
11071 178) and the Fostering Plan for Young and Middle Age Leading Research of UESTC
(Grant no. Y020 18023601033).

References

[1] S.-C. Han and H.-X. Li, “Indices and periods of incline matrices,” Linear Algebra and its Applications,
vol. 387, pp. 143–165, 2004.

[2] D. Dubois and H. Prade, Fuzzy Sets and Systems, vol. 144 of Mathematics in Science and Engineering,
Academic Press, New York, NY, USA, 1980.

[3] J. A. Goguen, “L-fuzzy sets,” Journal of Mathematical Analysis and Applications, vol. 18, pp. 145–174,
1967.

[4] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, NY, USA, 1975.
[5] S. V. Ovchinnikov, “Structure of fuzzy binary relations,” Fuzzy Sets and Systems, vol. 6, no. 2, pp. 169–

195, 1981.
[6] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Information Sciences, vol. 3, pp. 177–200, 1971.
[7] V. Tahani, “A fuzzy model of document retrieval systems,” Information Processing Management, vol.

12, pp. 177–187, 1976.
[8] S. Tamura, S. Higuchi, and K. Tanaka, “Pattern classification based on fuzzy relations,” IEEE

Transictions on Systems, Man, and Cybernetics, vol. 1, no. 1, pp. 61–66, 1971.
[9] H. Hashimoto, “Transitivity of generalized fuzzy matrices,” Fuzzy Sets and Systems, vol. 17, no. 1, pp.

83–90, 1985.
[10] W. Kołodziejczyk, “Convergence of powers of s-transitive fuzzy matrices,” Fuzzy Sets and Systems,

vol. 26, no. 1, pp. 127–130, 1988.
[11] H. Hashimoto, “Convergence of powers of a fuzzy transitive matrix,” Fuzzy Sets and Systems, vol. 9,

no. 2, pp. 153–160, 1983.
[12] H. Hashimoto, “Canonical form of a transitive fuzzy matrix,” Fuzzy Sets and Systems, vol. 11, no. 2,

pp. 157–162, 1983.
[13] W. Kołodziejczyk, “Canonical form of a strongly transitive fuzzy matrix,” Fuzzy Sets and Systems, vol.

22, no. 3, pp. 297–302, 1987.
[14] C. G. Hao, “Canonical form of strongly transitive matrices over lattices,” Fuzzy Sets and Systems, vol.

45, no. 2, pp. 219–222, 1992.
[15] X. T. Peng, “A property of matrices over ordered sets,” Fuzzy Sets and Systems, vol. 19, no. 1, pp. 47–50,

1986.



16 Journal of Applied Mathematics

[16] H. Hashimoto, “Transitivity of fuzzy matrices under generalized connectedness,” Fuzzy Sets and
Systems, vol. 29, no. 2, pp. 229–234, 1989.

[17] Y.-J. Tan, “On the transitive matrices over distributive lattices,” Linear Algebra and its Applications, vol.
400, pp. 169–191, 2005.

[18] K. H. Kim, Boolean Matrix Theory and Applications, vol. 70 of Monographs and Textbooks in Pure and
Applied Mathematics, Marcel Dekker, New York, NY, USA, 1982.

[19] Y.-j. Tan, “On the powers of matrices over a distributive lattice,” Linear Algebra and its Applications,
vol. 336, pp. 1–14, 2001.

[20] Y.-j. Tan, “On compositions of lattice matrices,” Fuzzy Sets and Systems, vol. 129, no. 1, pp. 19–28, 2002.
[21] J.-S. Duan, “The transitive closure, convergence of powers and adjoint of generalized fuzzymatrices,”

Fuzzy Sets and Systems, vol. 145, no. 2, pp. 301–311, 2004.
[22] M. P. Zhou and Y. J. Tan, “An open problem on incline matrices,” Journal of Fuzhou University, vol. 34,

no. 3, pp. 313–315, 2006.
[23] S.-C. Han, H.-X. Li, and J.-Y. Wang, “On nilpotent incline matrices,” Linear Algebra and its Applications,

vol. 406, pp. 201–217, 2005.


