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The basic partial differential equation (PDE) models for supply chain networks with re-entrant
nodes and their macroscopic are proposed. However, through numerical examples, the basic
continuum models do not perform well for multiple re-entrant systems. Then, a new state equation
considering the re-entrant degree of the products is introduced to improve the effectiveness of
the basic continuum models. The applicability of the modified continuum models for re-entrant
supply chains is illustrated through numerical examples. Finally, based on the modified continuum
model, numerical examples of different re-entrant degrees are given, meanwhile, the changes in
the WIP and outflux are analyzed in details for multiple re-entrant supply chain systems.

1. Introduction

In recent years, factories and production systems have become larger and more complicated.
The re-entrant manufacturing system is a typical example, which indicates that work in
process (WIP) repeatedly passes through the same workstation at different stages of the
process routes. Figure 1 gives a simplified model of re-entrant systems. The model consists
of three workstations and five buffers; the arrows in the figure indicate the processing path
of a lot. From Figure 1, it can be seen that the lot passes through the same workstations M;
and M, twice, which is a typical situation of a re-entrant system. A re-entrant supply chain
network consists of many such manufacturing systems. Understanding the behavior of large
supply chains under different policies and scenarios is a major issue for many businesses
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Figure 1: A simplified model for a re-entrant system.

today. In large factories, no experiments can be done involving whole supply chains.
Therefore, simulation models are developed, which substitute for the real environment. There
are several methods to model the multiple re-entrant production flows: Petrinet, queuing
network, fluid network, and partial differential equation (PDE).

Petrinet is a mathematical tool to describe and analyze the logical relations of state
changes for discrete event dynamic systems. It has been widely used in modeling, simulating,
analyzing, and controlling of the discrete event dynamic systems. Compared with some
other description tools, Petrinet model is especially easy to describe concurrent phenomena
and simulate the parallel systems. On account of directly describing production processes,
Petrinet model has been used to model the re-entrant manufacturing systems. However, it
is extremely hard to solve the analytic solutions with the increase of system complexity.
Wang and Wu [1] put forward an object-oriented hybrid Petrinet model of semiconductor
manufacturing lines. Lin et al. [2] established a model of the re-entrant semiconductor
production lines using Petrinets and studied on the stability of the system using buffer-
boundless approach. Dong and Chen [3] developed a modular modeling approach based on
object-oriented predicate/transition nets (OPTNSs) for the analysis of supply chain process
models.

Queuing network model treats each workstation as an individual discrete queue,
then these independent queues are connected to form queuing networks according to the
production flow. Queuing network model can directly describe the process of production
lines and supply chain networks. A methodology for supply chain inventory analysis and
optimization was presented by linking production authorization (PA) strategy to queueing
models [4]. The statistics of arrival flow of the fluid model in queuing systems has been
studied [5, 6]. Dong and Chen [7] proposed a network of inventory-queue models for the
performance modeling and analysis of an integrated supply chain network. S. Kumar and
P. R. Kumar [8] focused on the analysis of queuing theory of the re-entrant manufacturing
systems. However, the analytic solution could be obtained only for the small-size systems
based on the queuing models. When the scale of production systems or supply chain
networks become large, the number of system states would grow exponentially and a
combinatorial explosion problem would occur. Therefore, the queuing models have some
difficulties in analysis of the real large-scale re-entrant supply chain networks. Most of the
queuing models can only be used to evaluate the stability of some scheduling policies and
difficult to be used directly for the real-world supply chains.

Since most supply chains deal with individual parts and the processes that those parts
undergo, the above two discrete event models can describe a lot of details of the studied
system. While discrete event simulators have been highly successful to simulate single
factories, they are computationally too expensive to simulate even a moderately complicated
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supply chains. Meanwhile, they are not scalable to a full supply chain. Therefore, a new
modeling method called approximate modeling appears.

There are two kinds of approximate models: one is the so-called fluid model. It
comes from traffic theory and was introduced by Newell [9] to approximately solve queuing
problems. It treats the queue length [(f) as a continuous variable. The change rate of a queue
length is equal to the arrival rate A () minus the processing rate y(t) when the queue length is
not 0, otherwise the change rate of a queue length is 0. Hence, fluid models can quickly obtain
the results by solving the ordinary differential equations. The time required for computing is
not affected with the increase of material flows. The fluid models can be used not only to
optimize the control system but also to reflect the long-term performance behavior of the
system in the dynamic states.

However, one of the most important shortcomings of fluid models is that they cannot
reflect the stochasticity of the production processes very well, that is, in the above equation,
if A(t) and p(t) are mean rates, then this is a fully deterministic system, stochasticity is not
modeled at all. Otherwise, if A(t) and u(t) are stochastic processes, then some theoretical
analysis will be allowed. But this will degrade the advantages of a continuum models as a
simulation tool [10].

Dai and Weiss [11] analyzed the relationship between the stability of the fluid model
and the stability of the scheduling policies for the related queuing networks. Here, the
stability of the fluid models is expressed by the boundedness of the fluid variables for a fixed
influx. Gottlich [12] deduced the conservation laws under the form of ordinary differential
and proved the existence of its solution based on the fluid models of supply chain networks.

The other approximate model is called partial differential equation (PDE) model.
PDE models are actually continuum limit of fluid models. PDE models do have several
advantages, that is, they are scalable; more detailed results can be found as compared to
fluid models, and more importantly, they are amenable to optimization and control [13].

Recently, the continuous models have been applied to many fields and have achieved
some significant research results. Anderson [14] established the basic continuous model
for supply chains and described production flow of the system using rate equations
macroscopically. Lee et al. [15] studied the supply chain simulation with combined discrete-
continuous modeling method. It integrates the wide applicability of the discrete event
simulation (DES) and fast computation of the continuum models together. Armburster et
al. [16] introduced the concept of materials” density and established the continuous model
of large-scale re-entrant manufacturing systems and proposed new state equations so that
the continuous model could be used to the real production systems. Compared with a DES
model, van den Berg et al. [17] verified the validity of the continuous model of simple serial
production systems and then solved the optimal control problems with consideration of the
demand growth. Unver et al. [18] presented a continuum (traffic flow like) model for the
flow of products through complex production networks, based on statistical information
obtained from extensive observations of the system. The resulting model consists of a system
of hyperbolic conservation laws, which exhibit the correct diffusive properties given by the
variance of the observed data.

In this paper, in order to accurately describe the multiple re-entrant supply chain
networks from macroscopic perspective, a modified model is proposed, which can reflect
how the re-entrant degree of a product impacts the system performance. Based on the
queuing theory, we restrict our attention on establishing a new state equation considering
the re-entrant degrees of jobs or products, meanwhile, we will also verify the validity of
the modified PDE model for multiple re-entrant semiconductor supply chain systems by
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a numerical experiment. And finally, the changes of the WIP and outflux in the case of
different re-entrant factors are analyzed based on the modified PDE model.

The structure of this paper is organized as follows: in Section 2, the basic continuum
model is presented and a numerical experiment is carried out to verify the validity of the basic
model. Section 3 introduces the concept of re-entrant factor to improve the basic continuum
model and verifies its effectiveness through an example. In Section 4, based on the modified
continuous model, the WIP profile and outflux are analyzed in the case of different re-entrant
factors. Finally, some conclusions are given in Section 5.

2. The Basic Continuum Model
2.1. Basic Model

Recently, continuum models for large-scale multiple re-entrant production systems have
become an important research topic. Such a description is appropriate for a semiconductor
manufacturing fab involving a large number of items in many stages. As p(x,t) is the
conserved variable, it is the density of the products with units [units/space] in the system.
Here, x denotes the completion variable, x = 0 describes raw products that have just entered
into the factory, and x = 1 denotes finished products that are ready to exit from the system.
So, in the closed interval x € [0, 1]. The total number of products in the system can be found
by taking the integral of density p(x,t) of products over the stage variable x from 0 to 1.
Therefore, the total WIP W (#) as a function of time can be obtained as follows:

1

W(t) = f p(x, t)dx. (2.1)

0

According to the conservation law, assuming that there is a unique entry and exit for
the system and the yield is 100%, PDE models can be given by

p(xt)  0(o(p(x1))p(x 1) _
ot ox -

0, xe[0,1], te (0,00), (2.2)

where v(p(x, t)) is a velocity function that depends on the density p(x, t) only. For a re-entrant
supply chain system, we assume that v(p(x, t)) can be described by a state equation of the
following form:

wm>.

v(p(x, 1)) = vo<1 W (2.3)

Here, vy is the velocity for the empty supply chain system and Wpay is the maximal load
(capacity of the supply chain system). Clearly, the velocity v(p(x,t)) is determined by the
total WIP. The boundary condition for the start rate A(f) of products entering the supply
chain system at x = 0 is then defined as

A(E) = p(0, Do (). (2.4)
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An arbitrary initial condition for the density of the products can be expressed as
p(x,0) = po(x). (2.5)

The production process in the supply chain network is described as an equivalent
M/M/1 queue. The state variable p.; denotes the equilibrium density of the supply chain
system as a whole. Let p = peq, then p(0,t) = peq and v = veq = 1/7. Correspondingly,
the associated cycle time in steady state is 7 = 1/veq. Since a job arriving at a queue with a
processing rate is g = 1/vmax, the cycle time 7 = p(1 + L) can be obtained according to the
queuing theory; therefore, the equilibrium velocity becomes

Umax Umax
= = . 2.6
'()(p) 1+f3p(x,t)dx 1+w(t) ( )

Equation (2.6) is a widely used expression between v and p for large-scale multiple
re-entrant supply chain systems; note that the velocity v only depends upon the WIP at stage
x. Therefore, Equation (2.2) can be rewritten as

op(x,t) (i
ot ox

=0, x€[0,1], t€ (0,00). (2.7)

Hence, assuming an initial WIP distribution pg(x) in the factory is given, the resulting
full PDE model for the single-product multiple re-entrant supply chain systems is given as
follows

ap(x, t) ap(x, t)

+o(p)

p(x, 0) = PO(x),

(2.8)
p(0,Hv(t) = A(t),
Umax

If the influx A(t) and the initial condition py(x) are nonnegative, then the density will
remain nonnegative. We use an upwind scheme [19] to discretize the PDE which is given by
the following equation:

P tin) = p(xit) ~ 1o (t) [p (e ty) — pin )], 29)

wherei =1,2,...,N,andj=0,1,..., M — 1. At and Ax are the step sizes in time and space,
respectively. Based on the boundary condition, the propagation scheme is given by

p(xo tjs1) = p(x0,tj) - [(f )p(xo,j) = A(t)]- (210)
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Figure 2: Process flow diagram of the Mini-Fab.

Since the Courant-Friedrich-Levy (CFL) condition is necessary for stability, the time
step At and the space step Ax must satisfy the formulation as follows: |(At/Ax)vmax(f)] < 1.
Here, Umax(t) is the maximum of all occurring velocities in the system at time .

Based on the above formula, the density distribution of each moment p(x;, ¢;) can

be obtained. Therefore, the system throughput rate q(xn,t;) of each moment can also be
computed as follows:

q(xn,t) = p(xn, tp)v(p(xn, 1)) (2.11)

Furthermore, the total WIP w(t) = fé p(x,t)dx can be obtained via the extended
Simpson’s rule quadrature, then the following equation can be obtained:

1 N-4
w(t) = I px, t)dx = % [17p(x0, t) +59p(x1,t) +43p(x2,t) +49p(x3,t) + 48 Z p(xi,t)
0

i=4

+49p(xn-3,t) + 43p(xN-2,t) + B9p(xN-1,1) + 17p(xN, t)].

(2.12)

Finally, the density distribution p(x;,t;) and throughput g(xx, t;) of each moment can
be obtained.

2.2, Numerical Experiments

Mini-Fab is a simplified model of the semiconductor production line, which has all the
important features of the re-entrant semiconductor manufacturing systems, such as re-
entrant, different processing time, and batch production. Currently, many scholars have done
a lot of research work based on the Mini-Fab. The Mini-Fab contains 5 machines grouped into

3 tool sets; the product comprises of 6 processing steps, each tool set is visited twice, which is
shown in Figure 2 [20].

For convenience, we make the following basic assumptions on the model:
(1) the product yield rate is 100%, namely, there is no rework problem;
(2) the system is a continuous production process for 24 hours a day;

(3) the system does not take into account the time of carrying, loading and discharging,
adjusting equipment, and premaintaining equipment and downtime.
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Table 1: Processing time of the product D at each step.

Machining centers Processing time (hours)

Machines A & B Step 1: 1.5 Step 5: 1.5

Machines C & D Step 2: 0.5 Step 4:1

Machine E Step 3: 1 Step 6: 0.5
351

12

—— Throughput

Figure 3: Throughput as a function of time for the PDE simulation.

Now it is assumed that there is one product D in the Mini-Fab, processing steps and
processing time shown in Table 1.

Based on the basic continuous model, the parameters are assumed as follows: P =
0.25 (days), Umax = 4 (units/day), A = 5 (units/day). We typically start up with an empty
production system; the total running time of the production lines is 10 (days). Let At = 0.001
and Ax = 0.01, then Ax and Af satisfy the CFL stability condition (At/Ax)vmax < 1. The
system throughput can be obtained through the simulation based on the basic PDE model
of (2.8). Figure 3 indicates that the system throughput is about 3.2 (units/day) during the
steady state.

Once the throughput of the basic continuous models is obtained, the corresponding
Mini-Fab simulation model can be built using simulation package ExtendSim [21] to verify
the validity of the models with a period of one year. As can be seen from Figure 4 that
the throughput during the steady state is about 5 (units/day) through the ExtendSim
simulation.

Comparing Figure 3 with Figure 4, it is obviously found that there are some differences
between the throughput results of the two models. This is because the basic continuous model
of (2.8) is built on the basis of a large number of materials, and many re-entrant steps in the
systems and some important characteristics of semiconductor production systems are not
captured. Therefore, the further investigation is needed to explore more precise models for
multiple re-entrant production systems.
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Figure 4: Throughput as a function of time for the ExtendSim simulation.

3. The Modified Continuum Model
3.1. Modified Model

It is worth noting that the state equations can reflect the characteristics of systems—
any change of the multiple re-entrant production systems may lead to a different state
equation. Equation (2.6) is a quite general state equation, in order to capture some important
features of multiple re-entrant supply chain systems, so a more specified relationship is
required for computing velocities numerically. Lefeber and Armbruster [22] presented a
more sophisticated re-entrant factory model through the use of integration kernels. For the
general supply chain systems (non-re-entrant systems), Sun and Dong [23] described several
kinds of state equations and the corresponding cycle times. Although there are many kinds
of continuum models for describing the re-entrant production system currently, they do not
reflect how the re-entrant degree of the product impacts the system performance. Hence, a
new concept reflecting the re-entrant degree of the products is introduced.

Definition 3.1. Let a be a product re-entrant factor, a equals the ratio of the product processing
time of re-entrant steps and the product total processing time.

Re-entrant factor a is the property of product process flows, with the increase of re-
entrant factor a, the degree of re-entrant of the product becomes larger and larger. Let P
be the total processing time, let P; be the re-entrant processing time, and let P, be the non-
re-entrant processing time. According to the above definition, we can obtain the following
formula:

I T &
a_P1+P2_P' (3.1)

In reality, the velocity of products in the system is not only related with the WIP level
but also with the re-entrant factor. Let w(t) be the WIP level in the system at a given time ¢, let
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w(Ax,t) be the WIP level at interval Ax at time f, let Ax be the interval of the completion of
the product, and let At be the processing time required to complete the interval Ax. Assume
that w(Ax, t) is proportional to At and the system consists of two parts: re-entrant processes
and non-re-entrant processes, hence, aw(t) is the WIP level of the re-entrant processes at a
given time ¢ and also referred to as re-entrant WIP. Similarly, (1 — a)w(t) is the WIP level of
non-re-entrant processes at a given time ¢ and also called as non-re-entrant WIP.

According to the queuing theory, the processing cycle time of the re-entrant process 7
can be expressed as follows:

71 = [1+aw(t)]P;. (3.2)

As for the non-re-entrant processes, assuming the total number of workstations is m,
ai, ay, ..., an are the corresponding processing times at each workstation, respectively, and 7,
is the non-re-entrant processing cycle time, then we have

PB=ay+ay+--+apy,

i a; - & a; & (33)
T = Z(l + ﬁw(t)>ai = ; ai + ; Fw(t) =D+ ; fw(t)'

i=1

so the total cycle time 7 can be written in the following form:

a2

n m 2
T=T1+T=[l+aw(t)]P + [Pz + Z Fiw(t)] =P+ <a2 + Z %>w(t)P. (3.4)
i=1 i=1

Then, the resulting new state equation for the velocity will be given by

1
T Pt (a2+ 30 (/P w(t)P

v= (3.5)

In order to avoid computational complexity of 3.1, (a?/P?), an approximate method
is proposed to deal with the non-re-entrant process. Suppose that WIP in non-re-entrant
processes follows the uniform distribution in each workstation, then the mean processing
time P,/m and the mean WIP level at each workstation ((1 — a)/m)w(t) can be obtained.
According to the queuing theory, the mean cycle time of the non-re-entrant processes at each
workstation is [1 + ((1 — a)/m)w(t)](P>/m), and the total cycle time of the non-re-entrant
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processes 1> is [1 + ((1 — a) /m)w(t)]P,. Therefore, the total cycle time 7 can be expressed as
follows:

1+

(1-a)
m

T=T1+T=[l+aw(t)]P +

w(t)] P,

=P +D+ laP1+(1_a)
m

Pz] w(t)

(3.6)

=P+ |a-aP+(1-a)-

=P+ [a2 + %:I w(t)P.

w(t)

=

The corresponding new state equation can be obtained as follows:

o= Lo ! , (3.7)
T py [az +(1- a)z/m]w(t)P

Therefore, the resulting modified whole PDE model is given below:

op( x, t) 6p(x, t)

+o(p) 0,

p(x, 0) = PO(x)/
p(0, 50 (t) = A1),
1 Umax

v=—= .
T 1+ [a2 +(1 —a)z/m]w(t)

(3.8)

3.2. Validity of the Modified Model

Once the new state equation is obtained, the same example in the previous section can be
used to verify the validity of the modified models. According to Figure 2, the total number
of workstations is m = 3, the steps 4 to 6 are re-entrant steps. From Table 1, the products’
re-entrant factor a« = 0.5 can be easily obtained by definition. Assume that the influx A is
5 (units/day) and the total running time is 10 (days), the system starts running from an
empty state. With At = 0.001, Ax = 0.01, then Ax and At satisfy the CFL stability condition:
Umax- At/ Ax < 1. Similarly, the modified continuous model (3.8) can be solved via the upwind
scheme, and the throughput of the modified models can be obtained, which is plotted in
Figure 5.

It can be seen that the throughput is initially zero for the re-entrant system. This is due
to the time delay and the system initialization (the system starts up with an empty factory),
then the system begins to have throughput about 0.25 (days) and increases drastically until
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Figure 5: Throughput as a function of time for the modified PDE model.

the throughput reaches a stable value of 5 (units/day) about 1.5 days. It is obvious that
the results are basically consistent with the simulation results obtained from ExtendSim.
Therefore, it can be seen that the modified models are more effective for multiple re-entrant
supply chain systems.

4. Case Studies for the Different Re-Entrant Factors

In order to analyze the influence of the re-entrant degree on the WIP profile and outflux
for the multiple re-entrant supply chain systems, several scenarios of the different re-entrant
factors are presented in this section. Same as the previous section, let vmax = 4 (units/day),
a uniform time step size At = 0.001 (days), and a uniform spatial interval length Ax = 0.01,
then Ax and At also satisfy the CFL stability condition (At/Ax)vmax < 1. We assume that the
varying influx is prescribed first, as shown in Figure 6.

Taking the multiple re-entrant production systems as an example, the system begins
to run from an empty factory. We observe the changes of the WIP and outflux in the case of
different re-entrant factors. As shown in Figure 7, black and red lines indicate the WIP and
outflux, respectively.

From Figure 7, we can observe that, roughly, the WIP of the modified PDE model
shows an increasing trend gradually first to reach the maximum and then it has a decreasing
trend until it reaches the stable value. Meanwhile, the outflux of the modified PDE model
rises slowly and then sharply reaches the maximum, after that the outflux shows a sudden
decrease and then slowly reaches a stable value. Additionally, it is easy to see that the
maximum WIP occures a small decrease first and then rises slowly with the increase of the
re-entrant factor. Correspondingly, the maximum outflux appears a small increasing trend
at first; when the WIP reaches a certain value, the maximum outflux becomes smaller and
smaller with the increase of the re-entrant factor. These results are almost consistent with the
actual situation; meanwhile, the materials flow can be better controlled according to the WIP
profile and outflux.
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Figure 7: WIP and Throughput as a function of time for the modified PDE model.
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5. Conclusions

In this paper, the basic continuum models for material flows are first proposed, and its
low accuracy for the multiple re-entrant supply chain networks is explained by a numerical
experiment. In order to model such systems more precisely, this paper presents a new state
equation that takes into account the re-entrant degree of the product. The applicability of the
modified continuum model for multiple re-entrant supply chain systems is also illustrated
through a numerical example. Afterwards, based on the modified continuum models, some
numerical examples on different re-entrant factors are provided, and the impacts of different
re-entrant factors on the WIP profile and outflux changes are studied. Meanwhile, some
interesting observations are discussed. The proposed model can be used to obtain more
accurate results for material flows of the multiple re-entrant supply chain networks from
macroscopic perspective.

Acknowledgments

The work presented in this paper has been supported by a Grant from the National High-
Tech Research and Development Program (863 Program) of China (no. 2008AA04Z104) and
a Grant from National Natural Science Foundation of China (no. 70871077).

References

[1] Z. Wang and Q. Wu, “Object-oriented hybrid PN model of semiconductor manufacturing line,” in
Proceedings of the 4th World Congress on Intelligent Control and Automation, pp. 1354-1358, June 2002.

[2] C. Lin, M. Xu, D. C. Marinescu, E. Ren, and Z. Shan, “A sufficient condition for instability of buffer
priority policies in re-entrant lines,” IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1235-
1238, 2003.

[3] M. Dong and F. F. Chen, “Process modeling and analysis of manufacturing supply chain networks
using object-oriented Petri nets,” Robotics and Computer-Integrated Manufacturing, vol. 17, no. 1-2, pp.
121-129, 2001.

[4] M. Dong, “Inventory planning of supply chains by linking production authorization strategy to
queueing models,” Production Planning and Control, vol. 14, no. 6, pp. 533-541, 2003.

[5] M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article
1D 157264, 26 pages, 2010.

[6] M. Li, W. Zhao, and S. Y. Chen, “mBm-based scalings of traffic propagated in internet,” Mathematical
Problems in Engineering, vol. 2011, Article ID 389803, 21 pages, 2011.

[7] M. Dong and E. E. Chen, “Performance modeling and analysis of integrated logistic chains: an analytic
framework,” European Journal of Operational Research, vol. 162, no. 1, pp. 83-98, 2005.

[8] S. Kumar and P. R. Kumar, “Queueing network models in the design and analysis of semiconductor
wafer fabs,” IEEE Transactions on Robotics and Automation, vol. 17, no. 5, pp. 548-561, 2001.

[9] G. E Newell, “Scheduling, location, transportation, and continuum mechanics: some simple
approximations to optimization problems,” SIAM Journal on Applied Mathematics, vol. 25, no. 3, pp.
346-360, 1973.

[10] D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf, and T. C. Jo, “A continuum model for a
re-entrant factory,” Operations Research, vol. 54, no. 5, pp. 933-950, 2006.

[11] J. G. Dai and G. Weiss, “Stability and instability of fluid models for reentrant lines,” Mathematics of
Operations Research, vol. 21, no. 1, pp. 115-134, 1996.

[12] S. Gottlich, M. Herty, and A. Klar, “Network models for supply chains,” Communications in
Mathematical Sciences, vol. 3, no. 4, pp. 545-559, 2005.

[13] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and
financial Engineering, Springer, New York, NY, USA, 2006.



14 Journal of Applied Mathematics

[14] E. J. Anderson, “A new continuous model for job shop scheduling,” International Journal of Systems
Science, vol. 12, no. 12, pp. 1469-1475, 1981.

[15] Y. H. Lee, M. K. Cho, S. J. Kim, and Y. B. Kim, “Supply chain simulation with discrete-continuous
combined modeling,” Computers and Industrial Engineering, vol. 43, no. 1-2, pp. 375-392, 2002.

[16] D. Armbruster, C. Ringhofer, and T. C. Jo, “Continuous models for production flows,” in Proceedings
of the American Control Conference (AAC '04), pp. 4589-4594, July 2004.

[17] R.van den Berg, E. Lefeber, and K. Rooda, “Modeling and control of a manufacturing flow line using
partial differential equations,” IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 130-
136, 2008.

[18] A. Unver, C. Ringhofer, and D. Armbruster, “A hyperbolic relaxation model for product flow in
complex production networks,” Discrete and Continuous Dynamical Systems, supplement 2009, pp. 790
799, 2009.

[19] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, Society for
Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2007.

[20] H. Vogt, “FabSim Mini-fab example,” 2007, http:/ /www.fabsim.com/index.html.

[21] T. B. Qin and Y. F. Wang, Application Oriented Simulation Modeling and Analysis with ExtendSim,
Tsinghua University Press, Beijing, China, 2009.

[22] E. Lefeber and D. Armbruster, Aggregate modeling of manufacturing systems, Systems Engineering
Group, 2007.

[23] S.Sun and M. Dong, “Continuum modeling of supply chain networks using discontinuous Galerkin
methods,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 13-16, pp. 1204-1218,
2008.



