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We introduce a new hybrid iterative scheme for finding a common element of the set of common
fixed points of two countable families of relatively quasi-nonexpansive mappings, the set of the
variational inequality, the set of solutions of the generalizedmixed equilibrium problem, and zeros
of maximal monotone operators in a Banach space. We obtain a strong convergence theorem for
the sequences generated by this process in a 2-uniformly convex and uniformly smooth Banach
space. The results obtained in this paper improve and extend the result of Zeng et al. (2010) and
many others.

1. Introduction

In 1994, Blum andOettli [1] introduced equilibrium problems, which have had a great impact
and influence on the development of several branches of pure and applied sciences. It has
been shown that the equilibrium problem theory provides a novel and unified treatment of
a wide class of problems which arise in economics, finance, physics, image reconstruction,
ecology, transportation, network, elasticity, and optimization.

Let E be a real Banach space, E∗ the dual space of E, and C a nonempty closed convex
subset of E. Let Θ : C × C → R be a bifunction and ϕ : C → R a real-valued function. The
generalized mixed equilibrium problem (GMEP) of finding x ∈ C is such that

Θ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) +

〈
Ax, y − x

〉 ≥ 0, ∀y ∈ C. (1.1)
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Recently, Zhang [2] considered this problem. Here some special cases of problem (1.1) are
stated as follows.

If A = 0, then problem (1.1) reduces to the following mixed equilibrium problem of
finding x ∈ C such that

Θ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C, (1.2)

which was considered by Ceng and Yao [3]. The set of solutions of this problem is denoted by
MEP.

If ϕ = 0, then problem (1.1) reduces to the following generalized equilibrium problem
of finding x ∈ C such that

Θ
(
x, y

)
+
〈
Ax, y − x

〉 ≥ 0, ∀y ∈ C, (1.3)

which was studied by S. Takahashi and W. Takahashi [4].
If ϕ = 0 and A = 0, then problem (1.1) reduces to the following equilibrium problem

of finding x ∈ C such that

Θ
(
x, y

) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of problem (1.4) is denoted by EP.
If Θ = 0, ϕ = 0, then problem (1.1) reduces to the following classical variational ine-

quality problem of finding x ∈ C such that

〈
Ax, y − x

〉 ≥ 0, ∀y ∈ C. (1.5)

The set of solutions of problem (1.5) is denoted by VI(C,A).
The problem (1.1) is very general in the sense that it includes, as special cases, numer-

ous problems in physics, optimization, variational inequalities, minimax problems, the Nash
equilibrium problem in noncooperative games, and others; see, for instance, [1, 3–7].

The normalized duality mapping from E to 2E
∗
is defined by

Jx =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f

∥∥2
}
, x ∈ E, (1.6)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E is smooth then
J is single valued and if E is uniformly smooth then J is uniformly continuous on bounded
subsets of E. Moreover, if E is a reflexive and strictly convex Banach space with a strictly
convex dual, then J−1 is single valued, one to one, surjective, and it is the duality mapping
from E∗ into E and thus JJ−1 = IE∗ and J−1J = IE (see [8]).

On the other hand, let W : E ⇒ E∗ be a set-valued mapping. The problem of finding
v ∈ E satisfying 0 ∈ Wv contains numerous problems in economics, optimization, and
physics. Such v ∈ E is called a zero point of W .

A set-valued mapping W : E ⇒ E∗ with graph G(W) = {(x, x∗) : x∗ ∈ Wx}, domain
D(W) = {x ∈ E : Wx/= ∅}, and range R(W) = ∪{Wx : x ∈ D(W)} is said to be monotone
if 〈x − y, x∗ − y∗〉 ≥ 0 for all x∗ ∈ Wx,y∗ ∈ Wy. W is said to be maximal monotone if
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the graphG(W) ofW is not properly contained in the graph of any other monotone operator.
It is known that W is a maximal monotone if and only if R(J + rW) = E∗ for all r > 0 when E
is a reflexive, strictly convex, and smooth Banach space (see [9]).

Let E be a smooth, strictly convex, and reflexive Banach space, let C be a nonempty
closed convex subset of E, and letW : E ⇒ E∗ be amonotone operator satisfyingD(W) ⊂ C ⊂
J−1(∩r>0R(J + rW)). Then the resolvent of W defined by Jr = (J + rW)−1J is a single-valued
mapping from E to D(W) for all r > 0. For r > 0, the Yosida approximation of W is defined
byWrx = (Jx − JJrx)/r for all x ∈ E.

A mapping A : C → E∗ is said to be monotone if, for each x, y ∈ C,

〈
x − y,Ax −Ay

〉 ≥ 0. (1.7)

A is said to be γ-inverse strongly monotone if there exists a positive real number γ > 0 such
that

〈
x − y,Ax −Ay

〉 ≥ γ
∥∥Ax −Ay

∥∥2
, ∀x, y ∈ C. (1.8)

IfA is γ-inverse strongly monotone, then it is Lipschitz continuous with constant 1/γ , that is,

∥∥Ax −Ay
∥∥ ≤

(
1
γ

)∥∥x − y
∥∥, x, y ∈ C. (1.9)

Let E be a smooth Banach space. The function φ : E × E → R defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, ∀x, y ∈ E, (1.10)

is studied by Alber [10], Kamimura and Takahashi [11], and Reich [12]. It follows from the
definition of the function φ that

(‖x‖ − ∥∥y
∥∥)2 ≤ φ

(
x, y

) ≤ (‖x‖ + ∥∥y
∥∥)2, ∀x, y ∈ E. (1.11)

Observe that, in a Hilbert space H, φ(x, y) = ‖x − y‖2, for all x, y ∈ H.

Lemma 1.1 (see [10]). Let C be a nonempty closed and convex subset of a real reflexive, strictly
convex, and smooth Banach space E, and let x ∈ E. Then there exists a unique element x0 ∈ C such
that φ(x0, x) = min{φ(z, x) : z ∈ C}.

Let E be a reflexive, strictly convex, and smooth Banach space and C a nonempty
closed and convex subset of E. The generalized projection mapping, introduced by Alber
[10], is a mapping ΠC : E → C that assigns to an arbitrary point x ∈ E, the minimum point
of the functional φ(x, y), that is, ΠCx = x0 due to Lemma 1.1, where x0 is the solution to the
minimization problem φ(x0, x) = min{φ(z, x) : z ∈ C}.

Let T be a mapping from C into itself. F(T) denotes the set of fixed points of T . A
point p in C is said to be an asymptotic fixed point of T if C contains a sequence {xn} which
converges weakly to p such that limn→∞‖Txn−xn‖ = 0. The set of asymptotic fixed points of T
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will be denoted by F̂(T). A mapping T from C into itself is called nonexpansive if ‖Tx−Ty‖ ≤
‖x−y‖ for all x, y ∈ C and relatively nonexpansive (see [13, 14]) if F̂(T) = F(T) and φ(p, Tx) ≤
φ(p, x) for all x ∈ C and p ∈ F(T). T is said to be φ-nonexpansive if φ(Tx, Ty) ≤ φ(x, y) for
all x, y ∈ C. T is said to be relatively quasi-nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤ φ(p, x)
for all x ∈ C and p ∈ F(T). Note that the class of relatively quasi-nonexpansive mappings is
more general than the class of relatively nonexpansive mappings which requires the strong
restriction: F̂(T) = F(T).

When W is a maximal monotone operator, a well-known method for solving the
equation 0 ∈ Wv in a Hilbert space H is the proximal point algorithm (see [15]): x1 = x ∈ H
and

xn+1 = Jrnxn, n = 1, 2, . . . , (1.12)

where {rn} ⊂ (0,∞) and Jr = (I + rW)−1 for all r > 0 is the resolvent operator for W , then
Rockafellar proved that the sequence {xn} converges weakly to an element of W−10.

The modifications of the proximal point algorithm for different operators have been
investigated by many authors. Kohsaka and Takahashi [16] considered the following
Algorithm (1.13) in a smooth and uniformly convex Banach space:

xn+1 = J−1
(
βnJ(x1) +

(
1 − βn

)
J(Jrnxn)

)
, n = 1, 2, . . . , (1.13)

and Kamimura et al. [17] considered Algorithm (1.14) in a uniformly smooth and uniformly
convex Banach space:

xn+1 = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnxn)

)
, n = 1, 2, . . . . (1.14)

They showed that Algorithm (1.13) converges strongly and Algorithm (1.14) converges
weakly provided that the sequences {βn}, {rn} of real numbers are chosen appropriately.

Recently, Saewan and Kumam [18] proposed the following iterative scheme: for an
initial x0 ∈ E with x1 = ΠC1x0 and C1 = C

ωn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnJrnωn

)
,

yn = J−1(αnJxn + (1 − αn)JSnzn),

un = Krnyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(1.15)

where Kr is the same as in Lemma 2.8 and they obtained a strong convergence theorem.
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In 2010, Zeng et al. [19] introduced the following hybrid iterative process: let x0 ∈ E
be chosen arbitrarily,

x̃n = J−1
(
αnJx0 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JJrnvn

))
,

yn = J−1
(
α̃nJx0 + (1 − α̃n)

(
β̃nJx̃n +

(
1 − β̃n

)
JJ̃rn x̃n

))
,

un = Krnyn,

Hn =
{
z ∈ C : φ(z, un) ≤ (α̃n + (1 − α̃n)αn)φ(z, x0) + (1 − α̃n)(1 − αn)φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx0, n ≥ 0.

(1.16)

Then they proved some strong and weak convergence theorems.
Very recently, for mixed equilibrium problems, variational inequality problems, fixed

point problems, and zeros of maximal monotone operators, many authors have studied them
and obtained many new results, see, for instance, [20–23].

On the other hand, Nakajo et al. [24] introduced the following condition. Let C be a
nonempty closed convex subset of a Hilbert space H, let {Tn} be a family of mappings of
C into itself with F = ∩∞

n=1F(Tn)/= ∅, and ωw(zn) denotes the set of all weak subsequential
limits of a bounded sequence {zn} in C. {Tn} is said to satisfy the NST-condition if, for every
bounded sequence {zn} in C,

lim
n→∞

‖zn − Snzn‖ = 0 implies that ωw(zn) ⊂ F. (1.17)

Motivated and inspired by the above work, the purpose of this paper is to introduce
a new hybrid projection iterative scheme which converges strongly to a common element of
the solution set of a generalized mixed equilibrium problem, the solution set of a variational
inequality problem, and the set of common fixed points of two countable families of relatively
quasi-nonexpansive mappings and zero of maximal monotone operators in Banach spaces.

2. Preliminaries

Let E be a normed linear space with dimE ≥ 2. The modulus of smoothness of E is the
function ρE : [0,+∞) → [0,+∞) defined by

ρE(τ) := sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ = 1,

∥∥y
∥∥ = τ

}

. (2.1)

The space E is said to be smooth if ρE(τ) > 0, for all τ > 0, and E is called uniformly smooth
if and only if limt→ 0+(ρE(t)/t) = 0.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ =
∥∥y

∥∥ = 1; ε =
∥∥x − y

∥∥
}
. (2.2)
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E is called uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. Let p > 1, then E is
said to be p-uniformly convex if there exists a constant c > 0 such that δE(ε) ≥ cεp for every
ε ∈ (0, 2]. Observe that every p-uniformly convex is uniformly convex. It is well known (see,
e.g., [7]) that

Lp

(
lp
)
or Wp

m is

⎧
⎨

⎩

p-uniformly convex if p ≥ 2;

2-uniformly convex if 1 < p ≤ 2.
(2.3)

In what follows, we will make use of the following lemmas.

Lemma 2.1 (see [7]). Let E be a 2-uniformly convex and smooth Banach space. Then, for all x, y ∈ E,
one has

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥, (2.4)

where J is the normalized duality mapping ofE and 1/c(0 < c ≤ 1) is the 2-uniformly convex constant
of E.

Lemma 2.2 (see [10, 11]). Let E be a real smooth, strictly convex, and reflexive Banach space and C
a nonempty closed convex subset. Then the following conclusions hold:

(1) φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀x ∈ E, y ∈ C;

(2) suppose x ∈ E and z ∈ C, then

z = ΠCx ⇐⇒ 〈
z − y, Jx − Jz

〉 ≥ 0, ∀y ∈ C. (2.5)

Lemma 2.3 (see [11]). Let E be a real smooth and uniformly convex Banach space, and let {xn} and
{yn} be two sequences of E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then
xn − yn → 0 as n → ∞.

Lemma 2.4 (see [25]). Let E be a real smooth Banach space, and let A : E ⇒ E∗ be a maximal
monotone mapping, then A−1(0) is a closed and convex subset of E.

We denote by NC(v) the normal cone for C at a point v ∈ C, that is, NC(v) := {x∗ ∈
E∗ : 〈v − y, x∗〉 ≥ 0 for all y ∈ C}. In the following, we will use the following Lemma.

Lemma 2.5 (see [15]). Let C be a nonempty closed convex subset of a Banach space E, and letA be a
monotone and hemicontinuous operator of C into E∗. Let T ⊂ E×E∗ be an operator defined as follows:

Tv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, v /∈ C.
(2.6)

Then T is maximal monotone and T−10 = VI(C,A).
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We make use of the function V : E × E∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x‖2, ∀x ∈ E, x∗ ∈ E∗, (2.7)

studied by Alber [10]; that is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. We know the
following lemma.

Lemma 2.6 (see [10]). Let E be a reflexive strictly convex and smooth Banach space with E∗ as its
dual. Then

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.8)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.7 (see [26]). Let E be a uniformly convex Banach space, and let Br(0) = {x ∈ E : ‖x‖ ≤ r}
be a closed ball of E. Then there exists a continuous strictly increasing convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that

∥∥λx + μy + γz
∥∥2 ≤ λ‖x‖2 + μ

∥∥y
∥∥2 + γ‖z‖2 − λμg

(∥∥x − y
∥∥), (2.9)

for all x, y, z ∈ Br(0) and λ, μ, γ ∈ [0, 1] with λ + μ + γ = 1.

For solving the equilibrium problem, let us assume that Θ satisfies the following con-
ditions:

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t→ 0

Θ
(
tz + (1 − t)x, y

) ≤ Θ
(
x, y

)
; (2.10)

(A4) for each x ∈ C, y �→ Θ(x, y) is convex and lower semicontinuous.

Lemma 2.8 (see [2]). LetC be a closed subset of a smooth, strictly convex, and reflexive Banach space
E. Let B : C → E∗ be a continuous and monotone mapping, let ϕ : C → R be a lower semicontinuous
and convex function, and let Θ be a bifunction from C × C to R satisfying (A1)–(A4). For r > 0 and
x ∈ E, then there exists u ∈ C such that

Θ
(
u, y

)
+
〈
Bu, y − u

〉
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C. (2.11)

Define a mapping Kr : E → C as follows:

Kr(x) =
{
u ∈ C : Θ

(
u, y

)
+
〈
Bu, y − u

〉
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}
,

(∗)
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for all x ∈ E. Then, the following conclusions hold:

(1) Kr is single valued;

(2) Kr is firmly nonexpansive, that is, for all x, y ∈ E, 〈Krx −Kry, JKrx − JKry〉 ≤ 〈Krx −
Kry, Jx − Jy〉;

(3) F(Kr) = GMEP;

(4) GMEP is closed and convex;

(5) φ(p,Krz) + φ(Krz, z) ≤ φ(p, z), ∀p ∈ F(Kr), z ∈ E.

Lemma 2.9 (see [27]). Let E be a smooth, strictly convex, and reflexive Banach space, let C be a
nonempty closed convex subset of E, and let W : E ⇒ E∗ be a monotone operator satisfying D(W) ⊂
C ⊂ J−1(∩r>0R(J + rW)). Let r > 0, and let Jr andWr be the resolvent and the Yosida approximation
of W , respectively. Then the following hold:

(i) φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x), for all x ∈ C, u ∈ W−10;

(ii) (Jrx,Wrx) ∈ G(W), for all x ∈ C;

(iii) F(Jr) = W−10.

Lemma 2.10 (see [28]). Let E be a real uniformly smooth and strictly convex Banach space and C
a nonempty closed convex subset of E. Let S : C → C be a relatively quasi-nonexpansive mapping.
Then F(S) is a closed convex subset of C.

3. Strong Convergence Theorems

In this section, let T, T̃ : E ⇒ E∗ be two maximal monotone operators satisfyingD(T), D(T̃) ⊂
C. We denote the resolvent operators of T and T̃ by Jr = (J + rT)−1J and J̃r = (J + rT̃)

−1
J for

each r > 0, respectively. For each r > 0, the Yosida approximations of T and T̃ are defined by
Ar = (J − JJr)/r and Ãr = (J − JJ̃r)/r, respectively. It is known that

Arx ∈ T(Jrx), Ãrx ∈ T̃
(
J̃rx

)
, for each r > 0, x ∈ E. (3.1)

Theorem 3.1. Let E be a real uniformly smooth and 2-uniformly convex Banach space and C a
nonempty, closed, and convex subset of E. Let A be a γ-inverse strongly monotone mapping of C into
E∗ satisfying ‖Ax‖ ≤ ‖Ax − Ap‖ for all x ∈ C and p ∈ V I(C,A). Let B : C → E∗ be a monotone
continuous mapping, and let {Tn}, {Sn} be two countable families of relatively quasi-nonexpansive
mappings from C into itself satisfying NST-conditions such that Ω := (∩∞

n=0F(Tn)) ∩ (∩∞
n=0F(Sn)) ∩

VI(C,A)∩GMEP ∩T−10∩ T̃−10/= ∅. Suppose that 0 < a < λn < b < (c2γ)/2, where c is the constant
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in (2.4). Let {tn} ⊂ [c∗,+∞) for some c∗ > 0 and {rn} ⊂ (0,+∞) satisfy lim infn→∞rn > 0. Let {xn}
be the sequence generated by

x0 ∈ C, chosen arbitrarily,

vn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
αnJx0 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JSnJrnvn

))
,

yn = J−1
(
α̃nJx0 + (1 − α̃n)

(
β̃nJzn +

(
1 − β̃n

)
JTnJ̃rnzn

))
,

un = Ktnyn,

Hn =
{
z ∈ C : φ(z, un) ≤ (α̃n + (1 − α̃n)αn)φ(z, x0) + (1 − α̃n)(1 − αn)φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx0, n ≥ 0,

(3.2)

where J is the normalized duality mapping, {αn}, {βn}, {α̃n}, and {β̃n} are four sequences in [0, 1],
and Kr is defined by (∗). The following conditions hold:

(i) limn→∞αn = limn→∞α̃n = 0;

(ii) lim infn→∞βn(1 − βn) > 0;

(iii) lim infn→∞β̃n(1 − β̃n) > 0.

Then {xn} converges strongly to ΠΩx0.

Proof. We have the following steps.

Step 1. First we prove that Hn and Wn are both closed and convex and Ω ⊂ Hn ∩ Wn,
for all n ≥ 0.

In fact, it follows from Lemmas 2.4, 2.5, 2.8, and 2.10 that Ω is closed and convex. It is
obvious thatWn is closed and convex for each n ≥ 0. Let γn = α̃n + (1 − α̃n)αn,wn = Jrnvn, z̃n =
J̃rnzn. For any z ∈ C,

φ(z, un) ≤ γnφ(z, x0) +
(
1 − γn

)
φ(z, xn) (3.3)

is equivalent to

−2〈z, Jun〉 + ‖un‖2 ≤ −2γn〈z, Jx0〉 + γn‖x0‖2 +
(
1 − γn

)(−2〈z, Jxn〉 + ‖xn‖2
)
, (3.4)

which implies that Hn is closed and convex for each n ≥ 0. Next, we prove that Ω ⊂ Hn ∩
Wn, for all n ≥ 0. For any given p ∈ Ω, by Lemma 2.9 we have

φ
(
p,wn

)
= φ

(
p, Jrnvn

) ≤ φ
(
p, vn

)
,

φ
(
p, z̃n

)
= φ

(
p, J̃rnzn

)
≤ φ

(
p, zn

)
.

(3.5)
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Since Tn, Sn are relatively quasi-nonexpansive, from the definition of φ(x, y), the convexity of
‖ · ‖2, and (3.5), we have

φ
(
p, yn

)
= φ

(
p, J−1

(
α̃nJx0 + (1 − α̃n)

(
β̃nJzn +

(
1 − β̃n

)
JTnz̃n

)))

=
∥
∥p

∥
∥2 − 2α̃n

〈
p, Jx0

〉 − 2(1 − α̃n)β̃n
〈
p, Jzn

〉 − 2(1 − α̃n)
(
1 − β̃n

)〈
p, JTnz̃n

〉

+
∥
∥
∥α̃nJx0 + (1 − α̃n)

(
β̃nJzn +

(
1 − β̃n

)
JTnz̃n

)∥∥
∥
2

≤ ∥
∥p

∥
∥2 − 2α̃n

〈
p, Jx0

〉 − 2(1 − α̃n)β̃n
〈
p, Jzn

〉 − 2(1 − α̃n)
(
1 − β̃n

)〈
p, JTnz̃n

〉

+ α̃n‖x0‖2 + (1 − α̃n)
(
β̃n‖zn‖2 +

(
1 − β̃n

)
‖Tnz̃n‖2

)

= α̃nφ
(
p, x0

)
+ (1 − α̃n)β̃nφ

(
p, zn

)
+ (1 − α̃n)

(
1 − β̃n

)
φ
(
p, Tnz̃n

)

≤ α̃nφ
(
p, x0

)
+ (1 − α̃n)β̃nφ

(
p, zn

)
+ (1 − α̃n)

(
1 − β̃n

)
φ
(
p, z̃n

)

≤ α̃nφ
(
p, x0

)
+ (1 − α̃n)φ

(
p, zn

)
,

(3.6)

φ
(
p, zn

)
= φ

(
p, J−1

(
αnJx0 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JSnwn

)))

≤ ∥∥p
∥∥2 − 2αn

〈
p, Jx0

〉 − 2(1 − αn)βn
〈
p, Jxn

〉 − 2(1 − αn)
(
1 − βn

)〈
p, JSnwn

〉

+ αn‖x0‖2 + (1 − αn)
(
βn‖xn‖2 +

(
1 − βn

)‖Snwn‖2
)

= αnφ
(
p, x0

)
+ (1 − αn)βnφ

(
p, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
p, Snwn

)

≤ αnφ
(
p, x0

)
+ (1 − αn)βnφ

(
p, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
p,wn

)

≤ αnφ
(
p, x0

)
+ (1 − αn)βnφ

(
p, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
p, vn

)
.

(3.7)

Moreover, it follows from Lemmas 2.2 and 2.6 that

φ
(
p, vn

) ≤ φ
(
p, J−1(Jxn − λnAxn)

)

≤ V
(
p, Jxn − λnAxn

)

≤ V
(
p, Jxn − λnAxn + λnAxn

) − 2
〈
J−1(Jxn − λnAxn) − p, λnAxn

〉

= φ
(
p, xn

) − 2λn
〈
xn − p,Axn −Ap

〉 − 2λn
〈
xn − p,Ap

〉

− 2λn
〈
J−1(Jxn − λnAxn) − xn,Axn

〉
.

(3.8)
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Since p ∈ VI(C,A), A is γ-inverse strongly monotone, from the above inequality, Lemma 2.1,
and the fact that ‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C and p ∈ VI(C,A), we obtain

φ
(
p, vn

) ≤ φ
(
p, xn

) − 2λnγ
∥
∥Axn −Ap

∥
∥2 + 2λn

∥
∥
∥J−1(Jxn − λnAxn) − xn

∥
∥
∥‖Axn‖

≤ φ
(
p, xn

) − 2λnγ
∥
∥Axn −Ap

∥
∥2 +

4
c2
λ2n

∥
∥Axn −Ap

∥
∥2

= φ
(
p, xn

)
+ 2λn

(
2
c2
λn − γ

)∥
∥Axn −Ap

∥
∥2

≤ φ
(
p, xn

)
.

(3.9)

From (3.7)-(3.9), we have

φ
(
p, zn

) ≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, xn

)
. (3.10)

So from (3.6) and (3.10), we have

φ
(
p, yn

) ≤ (α̃n + (1 − α̃n)αn)φ
(
p, x0

)
+ (1 − α̃n)(1 − αn)φ

(
p, xn

)
. (3.11)

By Lemma 2.8(5) and (3.11), we have

φ
(
p, un

)
= φ

(
p,Ktnyn

) ≤ φ
(
p, yn

)

≤ (α̃n + (1 − α̃n)αn)φ
(
p, x0

)
+ (1 − α̃n)(1 − αn)φ

(
p, xn

)
.

(3.12)

Therefore, p ∈ Hn; that is Ω ⊂ Hn for each n ≥ 0.
Next we prove that Ω ⊂ Hn ∩ Wn for each n ≥ 0 by induction. For n = 0,W0 = C,

thus Ω ⊂ H0 ∩ W0. Suppose that Ω ⊂ Hn ∩ Wn for some n ≥ 1. Since xn+1 = ΠHn∩Wnx0, by
Lemma 2.2, for any q ∈ Hn ∩Wn, we have

〈
xn+1 − q, Jx0 − Jxn+1

〉 ≥ 0. (3.13)

Since Ω ⊂ Hn ∩Wn, for any p ∈ Ω, we have

〈
xn+1 − p, Jx0 − Jxn+1

〉 ≥ 0, (3.14)

which implies that p ∈ Wn+1, that is, Ω ⊂ Hn ∩Wn for each n ≥ 0.

Step 2. Next we prove that ‖wn − Snwn‖ → 0, ‖z̃n − Tnz̃n‖ → 0 (n → ∞).
Similar to the proof of Step 3 in [19, Theorem 3.1], we have that {φ(xn, x0)} is

nondecreasing and bounded and φ(xn+1, xn) → 0 (n → ∞). So {xn} is bounded, then,
by (3.5)–(3.12), we obtain that {un}, {zn}, {vn}, {wn}, {z̃n}, and {yn} are all bounded.
Furthermore, {Snwn} and {Tnz̃n} are both bounded. By Lemma 2.3, we have

‖xn − xn+1‖ −→ 0 (n −→ ∞). (3.15)
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Since xn+1 = ΠHn∩Wnx0 ∈ Hn and by condition (i), we have

φ(xn+1, un) ≤ (α̃n + (1 − α̃n)αn)φ(xn+1, x0) + (1 − α̃n)(1 − αn)φ(xn+1, xn) −→ 0 (n −→ ∞),
(3.16)

which together with Lemma 2.3 implies that ‖xn+1 − un‖ → 0 (n → ∞). So we obtain

‖xn − un‖ −→ 0 (n −→ ∞). (3.17)

Let an = J−1(βnJxn + (1 − βn)JSnJrnvn), bn = J−1(β̃nJzn + (1 − β̃n)JTnJ̃rnzn). It follows
from the boundedness of {xn} that {Snwn} and {Tnz̃n} are bounded. Let r = sup{‖xn‖,
‖zn‖, ‖Tnz̃n‖, ‖Snwn‖}. By Lemma 2.7, (3.5), and (3.9), for any p ∈ Ω, we obtain

φ
(
p, an

)
= φ

(
p, J−1

(
βnJxn +

(
1 − βn

)
JSnJrnvn

))

=
∥∥p

∥∥2 − 2
〈
p, βnJxn +

(
1 − βn

)
JSnJrnvn

〉
+
∥∥βnJxn + (1 − βn)JSnJrnvn

∥∥2

≤ ∥∥p
∥∥2 − 2βn

〈
p, Jxn

〉 − 2
(
1 − βn

)〈
p, JSnJrnvn

〉

+ βn‖xn‖2 +
(
1 − βn

)‖SnJrnvn‖2 − βn
(
1 − βn

)
g(‖Jxn − JSnwn‖)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p, Snwn

) − βn
(
1 − βn

)
g(‖Jxn − JSnwn‖)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p,wn

) − βn
(
1 − βn

)
g(‖Jxn − JSnwn‖)

≤ φ
(
p, xn

) − βn
(
1 − βn

)
g(‖Jxn − JSnwn‖),

(3.18)

φ
(
p, bn

)
= φ

(
p, J−1

(
β̃nJzn +

(
1 − β̃n

)
JTnz̃n

))

≤ β̃nφ
(
p, zn

)
+
(
1 − β̃n

)
φ
(
p, Tnz̃n

) − β̃n
(
1 − β̃n

)
g(‖Jzn − JTnz̃n‖)

≤ β̃nφ
(
p, zn

)
+
(
1 − β̃n

)
φ
(
p, z̃n

) − β̃n
(
1 − β̃n

)
g(‖Jzn − JTnz̃n‖)

≤ φ
(
p, zn

) − β̃n
(
1 − β̃n

)
g(‖Jzn − JTnz̃n‖).

(3.19)

It follows from (3.10), (3.12), and (3.19) that

φ
(
p, un

) ≤ φ
(
p, yn

)

= φ
(
p, J−1(α̃nJx0 + (1 − α̃n)Jbn)

)

≤ α̃nφ
(
p, x0

)
+ (1 − α̃n)φ

(
p, bn

)

≤ α̃nφ
(
p, x0

)
+ (1 − α̃n)

(
φ
(
p, zn

) − β̃n
(
1 − β̃n

)
g(‖Jzn − JTnz̃n‖)

)

≤ (α̃n + αn − α̃nαn)φ
(
p, x0

)
+ (1 − αn)(1 − α̃n)φ

(
p, xn

)

− (1 − α̃n)β̃n
(
1 − β̃n

)
g(‖Jzn − JTnz̃n‖).

(3.20)
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From (3.17) and (3.20), we have

(1 − α̃n)β̃n
(
1 − β̃n

)
g(‖Jzn − JTnz̃n‖)

≤ (α̃n + αn − α̃nαn)φ
(
p, x0

)
+ (αnα̃n − αn − α̃n)φ

(
p, xn

)
+ φ

(
p, xn

) − φ
(
p, un

)

≤ (α̃n + αn − α̃nαn)
(
φ
(
p, x0

) − φ
(
p, xn

))

+ 2p‖Jun − Jxn‖ + (‖xn‖ − ‖un‖)(‖xn‖ + ‖un‖) −→ 0 (n −→ ∞),

(3.21)

which together with condition (iii) implies that

‖Jzn − JTnz̃n‖ −→ 0 (n −→ ∞). (3.22)

Since J is uniformly continuous on bounded sets, then

‖zn − Tnz̃n‖ −→ 0 (n −→ ∞). (3.23)

By (3.18) and (3.19), we have

φ
(
p, bn

) ≤ φ
(
p, zn

)

= φ
(
p, J−1(αnJx0 + (1 − αn)Jan)

)

≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, an

)

≤ αnφ
(
p, x0

)
+ (1 − αn)

(
φ
(
p, xn

) − βn
(
1 − βn

)
g(‖Jxn − JSnwn‖)

)
.

(3.24)

It follows from (3.20) and (3.24) thatss

φ
(
p, un

) ≤ α̃nφ
(
p, x0

)
+ (1 − α̃n)φ

(
p, bn

)

≤ α̃nφ
(
p, x0

)

+ (1 − α̃n)
(
αnφ

(
p, x0

)
+ (1 − αn)

(
φ
(
p, xn

) − βn
(
1 − βn

)
g(‖Jxn − JSnwn‖)

))

= (α̃n + αn − α̃nαn)φ
(
p, x0

)
+ (1 − α̃n)(1 − αn)φ

(
p, xn

)

− (1 − α̃n)βn
(
1 − βn

)
g(‖Jxn − JSnwn‖).

(3.25)

So by (3.17) and (3.25), we obtain

(1 − α̃n)βn
(
1 − βn

)
g(‖Jxn − JSnwn‖)

≤ (α̃n + αn − α̃nαn)
(
φ
(
p, x0

) − φ
(
p, xn

))
+
(
φ
(
p, xn

) − φ
(
p, un

))

≤ (α̃n + αn − α̃nαn)
(
φ
(
p, x0

) − φ
(
p, xn

))
+ 2p‖Jun − Jxn‖

+ (‖xn‖ − ‖un‖)(‖xn‖ + ‖un‖) −→ 0 (n −→ ∞),

(3.26)
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which together with conditions (i) and (ii) implies that

‖Jxn − JSnwn‖ −→ 0 (n −→ ∞). (3.27)

Since J is uniformly continuous on bounded sets, then

‖xn − Snwn‖ −→ 0 (n −→ ∞). (3.28)

It follows from (3.2) that

Jzn = αnJx0 + (1 − αn)
(
βnJxn +

(
1 − βn

)
JSnJrnvn

)
. (3.29)

Therefore, from (3.27) and condition (i), we have

‖Jzn − Jxn‖ ≤ αn‖Jx0 − Jxn‖ + (1 − αn)
(
1 − βn

)‖JSnwn − Jxn‖ −→ 0 (n −→ ∞). (3.30)

Thus,

‖zn − xn‖ −→ 0 (n → ∞). (3.31)

From (3.7) and (3.9), we have

φ
(
p, zn

) ≤ αnφ
(
p, x0

)
+ (1 − αn)βnφ

(
p, xn

)

+ (1 − αn)
(
1 − βn

)
(
φ
(
p, xn

)
+ 2λn

(
2
c2
λn − γ

)∥∥Axn −Ap
∥∥2
)

= αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, xn

)
+ 2(1 − αn)

(
1 − βn

)
λn

(
2
c2
λn − γ

)∥∥Axn −Ap
∥∥2
,

(3.32)

which together with (3.31) and condition (i) implies that

2(1 − αn)
(
1 − βn

)
λn

(
γ − 2

c2
λn

)∥∥Axn −Ap
∥∥2

≤ αn

(
φ
(
p, x0

) − φ
(
p, xn

))
+ φ

(
p, xn

) − φ
(
p, zn

) −→ 0 (n −→ ∞).

(3.33)

Hence,

∥∥Axn −Ap
∥∥ −→ 0 (n −→ ∞). (3.34)
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From Lemmas 2.1, 2.2, and 2.6, (3.34), and the fact that ‖Ax‖ ≤ ‖Ax − Ap‖ for all x ∈ C and
p ∈ VI(C,A), we have

φ(xn, vn) = φ
(
xn,ΠCJ

−1(Jxn − λnAxn)
)

≤ φ
(
xn, J

−1(Jxn − λnAxn)
)

= V (xn, Jxn − λnAxn)

≤ V (xn, Jxn − λnAxn + λnAxn) − 2
〈
J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2λn
∥
∥
∥J−1(Jxn − λnAxn) − J−1Jxn

∥
∥
∥‖Axn‖

≤ 2λ2n
2
c2
‖Axn‖2

≤ 2λ2n
2
c2
∥∥Axn −Ap

∥∥2 −→ 0 (n −→ ∞).

(3.35)

This implies that

‖xn − vn‖ −→ 0 (n −→ ∞). (3.36)

Combining (3.28) and (3.36), we have

‖vn − Snwn‖ −→ 0 (n −→ ∞). (3.37)

It follows from (3.6), (3.7), and (3.12) that

φ
(
p,wn

) ≥ φ
(
p, un

)

(1 − α̃n)(1 − αn)
(
1 − βn

) − (α̃n + αn − α̃nαn)φ
(
p, x0

)

(1 − α̃n)(1 − αn)
(
1 − βn

)

− (1 − α̃n)(1 − αn)βnφ
(
p, xn

)

(1 − α̃n)(1 − αn)
(
1 − βn

) .

(3.38)

By Lemma 2.9, (3.9), and (3.38), we have

φ(wn, vn) = φ(Jrnvn, vn) ≤ φ
(
p, vn

) − φ
(
p,wn

)

≤ φ
(
p, xn

) − φ
(
p,wn

)

≤ φ
(
p, xn

) − φ
(
p, un

)

(1 − α̃n)(1 − αn)
(
1 − βn

) +
α̃n + αn − α̃nαn

(1 − α̃n)(1 − αn)
(
1 − βn

)
(
φ
(
p, x0

) − φ
(
p, xn

))
.

(3.39)

So, by (3.17) and conditions (i) and (ii), we have

φ(wn, vn) −→ 0 (n −→ ∞), (3.40)
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which implies that

‖wn − vn‖ −→ 0 (n −→ ∞). (3.41)

Combining (3.37) and (3.41), we obtain

‖wn − Snwn‖ −→ 0 (n −→ ∞). (3.42)

It follows from (3.6), (3.10), and (3.12) that

φ
(
p, un

) ≤ φ
(
p, yn

)

≤ α̃nφ
(
p, x0

)
+ (1 − α̃n)β̃nφ

(
p, zn

)
+ (1 − α̃n)

(
1 − β̃n

)
φ
(
p, z̃n

)

≤
(
α̃n + (1 − α̃n)β̃nαn

)
φ
(
p, x0

)

+ (1 − α̃n)(1 − αn)β̃nφ
(
p, xn

)
+ (1 − α̃n)

(
1 − β̃n

)
φ
(
p, z̃n

)
,

(3.43)

which implies that

φ
(
p, z̃n

) ≥ φ
(
p, un

)

(1 − α̃n)
(
1 − β̃n

) −

(
α̃n + (1 − α̃n)β̃nαn

)
φ
(
p, x0

)

(1 − α̃n)
(
1 − β̃n

) − (1 − α̃n)(1 − αn)β̃nφ
(
p, xn

)

(1 − α̃n)
(
1 − β̃n

) .

(3.44)

Combining the above inequality, (3.10), and Lemma 2.9, we have

φ(z̃n, zn) = φ
(
J̃rnzn, zn

)

≤ φ
(
p, zn

) − φ
(
p, z̃n

)

≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, xn

) − φ
(
p, z̃n

)

≤ φ
(
p, xn

) − φ
(
p, un

)

(1 − α̃n)
(
1 − β̃n

) +
(αn + α̃n − αnα̃n)

(1 − α̃n)
(
1 − β̃n

)
(
φ
(
p, x0

) − φ
(
p, xn

))
.

(3.45)

By conditions (i) and (iii), (3.17), and (3.45), we have

φ(z̃n, zn) −→ 0 (n −→ ∞), (3.46)

which implies that

‖z̃n − zn‖ −→ 0 (n −→ ∞). (3.47)
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It follows from (3.23) and (3.47) that

‖z̃n − Tnz̃n‖ −→ 0 (n −→ ∞). (3.48)

Step 3. Now we show that ωw({xn}) ⊂ Ω := (∩∞
n=0F(Tn)) ∩ (∩∞

n=0F(Sn)) ∩ VI(C,A) ∩
GMEP∩T−10 ∩ T̃−10, where

ωw({xn}) =
{
x∗ ∈ C : xnk ⇀ x∗ for some sequence {nk} ⊂ {n} with nk ↑ ∞}

. (3.49)

Indeed, since {xn} is bounded and X is reflexive, we know that ωw({xn})/= ∅. For any
arbitrary x∗ ∈ ωw({xn}), there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗. From
(3.36), we have vnk ⇀ x∗. Since {Tn}, {Sn} satisfy NST-conditions, from (3.42) and (3.48) we
have x∗ ∈ (∩∞

n=0F(Tn)) ∩ (∩∞
n=0F(Sn)).

Let S ⊂ E × E∗ be an operator as follows:

Sv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, v /∈ C.
(3.50)

By Lemma 2.5, S is maximal monotone and S−1(0) = VI(C,A). Let (v,w) ∈ G(S). Since w ∈
Sv = Av +NC(v), we have w −Av ∈ NC(v). Moreover, vn ∈ C implies that

〈v − vn,w −Av〉 ≥ 0. (3.51)

On the other hand, it follows from vn = ΠCJ
−1(Jxn − λnAxn) and Lemma 2.2 that

〈v − vn, Jvn − (Jxn − λnAxn)〉 ≥ 0, (3.52)

and hence

〈
v − vn,

Jxn − Jvn

λn
−Axn

〉
≤ 0. (3.53)
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So, from (3.51), (3.53), and A being 1/γ-Lipschitz continuous, we obtain

〈v − vn,w〉 ≥ 〈v − vn,Av〉

≥ 〈v − vn,Av〉 +
〈
v − vn,

Jxn − Jvn

λn
−Axn

〉

=
〈
v − vn,Av −Axn +

Jxn − Jvn

λn

〉

≥ 〈v − vn,Av −Avn〉 + 〈v − vn,Avn −Axn〉 +
〈
v − vn,

Jxn − Jvn

λn

〉

≥ −‖v − vn‖‖Avn −Axn‖ − ‖v − vn‖
∥
∥
∥
∥
Jxn − Jvn

a

∥
∥
∥
∥

≥ −1
γ‖v − vn‖‖vn − xn‖ − ‖v − vn‖

∥∥∥∥
Jxn − Jvn

a

∥∥∥∥.

(3.54)

Since J is uniformly continuous on bounded sets, by (3.36) and replacing n by nk in (3.54), as
k → ∞ we have 〈v − x∗, w〉 ≥ 0. Thus, x∗ ∈ S−1(0), and hence x∗ ∈ VI(C,A).

Next we show that x∗ ∈ GMEP = F(Kr). Let H(un, y) = Θ(un, y) + 〈Bun, y − un〉 +
ϕ(y) − ϕ(un), for all y ∈ C. It follows from (3.2) that

Jyn = α̃nJx0 + (1 − α̃n)
(
β̃nJzn +

(
1 − β̃n

)
JTnJ̃rnzn

)
, (3.55)

hence, from (3.22) and condition (i), we have

∥∥Jyn − Jzn
∥∥ ≤ α̃n‖Jx0 − Jzn‖ + (1 − α̃n)

(
1 − β̃n

)∥∥∥JTnJ̃rnzn − Jzn
∥∥∥ −→ 0 (n −→ ∞), (3.56)

which implies that

∥∥yn − zn
∥∥ −→ 0 (n −→ ∞). (3.57)

From (3.17), (3.31), and (3.57), we obtain

∥∥yn − un

∥∥ −→ 0 (n −→ ∞). (3.58)

Thus, unk ⇀ x∗, ynk ⇀ x∗(k → ∞). Since J is uniformly continuous on bounded sets, from
(3.58) we have limk→∞‖Junk − Jynk‖ = 0. Therefore, it follows from tnk ≥ c∗ that ‖Junk −
Jynk‖/tnk → 0 (n → ∞). Since un = Ktnyn, we have

H
(
un, y

)
+

1
tn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.59)
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Combining the above inequality, (A2) and (A4), we get

∥∥y − un

∥∥
∥
∥Jun − Jyn

∥
∥

tn
≥ 1

tn

〈
y − un, Jun − Jyn

〉 ≥ −H(
un, y

) ≥ H
(
y, un

)
, ∀y ∈ C. (3.60)

Replacing n by nk and taking the limit as k → ∞ in the above inequality and by (A4), we
have H(y, x∗) ≤ 0, for all y ∈ C. For any t ∈ (0, 1) and y ∈ C, define yt = ty + (1 − t)x∗ ∈ C.
SoH(yt, x

∗) ≤ 0. From (A1) and (A4), we have

0 = H
(
yt, yt

) ≤ tH
(
yt, y

)
+ (1 − t)H

(
yt, x

∗) ≤ tH
(
yt, y

)
, (3.61)

that is, H(yt, y) ≥ 0. Thus, from (A3), let t → 0, we have H(x∗, y) ≥ 0, for all y ∈ C, which
implies that x∗ ∈ GMEP.

From (3.31), (3.36), (3.41), and (3.47), similar to the proof of Step 5 in Theorem 3.1 of
[19], we have x∗ ∈ T−10 ∩ T̃−10. Therefore, ωw({xn}) ⊂ Ω.

Step 4. Finally we prove that {xn} converges strongly to x̃ = ΠΩx0.

It follows from Step 6 in Theorem 3.1 of [19] that we have the conclusion. This com-
pletes the proof.

If A ≡ 0, then we have the following result from Theorem 3.1.

Corollary 3.2. Let E be a real uniformly smooth and uniformly convex Banach space and C a
nonempty, closed, and convex subset of E. Let B : C → E∗ be a monotone continuous mapping.
Let {Tn}, {Sn} be two countable families of relatively quasi-nonexpansive mappings from C into itself
satisfying NST-conditions such that Ω := (∩∞

n=0F(Tn)) ∩ (∩∞
n=0F(Sn)) ∩ GMEP ∩ T−10 ∩ T̃−10/= ∅.

Let {tn} ⊂ [c∗,+∞) for some c∗ > 0 and {rn} ⊂ (0,+∞) satisfy lim infn→∞rn > 0. Let {xn} be the
sequence generated by

x0 ∈ C, chosen arbitrarily,

zn = J−1
(
αnJx0 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JSnJrnxn

))
,

yn = J−1
(
α̃nJx0 + (1 − α̃n)

(
β̃nJzn +

(
1 − β̃n

)
JTnJ̃rnzn

))
,

un = Ktnyn,

Hn =
{
z ∈ C : φ(z, un) ≤ (α̃n + (1 − α̃n)αn)φ(z, x0) + (1 − α̃n)(1 − αn)φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wnx0, n ≥ 0,

(3.62)

where J is the normalized duality mapping, {αn}, {βn}, {α̃n}, and {β̃n} are four sequences in [0, 1],
and Kr is defined by (∗). The following conditions hold:
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(i) limn→∞αn = limn→∞α̃n = 0;

(ii) lim infn→∞βn(1 − βn) > 0;

(iii) lim infn→∞β̃n(1 − β̃n) > 0.

Then {xn} converges strongly toΠΩx0.

Proof. From the proof of Theorem 3.1, (2.4) is used in proving (3.9), (3.34), and (3.36). Since
A ≡ 0, vn = xn for all n ≥ 0, so uniformly smooth and 2-uniformly convex Banach space
E can be weakened to uniformly smooth and uniformly convex Banach space. Thus, from
Theorem 3.1, the proof is completed.

Remark 3.3. If Sn = Tn = I, rn = tn for all n ≥ 0, and ϕ = 0, then Corollary 3.2 reduces to
Theorem 3.1 in [19].
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