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This paper presents a global optimization method for solving general nonlinear programming
problems subjected to box constraints. Regardless of convexity or nonconvexity, by introducing
a differential flow on the dual feasible space, a set of complete solutions to the original problem
is obtained, and criteria for global optimality and existence of solutions are given. Our theorems
improve and generalize recent known results in the canonical duality theory. Applications to a
class of constrained optimal control problems are discussed. Particularly, an analytical form of the
optimal control is expressed. Some examples are included to illustrate this new approach.

1. Introduction

In this paper, we consider the following general box constrained nonlinear programming
problem (the primal problem () in short):

(P) : min{P(x) | x € X,}, (1.1)

where X, = {x € R" | &' < x < ¢*} is a feasible space, ¢/, ¢* € R" are two given vectors,
and P(x) is twice continuously differentiable in R". Here, we discuss the primal problem (/)
involving nonconvexity or convexity in the objective function.

Problem (1.1) appears in many applications, such as engineering design, phase transi-
tions, chaotic dynamics, information theory, and network communication [1, 2]. Particularly,
if &/ = {0} and ¢ = {1}, the problem leads to one of the fundamental problems in
combinatorial optimization, namely, the integer programming problem [3]. By the fact that
the feasible space A, is a closed convex subset of R", the primal problem has at least one
global minimizer. When () is a convex programming problem, a global minimizer can be
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obtained by many well-developed nonlinear optimization methods based on the Karush-
Kuhn-Tucker (or simply KKT ) optimality theory [4]. However, for () with nonconvexity in
the objective function, traditional KKT theory and direct methods can only be used for solving
(D) to local optimality. So, our interest will be mainly in the case of P(x) being nonconvex
on X, in this paper. For special cases of minimizing a nonconvex quadratic function subject
to box constraints, much effort and progress have been made on locating the global optimal
solution based on the canonical duality theory by Gao (see [5-7] for details). As indicated
in [8], the key step of the canonical duality theory is to introduce a canonical dual function,
but commonly used methods are not guaranteed to construct it since the general form of the
objective function given in (1.1). Thus, there has been comparatively little work in global
optimality for general cases.

Inspired and motivated by these facts, a differential flow for constructing the canonical
dual function is introduced and a new approach to solve the general (especially nonconvex)
nonlinear programming problem (/) is investigated in this paper. By means of the canonical
dual problem, some conditions in global optimality are deduced, and global and local
extrema of the primal problem can be identified. An application to the linear-quadratic
optimal control problem with constraints is discussed. These results presented in this paper
can be viewed as an extension and an improvement in the canonical duality theory [8-10].

The paper is organized as follows. In Section 2, a differential flow is introduced to
present a general form of the canonical dual problem to (). The relation of this transfor-
mation with the classical Lagrangian method is discussed. In Section 3, we present a set of
complete solutions to (/) by the way presented in Section 2. The existence of the canonical
dual solutions is also given. We give an analytic solution to the box-constrained optimal
control problem via canonical dual variables in Section 4. Meanwhile, some examples are
used to illustrate our theory.

2. A Differential Flow and Canonical Dual Problem

In the beginning of this paper, we have mentioned that our primal goal is to find the global
minimizers to a general (mainly nonconvex) box-constrained optimization problem (). Due
to the assumed nonconvexity of the objective function, the classical Lagrangian L(x,0) is
no longer a saddle function, and the Fenchel-Young inequality leads to only a weak duality
relation: min P > max P*. The nonzero value 6 = min P(x) — max P*(0) is called the duality
gap, where possibly, 6 = oo. This duality gap shows that the well-developed Fenchel-Moreau-
Rockafellar duality theory can be used mainly for solving convex problems. Also, due to
the nonconvexity of the objective function, the problem may have multiple local solutions.
The identification of a global minimizer has been a fundamentally challenging task in global
optimization. In order to eliminate this duality gap inherent in the classical Lagrange duality
theory, a so-called canonical duality theory has been developed [2, 9]. The main idea of this
new theory is to introduce a canonical dual transformation which may convert some nonconvex
and/or nonsmooth primal problems into smooth canonical dual problems without generating
any duality gap and deduce some global solutions. The key step in the canonical dual
transformation is to choose the (nonlinear) geometrical operator A(x). Different forms of
A(x) may lead to different (but equivalent) canonical dual functions and canonical dual
problems. So far, in most literatures related, the canonical dual transformation is discussed
and the canonical dual function is formulated in quadratic minimization problems (i.e., the
objective function is the quadratic form). However, for the general form of the objective
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function given in (1.1), in general, it lacks effective strategies to get the canonical dual
function (or the canonical dual problem) by commonly used methods. The novelty of this
paper is to introduce the differential flow created by differential equation (2.6) to construct
the canonical dual function for the problem (/). Lemma 2.5 guarantees the existence of the
differential flow; Theorem 2.3 shows that there is no duality gap between the primal problem
() and its canonical dual problem (P?) given in (2.7) via the differential flow; Meanwhile,
Theorems 3.1-3.4 use the differential flow to present a global minimizer. In addition, the
idea to introduce the set S of shift parameters is closely following the works by Floudas et
al. [11, 12]. In [12], they developed a global optimization method, aBB, for general twice-
differentiable constrained optimizations proposing to utilize some a parameter to generate
valid convex under estimators for nonconvex terms of generic structure.

The main idea of constructing the differential flow and the canonical dual problem
is as follows. For simplicity without generality, we assume that &% = —¢' = —¢'/2 = {,\/¢}},
namely, £, = {x € R" | —\/¢; < x; <\/¢;}, where ¢; #0 for all i.

Let S denote the dual feasible space

S = {p eR"| [V2P(x) + Diag(p)] >0,Vx € xa}, (2.1)
where R := {p € R" | p > 0}, and Diag(p) € R™" is a diagonal matrix with p;,i =1,2,...,n,

as its diagonal entries.

Lemma 2.1. The dual feasible space S is an open convex subset of R} If p € S, then p € S for any
p2p.

Proof. Notice that P(x) is twice continuously differentiable in R”. For any x € X,, the Hessian
matrix V2P(x) is a symmetrical matrix. We know that for any given Q = QT € R™", {p € R" |
Q + Diag(p) > 0} is a convex set. By the fact that the intersection of any collection of convex
sets is convex, the dual feasible space S is an open convex subset of RY. In addition, it follows
from the definition of .S that p € S for any p > p. This completes the proof. O

Suppose that p* € S and a nonzero vector x* € X, satisfy
VP(x*) + Diag(p*)x* = 0. (2.2)
A differential flow x(p) is introduced over a relative small neighborhood of p* such that
VP(x(p)) + Diag(p)x(p) =0, x(p") =x", (23)
which is equivalent to
V2P (x(p))Vx(p) + Diag(p) Vx(p) + Diag(x(p)) =0, x(p") =, (24)

where Vx(p) is the Jacobian of x and is a matrix whose ijth entry is equal to the partial
derivative 0x;/9p;. Here, we hope to preserve invertibility of the matrix V2P(x(p)) + Diag(p)
on the choice of the neighborhood of p*.
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Let
H(p,x(p)) = ~[V*P(x(p)) + Diag(p)] - 25)

Then, a differential flow x(p) can be defined by the following differential system:

dxi(p) = Hu(p)x1(p)dp1 + Hi(p)x2(p)dpa + -+ + Hin(p) Xn(p) dpn,

(2.6)
xi(p*)=x;, i=12,...,n,

where H;;(p) is the ijth entry of H(p,x(p)). Based on the Extension theory [13, 14], the
solution x(p) of the differential system (2.6) can be extended to a space in S. The canonical
dual function is defined as

n
pi
PU(p) = P(x(p)) + X5 [ (p) - - (2.7)
i=1
Thus, the canonical dual problem for our primal problem (/) can be proposed as follows
(P4) max{Pd(m = P(x(p)) + X5 [x2(0) - €] 1p e 5}- (28)
i=1

In the following, we show that (P?) is canonically (i.e., with zero duality gap) dual to (0).

Lemma 2.2. Let x(p) be a given flow defined by (2.6), and P%(p) be the corresponding canonical dual
function defined by (2.7). For any p € S, we have

vPi(p) = ([6)-a) S e A [ -a])

(2.9)
V2P (p) = ~Diag(x(p)) [V*P(x(p)) + Diag(p)] " Diag(x(p)).
Proof. Since P%(p) is differentiable, for any p € .S,
PO - op(e(p) 2O L) e + Zp]xxp)a"f(”)
- VP(x(p)) 2 ’+pTD1ag<x<p>> ) e -e] e

_ (VP(x(p)) + Diag(p)x(p)) 2 i 2[x p) - 4.
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It follows from the process (2.2)—(2.6) that

oP(p) _
api -

2 -4 @11)

From (2.6), we have dx;(p)/0p; = H;j(p)xj(p). By (2.11), then

o*p? ox;
ap,-ag;) = xi(p) J;_g = xi(p) Hij (p)x;(p)- (2.12)

By the definition of H(p, x(p)), this concludes the proof of Lemma 2.2. O

By Lemma 2.2, the canonical dual function P4(p) is concave on .S. For a critical point,
p € S, p must be a global maximizer of (P?), and it can be solved by many well-devel-
oped nonlinear programming methods. If p € $ and x(p) € A,, we have 0P%(p)/0p; =
(1/2)[x?(p) — €] < 0, and for any p > p, by negative definiteness of H(x(p), p),

810/2)(2(p) - 8)] _
6p,-

X (P)% = H;i(p)x7(p) <0. (2.13)

Thus for any p > p, x(p) will stay in X, and P%(p) < P4(p).

Theorem 2.3. The canonical dual problem (P?) is perfectly dual to the primal problem () in the
sense that if p € S is a KKT point of P4(p), then the vector X = x(p) is a KKT point of () and

P(x) = P4(p). (2.14)

Proof. By introducing the Lagrange multiplier vector A € R" to relax the inequality constraint
p > 0in S, the Lagrangian function associated with (P%) becomes L(p, ) = P4(p) — ATp.Then
the KKT conditions of (P?) become

VL=VP4(p)-1=0,
(2.15)
ATp=0, 1<0,p>0.

Notice that VP?(p) = ((1/2)[x2(p) — €11, (1/2)[x3(p) = &],..., (1/2)[x%(p) — 2,7 It follows
from conditions (2.15) that x(p) satisfies the complementary conditions of (). By the defi-
nition of the flow x(p), the equation VP(x(p)) + Diag(p)x(p) = 0 holds. This proved that if
p € Sis a KKT point of P4(p), then the vector X = x(p) defined by (2.6) is a KKT point of the
primal problem ().

In addition, we have

Pp) = P(x(p) + 35 [46) - e] = P(x(@) = P 2.16)

This completes the proof. O
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Remark 2.4. Theorem 2.3 shows that by using the canonical dual function (2.7), there is no
duality gap between the primal problem (p) and its canonical dual (P?), that is, 6 = 0. It
eliminates this duality gap inherent in the classical Lagrange duality theory and provides
necessary conditions for searching global solutions. Actually, we replace S in (P?) with
the space Sy, Sy := {p > 0 | det[V>P(x) + Diag(p)] #0, forall x € A,} in the proof of
Theorem 2.3. Moreover, the inequality of det[V?P(x) + Diag(p)] #0, for all x € A, in Sy is
essentially not a constraint as indicated in [5].

Due to introduceing a differential flow x(p), the constrained nonconvex problem can
be converted to the canonical (perfect) dual problem, which can be solved by deterministic
methods. In view of the process (2.2)—(2.6), the flow x(p) is based on the KKT (2.2). In other
words, we can solve equation (2.2) backwards from p* to get the backward flow x(p),p €
3N {0 < p < p*). Then, it is of interest to know whether there exists a pair (x*, p*) satisfying
(2.2).

Lemma 2.5. Suppose that VP(0) #0. For the primal problem ([), there exist a point p* € S and
a nonzero vector x* € X, such that VP (x*) + Diag(p*)x* = 0.

Proof. Since X, is bounded and P(x) is twice continuously differentiable in R", we can choose
a large positive real M € R such that V2P(x) + Diag(Me) > 0, forallx € X, and
supy [(VP(x));| < Mn/¥¢;, i=1,2,...,n (e € R" is an n—vector of all ones). Then, it is easy to
verify that VP(x) + Diag(Me)x < 0 at the point x = —¢'/2, and VP(x) + Diag(Me)x > 0 at the
point x = ¢1/2,

Notice that the function VP(x) + Diag(Me)x is continuous and differentiable in R". It
follows from differential and integral calculus that there is a nonzero stationary point x* € A,
such that VP(x*) + Diag(Me)x* = 0. Let p* = Me € S. Thus, there exist a point p* € S and
a nonzero vector x* € X, satisfying (2.2). This completes the proof. O

Remark 2.6. Actually, Lemma 2.5 gives us some information to search the desired parameter
p*. From Lemma 2.5, we only need to choose a large positive real M € R such that V2P(x) +
Diag(Me) > 0, forall x € X, and sup, |(VP(x)),| < M\/¢;, i=1,2,...,n. Since VP(0) #0,
then it follows from (||V2P(x)||/M) < 1 uniformly in A, that there is a unique nonzero fixed
point x* € X, such that

~VP(x) _

= x* (2.17)

which is equivalent to VP(x*) + Diag(Me)x* = 0 by Brown fixed-point theorem. In [11, 12],
some good algorithms are given to estimate the bounds of ||[V2P(x)|. If there is a positive real
number K such that [|[V2P(x)|| < K, forall x € A,, then a properly large parameter M can
be obtained by the inequalities

(VP(x));

\/Z,

[P || _ K
- M

i <1, M>supy,

', Vi (2.18)
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uniformly on X, for us to use Brown fixed-point theorem. We should choose

(VP(x));

\/Z,

M > max[supxa ” V2P(x) “r Supy,

,Vi]. (2.19)

Finally, let p* = Me which is the desired parameter p* for us. We will discuss to calculate the
parameter p* in detail by the use of the results in [15, 16] with the future works.

Remark 2.7. Moreover, for the proper parameter p*, it is worth investigating how to get the
solution x* of (2.2) inside of A,. For this issue, when P(x) is a polynomial, we may be referred
to [17]. There are results in [17] on bounding the zeros of a polynomial. We may consider for
a given bounds to determine the parameter by the use of the results in [17] on the relation
between the zeros and the coefficients. We will discuss it with the future works as well.
However, the KKT conditions are only necessary conditions for local minimizers to satisfy
for the nonconvex case of (). To identify, a global minimizer among all KKT points remains
a key task for us to address in the next section.

3. Complete Solutions to Global Optimization Problems

Theorem 3.1. Suppose that p is a KKT point of the canonical dual function P4(p) and X = x(p)
defined by (2.6). If p € S, then p is a global maximizer of (P%) on S, and X is a global minimizer of
(D) on X, and

P(%) = minP(x) = maxP*(p) = P*(p). (3.1)

Proof. If p € S is a KKT point of (P9) on 3, by (2.15), x(p) stays in A, that is, (1/2)(x?(ﬁ) -
¢;) <0 for all i. By Lemma 2.1 and 2.2, it is easy to verify that x(p) € X, and P4(p) > P4 (p)
for any p > p.

For any given parameter p, (p > p), we define the function f,(x) as follows:

fox) = P + 22 (2 - ). (32)
i=1

It is obvious that P(x) > f,(x) for all x € X,. Since f,(x) is twice continuously differentiable
in R", there exists a closed convex region & containing X, such that on &,

7{pxo) + 35 [0 -] | = 7P(x(0) + D)) -0

(3.3)
VZ{P(x) + i%( 2 ei)} = V?P(x) + Diag(p) >0, Vx € X,.
i=1
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This implies that x(p) is the unique global minimizer of f,(x) over &. By (2.7), we have

fulx(e)) = Px(p)) + 35 [xH(6) - &] = P(p). (3.4)
Thus, for any p > p,
P(x) 2 fo(x) 2 min f,(x) = f,(x(p)) = P*(p)- (35)

On the other hand, by the fact that the canonical dual function P?(p) is concave on ., p must
be a global maximizer of (P?) on .S, and we have

maxP(p) = PU) = P(x(p) + 35 [£7) - €] = P(5)). 6

and for all x € X,

P(x) 2 max P*(p) = P(p) = P(3). (3.7)

Thus, x is a global minimizer of (/) on X, and
%) = min P(x) = max P?(p) = P(p).
P() = min P(x) = max P*(p) = P*(p) (3.8)

This completes the proof. O

Remark 3.2. Theorem 3.1 shows that a vector X = x(p) is a global minimizer of the problem
(D) if p € S s a critical solution of (P4). However, for certain given P(x), the canonical dual
function might have no critical point in . For example, the canonical dual solutions could
locate on the boundary of S. In this case, the primal problem (/) may have multiple solutions.

In order to study the existence conditions of the canonical dual solutions, we let 0.5
denote the boundary of .S.

Theorem 3.3. Suppose that P(x) is a given twice continuously differentiable function, S# @0 and
08 #0. If for any given py € 08 and p € S,

)H{}Pd (po + ap) = —co, (3.9)
then the canonical dual problem (P?) has a critical point p € S, and x(p) is a global minimizer to (D).
Proof. We first show that for any given p > 0 € R", p#0,

lim P?(ap) = —o0. (3.10)

a— o
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Notice that there exist a point p* € S and a nonzero vector x(p*) € X,. For any given p,
the inequality agp > p* always holds as ay > 0 becomes large enough. Then for any a > ay,
it follows from Lemma 2.1 and 2.2 that ap € S and x(ap) stays in A,, that is, x*(ap) <
¢; for all i. It means that there exists a large positive real L such that |[P(ap)| < L for a > ay
since P(x) is twice continuously differentiable in R".

By Lemma 2.2, we have

LD — (vri(ap) 7= 32 ) -,

% = —ﬁTDiag(x(aﬁ)) [VZP(x(aﬁ)) + Diag(aﬁ)]_lDiag(x(aﬁ))ﬁ,

(3.11)

where Diag(x(ap))p = (p,x1(ap), p,x2(ap), .. .,;_Jnxn((x/_)))T. For any a > ay, by the definition
of 3, it is easy to see that d>P%(ap)/da® < 0, namely, dP%(ap)/da monotonously decreases
on [ap, +0). Moreover, since x(ap) € X,, we have dP?(ap)/da < 0 by (3.11). Then, P4 (ap)
is monotonously decreasing on [ag, +o0). Thus, to prove (3.10), it is only needed to show that
there exists a positive real & > ay such that

Pi

dri(@p) _3-pi [x2(ap) - &] <0, (3.12)

n
da i-1

which implies that P4(ap) is strictly monotonously decreasing on [a, +0).
Suppose that

Z% [x,?(alﬁ) - ei] =0 (3.13)
i=1

at a point ay > ag. Since p;[x7(a1p) — ¢;] < 0 forall i and p#0, the equation x2(a1p) = &,
holds for some subscript », which means that p x,(a;p) #0. By positive definiteness of
[V2P(x(a1p)) + Diag(aip)], we have dP¥(ai1p)/day = 0 and d*P%(aip)/da? < 0. One can
verify that dP%(ap)/da < 0 on (a1, +c0) since its monotonicity. Obviously, it is very easy
to hold (3.12) if there does not exist a satisfying (3.13). Consequently, there always exists
a positive real @ such that P?(ap) is strictly monotonously decreasing on [a, +o0). It leads to
the conclusion (3.10).

Since P4 : 8 — R is concave and the condition (3.10) holds, if (3.9) holds, then the
canonical dual function P4 (p) is coercive on the open convex set .S. Therefore, the canonical
dual problem (P?) has one maximizer p € .8 by the theory of convex analysis [4, 18]. This
completes the proof. O

Clearly, when V2P(x) > 0 on X,, the dual feasible space .S is equivalent to R" = {p €
R" | p > 0} and Diag(p) € R™" by (2.1). Notice that lim,_, ., P*(ap) = —co for any given p > 0.
Then P4(p) is concave and coercive on R”, and (P?) has at least one maximizer on R”. In this
case, it is then of interest to characterize a unique solution of (©) by the dual variable.
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Let

I:{ie{l,z,...,n} |x§(0)<e,-}, J= (3.14)

Theorem 3.4. If V2P(x) > 0 on X,, the primal problem () has a unique global minimizer x(p)
determined by p € R’} satisfying

pi=0, Viel, x(p)=6, Vie]. (3.15)

Proof. To prove Theorem 3.4, by Theorem 2.3 and 3.1, it is only needed to prove that p is a KKT
point of (P?) in R”. By (3.14), the relations x?(p) < ¢; for all i € I also hold. Since p satisfies
equations x?(p) = ¢; for alli € J, we can verify that x(p) stays in A, and the complementarity
conditions p;(x?(p) — ¢;) = 0, forall i hold. Thus, p is a KKT point of (P9) in R” by (2.9),
(2.15), and x(p) is a unique global minimizer of (/). This completes the proof. O

Before beginning of applications to optimal control problems, we present two exam-
ples to find global minimizers by differential flows.

Example 3.5. As a particular example of (0), let us consider the following one dimensional

nonconvex minimization problem with a box:

min P(x) = le +2x
3 (3.16)

st x2<1.

We have P'(x) = x2 + 2 and P"(x) = 2x, forall x> < 1. By choosing p* = 61/2, we solve the
following equation in {x? < 1}:

X2 +2+6V2x=0 (3.17)

to get a solution x* = -2/ (4 + 3v/2). Next we solve the following boundary value problem of
the ordinary differential equation:

-X -2
X = , o x(6vV2)=———, 2<p<6V2 3.18
2x+p < ) 4+3v2 P (3.18)

To find a parameter such that
x*(p) =1, (3.19)
we get

p=3, (3.20)
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which satisfies
P'(x)+p=2x+3>0, Vx*<1. (3.21)

Let x(3) be denoted by x. To find the value of X, we compute the solution of the following
algebra equation:

xX2+2+3x=0, x*=1 (3.22)

and get x = —1. It follows from Theorem 3.1 that X = -1 is a global minimizer of Example 3.5.

Remark 3.6. In this example, we see that a differential flow is useful in solving a nonconvex
optimization problem. For the global optimization problem, people usually compute the
global minimizer numerically. Even in using canonical duality method, one has to solve a
canonical dual problem numerically. Nevertheless, the differential flow directs us to a new
way for finding a global minimizer. Particularly, one may expect an exact solution of the
problem provided that the corresponding differential equation has an analytic solution.

Example 3.7. Given a symmetric matrix A € R"" and a vector c € R". Let P(x) = (1/2)xT Ax~
c"x. We consider the following box-constrained nonconvex global optimization:

1
min P(x) = ExTAx -cTx

(3.23)
st. —\V&<xi<\e, i=12,...,n

Since A is an indefinite matrix, we choose a large p* € R"” such that A + Diag(p*) > 0 and
supf\/zq_ﬂ/gl(Ax -o)il < pr V¥, i=1,2,...,n. We see that the differential equation is

dxi(p) = [A + Diag(p)],,(p)x1(p)dp1 + [A + Diag(p)] , (p)x2(p)dp2
+--+ [A+ Diag(p)],,(p) xn(p)dpn, (3.24)

x(p*) = [A+Diag(p*)] e, peSn{o<p<pt],
where S = {p >0 | A+ Diag(p) > 0}. It leads a differential flow
x(p) = [A+Diag(p)] ¢, peS, (3.25)

For simplicity without generality, we assume that A = (3! 22) and ¢ = (&). If for p, det[A +
Diag(p)] #0, we have

as + P2 —a
. q | (m+p)(as+p2)-ad (ar+p)(as+p2) -a
[A +Diag(p)] = o) o+ py . (3.26)

(ar+p1)(as+p2) —a; (a1+p1)(as+p2) - a3
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Then the dual problem can be formulated as
max{P(p) = —%CT [A +Diag(p)] 'c-€"p:pe 5}. (3.27)

If we choose a; = -0.5,a, = -0.5,a3 = -0.3,¢c1 = ¢ = 0.3 and ¢; = 0.5, ¢, = 2, this dual
problem has only one KKT point p = (1.8,0.7)" € 8. By Theorem 3.1, X = [A + Diag(ﬁ)]flc =
(1,2)" isa global minimizer of Example 3.7 and P(1,2) = -2.75 = P4(1.8,0.7).

4. Applications to Constrained Optimal Control Problems

In this section, we consider the following constrained linear-quadratic optimal control prob-
lem:

min J(x,u) = E

5 JJ xT (H)Qux(t) + u (t) Ru(t)dt

0 (4.1)
s.t. x(t) = Ax(t) + Bu(t), x(0)=xo,u(t) e, te[0,T],

where Q € R™", R € R™™ are positive semidefinite and positive definite symmetric matrices
respectively, x(t) € R" is a state vector, and u(t) € R™ is integrable or piecewise continuous
on [0, T] within U. Simply, U = {u € R™| -1 < u; < 1}, and U is a unit box. Problems of the
above type arise naturally in system science and engineering with wide applications [19, 20].

It is well known that the central result in the optimal control theory is the Pontryagin
maximum principle providing necessary conditions for optimality in very general optimal
control problems.

4.1. Pontryagin Maximum Principle

Define the Hamilton-Jacobi-Bellman function

H(x,u,A) = \T(Ax + Bu) + %xTQx + %uTRu. (4.2)

If the control # is an optimal solution for the problem (4.1), with x(-) and X(-) denoting the
state and costate corresponding to #(-), respectively, then # is an extremal control, that is, we
have

%=H, <3? 7, X) - Ax+Bi,  %(0) = x,
A A . A (4.3)
A=-H, (2 i, A) =-AT1-Q%,  MT)=0,
and a.e. t € [0,T],

H(t,%(t), (1), A(t) ) = min H (£, 2(t), u(t), A1) ). (4.4)
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Unfortunately, above conditions are not, in general, sufficient for optimality. In such
a case, we need to go through the process of comparing all the candidates for optimality that
the necessary conditions produce, and picking out an optimal solution to the problem. Nev-
ertheless, Lemma 4.1 can prove that the solution satisfies sufficiency conditions of the type
considered in this section, then these conditions will ensure the optimality of the solution.

Lemma 4.1. Let u(-) be an admissible control, X(-) and X(-) be the corresponding state and costate. If
X(t), u(t), and X(t) satisfy the Pontryagin maximum principle ((4.3)-(4.4)), then #(t) is an optimal
control to the problem (4.1).

Proof. For any given x, A, let

H*(x, ) = min H (x,u,1). (4.5)

For any u € U, by the definition of H*, H*(x, 1) < H(x,u,1), and H*(x, ) is equivalent to
the following global optimization

1
minEuTRu +ATBu. (4.6)

uell

Moreover, we can derive an analytic form of the global minimizer for (4.6) via the co-state .
It is easy to see that the minimizer # of (4.6) doesn’t depend on x, that is, 01/0x = 0 which
implies that

Hy(x,)) = Hx(x,u, 1) + Hu(x, ﬁ,/\)g—z = Hx(x,u, ). (4.7)

Since U is a closed convex set, by the classical linear systems theory, the state set X of (4.1)
is a convex subset of R". By the fact that the minimizer # does not depend on x and the
convexity of the integrand in the cost functional, the function H*(x, 1) is convex with respect
to x over X. In other words, for any x € X, and a.e. t € [0,T],

H* (x, X(t)) > H* <5c(t), X(t)) + HT <J?(t),X(t)) (x - X())

. . (4.8)
= H(fc(t), ﬁ(t),)u(t)) +HT (x(t),a(t),x(t)) (x - Z(t)).
Thus, for any admissible pair (x(-), u(-)), and a.e. t € [0,T], by (4.5), we have
H <x(t),u(t),X(t)) > H* (x(t),i(t))
(4.9)

> H(x(0), a(),5(0) + HY (£(0),5(0), (1) ) (x(t) = 2(0),
which leads to

H (%), @(), (1)) = H (x(), u(t), 1)) < 3 (B () - 2(1). (4.10)
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Notice that X(T) =0 and x(0) = ¥(0) = x9. We can obtain

HﬁO]—HuO]=£HH(ﬂﬂﬁGLﬂO>—H(ﬂﬂﬂaxﬂﬂﬂdt

+ JJ 1) (x(t) - x(8))dt < JJ d[XT(t)(x(t) _ g(t))] (4.11)
0 0
= -17(0)(x(0) - 2(0)) = 0.
This means that J attains its minimum at #. The proof is completed. 0

Lemma 4.1 reformulates the constrained optimal control problem (4.1) into a global
optimization problem (4.6). Based on Theorem 3.4, an analytic solution of (4.1) can be
expressed via the co-state.

Theorem 4.2. Suppose that

u = arg minluTRu + ATBu. (4.12)
uel 2
We have the following expression
u=—[R + Diag(p(\))] ' BT, (4.13)

where p(\) with respect to the co-state \ is given by p(A) > 0 satisfying

o) =0 if (R‘lBT/\f <1,

1

5 , (4.14)
[(R+Diag(p(1))) 'B™A| =1 if (R'B™A) 21.
Proof. The proof of Theorem 4.2 is parallel to Theorem 3.4. O
Substituting u = —[R + Diag(p(1))] ' BT\ into (4.3), we have
X =Ax+ B(— [R+ Diag(p()t))]_lBT)L) x(0) = xo,
(4.15)

I=-ATA-Qx, MT)=0.
If (x(-), X(-)) is a solution of the above equations (4.15), let

) = —[R+Diag(p<1(-)))]_1BT1(-). (4.16)
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Figure 1: The optimal control # in Example 4.3.

Figure 2: The dual variable p(1) in Example 4.3.

By Lemma 4.1, x(-), 7i(-), A(-) satisfy the Pontryagin maximum principle, and we present an
analytic form of the optimal control to (4.1) via the canonical dual variable

iu(t) = —[R + Diag<p (X(t)))]ilBTX(t), ae te[0,T] (4.17)

Next, we give an example to illustrate our results.

Example 4.3. We consider
2 7 2 -5 24 3 20 1
A= , B= , Q= , R= , x(0) = ,
=253 15 7 -2 -1 03 1

and T =11in (4.1). Q > 0 and R > 0 satisfy the assumption in (4.1).
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Following the idea of Lemma 4.1 and Theorem 4.2, we need to solve the following
boundary value problem for differential equations to derive the optimal solution

%= HA<3?,17,X> = A% +Bu, %(0)= <1>

1=—-H, (x, X) - AT1-Q%, 1(1)=0, (4.19)
i = <BT)L>1 i = <BT)L>2 ae te0,1].

el [ER T mafp (),

By solving equations (4.19) in MATLAB, we can obtain the optimal control # and the dual
variable p(1) as follows (see Figures 1 and 2).
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