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Let F be a distribution inD′ and let f be a locally summable function. The composition F(f(x)) of F
and f is said to exist and be equal to the distribution h(x) if the limit of the sequence {Fn(f(x))} is
equal to h(x), where Fn(x) = F(x) ∗ δn(x) for n = 1, 2, . . . and {δn(x)} is a certain regular sequence
converging to the Dirac delta function. In the ordinary sense, the composition δ(s)[(sinh−1x+)

r]
does not exists. In this study, it is proved that the neutrix composition δ(s)[(sinh−1x+)

r] exists and
is given by δ(s)[(sinh−1x+)

r] =
∑sr+r−1

k=0
∑k

i=0
(
k
i

)
((−1)krcs,k,i/2k+1k!)δ(k)(x), for s = 0, 1, 2, . . . and

r = 1, 2, . . ., where cs,k,i = (−1)ss![(k − 2i + 1)rs−1 + (k − 2i − 1)rs+r−1]/(2(rs + r − 1)!). Further results
are also proved.

1. Introduction

In the following, we let D be the space of infinitely differentiable functions with compact
support, let D[a, b] be the space of infinitely differentiable functions with support contained
in the interval [a, b], and let D′ be the space of distributions defined on D.

Now, let ρ(x) be a function in D[−1, 1] having the following properties:

(i) ρ(x) ≥ 0,

(ii) ρ(x) = ρ(−x),
(iii)
∫1
−1 ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . ., it follows that {δn(x)} is a regular sequence of
infinitely differentiable functions converging to the Dirac delta-function δ(x). Further, if F is
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an arbitrary distribution in D′ and Fn(x) = F(x) ∗ δn(x) = 〈F(x − t), ϕ(t)〉, then {Fn(x)} is a
regular sequence converging to F(x).

Since the theory of distributions is a linear theory, thus we can extend some of
the operations which are valid for ordinary functions to the space of distributions and
such operations are called regular operations such as: addition, multiplication by scalars;
see [1]. Other operations can be defined only for a particular class of distributions or for
certain restricted subclasses of distributions; these are called irregular operations such as:
multiplication of distributions, convolution products, and composition of distributions; see
[2–4]. Thus, there have been several attempts recently to define distributions of the form
F(f(x)) in D′, where F and f are distributions in D′; see for example [5–8]. In the following,
we are going to consider an alternative approach. As a starting point, we look at the following
definition which is a generalization of Gel’fand and Shilov’s definition of the composition
involving the delta function [9], and was given in [6].

Definition 1.1. Let F be a distribution in D′ and let f be a locally summable function. We say
that the neutrix composition F(f(x)) exists and is equal to h on the open interval (a, b), with
−∞ < a < b < ∞, if

N − lim
n→∞

∫∞

−∞
Fn
(
f(x)

)
ϕ(x)dx =

〈
h(x), ϕ(x)

〉
, (1.1)

for all ϕ in D[a, b], where Fn(x) = F(x) ∗ δn(x) for n = 1, 2, . . . andN is the neutrix, see [10],
having domain N ′ the positive and range N ′′ the real numbers, with negligible functions
which are finite linear sums of the functions

nλlnr−1n, lnrn : λ > 0, r = 1, 2, . . . (1.2)

and all functions which converge to zero in the usual sense as n tends to infinity.
In particular, we say that the composition F(f(x)) exists and is equal to h on the open

interval (a, b) if

lim
n→∞

∫∞

−∞
Fn
(
f(x)

)
ϕ(x)dx =

〈
h(x), ϕ(x)

〉
, (1.3)

for all ϕ in D[a, b].

Note that taking the neutrix limit of a function f(n) is equivalent to taking the
usual limit of Hadamard’s finite part of f(n). The definition of the neutrix composition of
distributions was originally given in [10] but was then simply called the composition of
distributions.

The following three theorems were proved in [11], [8], and [12], respectively.

Theorem 1.2. The neutrix composition δ(s)(sgn x|x|λ) exists and

δ(s)
(
sgnx|x|λ

)
= 0, (1.4)
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for s = 0, 1, 2, . . . and (s + 1)λ = 1, 3, . . ., and

δ(s)
(
sgn x|x|λ

)
=

(−1)(s+1)(λ+1)s!
λ[(s + 1)λ − 1]!

δ((s+1)λ−1)(x), (1.5)

for s = 0, 1, 2, . . ., and (s + 1)λ = 2, 4, . . ..

Theorem 1.3. The neutrix compositions δ(2s−1)(sgn x|x|1/s) and δ(s−1)(|x|1/s) exist and

δ(2s−1)
(
sgnx|x|1/s

)
=

1
2
(2s)!δ′(x),

δ(s−1)
(
|x|1/s

)
= (−1)s−1δ(x),

(1.6)

for s = 1, 2, . . ..

Theorem 1.4. The neutrix composition δ(s)(sinh−1x1/r+ ) exists and

δ(s)
[(

sinh−1x+
)1/r
]

=
(s+1)/r−1∑

k=0

k∑

i=0

(
k

i

)
(−1)krcs,k,i

2k+1k!
δ(k)(x), (1.7)

for s = 0, 1, 2, . . . and r = 1, 2, . . ., where

cr,s,k,i =
(−1)ss!

[
(k − 2i + 1)rs+r−1 + (k − 2i − 1)rs+r−1

]

2(rs + r − 1)!
. (1.8)

The next two theorems were proved in [13].

Theorem 1.5. The neutrix composition δ(s)[lnr(1 + |x|)] exists and

δ(s)
[
lnr(1 + |x|)] =

sr+r−1∑

k=0

k∑

i=0

(
k

i

)(−1)s−i
[
1 + (−1)k

]
s!(i + 1)rs+r−1

2r(rs + r − 1)!k!
δ(k)(x). (1.9)

for s = 0, 1, 2, . . ., and r = 1, 2, . . ..
In particular, the composition δ[ln(1 + |x|)] exists and

δ[ln[1 + |x|)] = δ(x). (1.10)

Theorem 1.6. The neutrix composition δ(s)[ln(1 + |x1/r |)] exists and

δ(s)
[
ln
(
1 +
∣
∣
∣x1/r

∣
∣
∣
)]

=
m−1∑

k=0

kr+r−1∑

i=0

(
kr + r − 1

i

)(−1)r+s+i−1
[
1 + (−1)k

]
r(i + 1)s

2k!
δ(k)(x), (1.11)

for s=0, 1, 2, . . . and r=2, 3, . . ., wherem is the smallest non-negative integer greater than (s−r+1)r−1.
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In particular, the composition δ(s)[ln(1 + |x1/r |)] exists and

δ(s)
[
ln
(
1 +
∣
∣
∣x1/r

∣
∣
∣
)]

= 0, (1.12)

for s = 0, 1, 2, . . . , r − 2 and r = 2, 3, . . . and

δ(r−1)
[
ln
(
1 +
∣
∣
∣x1/r

∣
∣
∣
)]

= (−1)r−1r!δ(x), (1.13)

for r = 2, 3, . . ..

2. Main Results

We now prove the following theorem.

Theorem 2.1. The neutrix composition δ(s)[(sinh−1x+)
r
] exists and

δ(s)
[(

sinh−1x+
)r]

=
sr+r−1∑

k=0

k∑

i=0

(
k

i

)
(−1)krcs,k,i

2k+1k!
δ(k)(x), (2.1)

for s = 0, 1, 2, . . . and r = 1, 2, . . ., where

cr,s,k,i =
(−1)ss!

[
(k − 2i + 1)rs+r−1 + (k − 2i − 1)rs+r−1

]

2(rs + r − 1)!
. (2.2)

In particular, the neutrix composition δ(sinh−1x+) exists and

δ
(
sinh−1x+

)
=
1
2
δ(x). (2.3)

Proof. To prove (2.1), we first of all evaluate

∫1

−1
δ
(s)
n

[(
sinh−1x+

)r]
xk dx. (2.4)

We have
∫1

−1
δ
(s)
n

[(
sinh−1x+

)r]
xkdx = ns+1

∫1

−1
ρ(s)
[(
n sinh−1x+

)r]
xkdx

= ns+1
∫1

0
ρ(s)
[
n
(
sinh−1x

)r]
xkdx

+ ns+1
∫0

−1
ρ(s)(0)xkdx

= I1 + I2.

(2.5)
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It is obvious that

N − lim
n→∞

I2 =N − lim
n→∞

∫0

−1
δ
(s)
n

[(
sinh−1x+

)r]
xk dx = 0, (2.6)

for k = 0, 1, 2, . . ..
Making the substitution t = n(sinh−1x)

r
, we have for large enough n

I1 =
ns−r+1

r

∫1

0
t1/(r−1)sinhk

(
t

n

)1/r

cosh
(
t

n

)1/r

ρ(s)(t)dt

×
∫1

0
t1/(r−1)

{

exp

[

(k − 2i + 1)
(
t

n

)1/r
]

+ exp

[

(k − 2i − 1)
(
t

n

)1/r
]}

ρ(s)(t)dt,

(2.7)

where

n(s−1)/(r+1)
∫1

0
t1/(r−1)

{

exp

[

(k − 2i + 1)
(
t

n

)1/r
]

+ exp

[

(k − 2i − 1)
(
t

n

)1/r
]}

ρ(s)(t)dt

=
∞∑

p=0

∫1

0

[
(k − 2i + 1)p + (k − 2i − 1)p

]
t(p/r)+(1/r)−1

p!n(p/r)+(1/r)−s−1
ρ(s)(t)dt.

(2.8)

It follows that

N − lim
n→∞

ns−1/r+1
∫1

0
t1/(r−1)

{

exp

[

(k − 2i + 1)
(
t

n

)1/r
]

+ exp

[

(k − 2i − 1)
(
t

n

)1/r
]}

ρ(s)(t) dt

=
(−1)ss!

[
(k − 2i + 1)rs+r−1 + (k − 2i − 1)rs+r−1

]

2(rs + r − 1)!

= cr,s,k,i,
(2.9)

and by applying the neutrix limit we obtain

N − lim
n→∞

I1 =N − lim
n→∞

∫1

0
δ
(s)
n

[(
sinh−1x+

)r]
xk dx =

1
2k+1r

k∑

i=0

(
k

i

)

(−1)icr,s,k,i (2.10)

for k = 0, 1, 2, . . ..
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When k = sr + r, we have

|I1| =
∫1

0

∣
∣
∣δ

(s)
n

[(
sinh−1x+

)r]
xsr+r

∣
∣
∣dx

= ns+1
∫1

0

∣
∣
∣ρ

(s)
n

[
n
(
sinh−1x

)r]
xsr+r

∣
∣
∣dx

≤ n(s−1)/(r+1)

2sr+rr
exp(sr + r + 1)

∫1

0

∣
∣
∣
∣
∣

[

1 − exp

[

−2
(
t

n

)1/r
]sr+r

ρ(s)(t)

]∣
∣
∣
∣
∣
dt

=
n(s−1)/(r+1)

2sr+rr
exp(sr + r + 1)

∫1

0

[

2
(
t

n

)1/r

+O
(
n−2/r

)
]sr+r∣

∣
∣ρ(s)(t)

∣
∣
∣dt

≤ n−1/r exp(sr + r + 1)
∫1

0

[
1 +O

(
n−2/r

)]∣
∣
∣ρ(s)(t)

∣
∣
∣dt

= O
(
n−1/r

)
.

(2.11)

Thus, if ψ is an arbitrary continuous function, then

lim
n→∞

∫1

0
δ
(s)
n

[(
sinh−1x+

)r]
xrs+rψ(x)dx = 0. (2.12)

We also have

∫0

−1
δ
(s)
n

[(
sinh−1x+

)r]
ψ(x)dx = ns+1

∫0

−1
ρ(s)(0)ψ(x)dx, (2.13)

and it follows that

N − lim
n→∞

∫0

−1
δ
(s)
n

[(
sinh−1x+

)r]
ψ(x)dx = 0. (2.14)

If now ϕ is an arbitrary function in D[−1, 1], then by Taylor’s Theorem, we have

ϕ(x) =
sr+r−1∑

k=0

ϕ(k)(0)
k!

xk +
xrs+r

(rs + r)!
ϕ(rs+r)(ξx), (2.15)
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where 0 < ξ < 1, and so

N − lim
n→∞

〈

δ
(s)
n

[(
sinh−1x+

)1/r
]

, ϕ(x)
〉

= N − lim
n→∞

sr+r−1∑

k=0

ϕ(k)(0)
k!

∫1

0
δ
(s)
n

[(
sinh−1x+

)r]
xk dx

+N − lim
n→∞

sr+r−1∑

k=0

ϕ(k)(0)
k!

∫0

−1
δ
(s)
n

[(
sinh−1x+

)r]
xk dx

+ lim
n→∞

1
(sr + r)!

∫1

0
δ
(s)
n

[(
sinh−1x+

)r]
xsr+rϕ(sr+r)(ξx) dx

+ lim
n→∞

1
(sr + r)!

∫0

−1
δ
(s)
n

[(
sinh−1x+

)r]
xsr+rϕ(sr+r)(ξx) dx

=
sr+r−1∑

k=0

k∑

i=0

(
k

i

)
rcr,s,k,iϕ(k)(0)

2k+1k!
+ 0

=
sr+r−1∑

k=0

k∑

i=0

(
k

i

)
(−1)krcr,s,k,i

2k+1k!

〈
δ(k)(x), ϕ(x)

〉
,

(2.16)

on using (2.3) to (2.14). This proves (2.1) on the interval (−1, 1).
It is clear that δ(s)[(sinh−1x+)

r
] = 0 for x > 0 and so (2.1) holds for x > −1.

Now, suppose that ϕ is an arbitrary function in D[a, b], where a < b < 0. Then,

∫b

a

δ
(s)
n

[(
sinh−1x+

)r]
ϕ(x) dx = ns+1

∫b

a

ρ(s)(0)ϕ(x)dx (2.17)

and so

N − lim
n→∞

∫b

a

δ
(s)
n

[(
sinh−1x+

)r]
ϕ(x)dx = 0. (2.18)

It follows that δ(s)[(sinh−1x+)
r
] = 0 on the interval (a, b). Since a and b are arbitrary,

we see that (2.1) holds on the real line. This completes the proof of the theorem.

Corollary 2.2. The neutrix composition δ(s)[(sinh−1|x|)r] exists and

δ(s)
[(

sinh−1|x|
)r]

=
sr+r−1∑

k=0

k∑

i=0

(
k

i

)
[
(−1)k + 1

]
cr,s,k,i

2k+1k!
δ(k)(x), (2.19)

for s = 0, 1, 2, . . . and r = 1, 2, . . ..
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In particular, the composition δ(sinh−1|x|) exists and

δ
(
sinh−1|x|

)
=
1
2
δ(x). (2.20)

Proof. To prove (2.19), we note that

∫1

−1
δ
(s)
n

[(
sinh−1|x|

)r]
xkdx = ns+1

∫1

−1
ρ(s)
[(
n sinh−1|x|

)r]
xkdx

= ns+1
[
1 + (−1)k

] ∫1

0
ρ(s)
[
n
(
sinh−1x

)r]
xkdx,

(2.21)

and (2.19) now follows as above.
Equation (2.20) follows on noting that in the particular case s = 0, the usual limit holds

in (2.10). This completes the proof of the corollary.

Theorem 2.3. The neutrix composition δ(2s−1)[sinh−1(sgnx · x2)] exists and

δ(2s−1)
[
sinh−1

(
sgn x · x2

)]
=

2s−1∑

k=0

i+k+1∑

i=0

(
k

i

)
(−1)kbs,k,i

2k+1(2k + 1)!
δ(k)(x), (2.22)

for s = 1, 2, . . ., where

bs,k,i = (k − 2i + 1)2s−1 + (k − 2i − 1)2s−1. (2.23)

Proof. To prove (2.22), we now have to evaluate

∫1

−1
δ
(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
xkdx. (2.24)

We have

∫1

−1
δ
(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
xkdx = n2s

∫1

−1
ρ(2s−1)

[
n sinh−1

(
sgn x · x2

)]
xkdx

=

⎧
⎪⎪⎨

⎪⎪⎩

2n2s
∫1

0
ρ(2s−1)

[
n
(
sinh−1x2

)]
xkdx, k odd,

0, k even.
(2.25)
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Making the substitution t = n(sinh−1x2), we have for large enough n

∫1

−1
δ
(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
xkdx

= 2n2s
∫1

0
ρ(2s−1)

[
n
(
sinh−1x2

)]
x2k+1dx

=
n2s−1

2k+1

k∑

i=0

k
i
(−1)i

∫1

0

{

exp
[
(k − 2i + 1)t

n

]

+ exp
[
(k − 2i − 1)t

n

]}

ρ(2s−1)(t)dt,

(2.26)

where

n2s−1
∫1

0

{

exp
[
(k − 2i + 1)t

n

]

+ exp
[
(k − 2i − 1)t

n

]}

ρ(s)(t)dt

=
∞∑

p=0

∫1

0

[
(k − 2i + 1)p + (k − 2i − 1)p

]
tp

p!np−2s+1
ρ(2s−1)(t)dt.

(2.27)

It follows that

N − lim
n→∞

n2s−1
∫1

0

{

exp
[
(k − 2i + 1)t

n

]

+ exp
[
(k − 2i − 1)t

n

]}

ρ(s)(t) dt

=N − lim
n→∞

∞∑

p=0

∫1

0

[
(k − 2i + 1)p + (k − 2i − 1)p

]
tp

p!np−2s+1
ρ(2s−1)(t) dt

=
−(k − 2i + 1)2s−1 + (k − 2i − 1)2s−1

2

=
bs,k,i
2

,

(2.28)

and so by using the neutrix limit, we have

N − lim
n→∞

∫1

−1
δ
(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
x2k+1dx =

k∑

i=0

(
k

i

)
(−1)i+1bs,k,i

2k+1
, (2.29)

for k = 0, 1, 2, . . ..
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When k = 2s, we have

∫1

−1

∣
∣
∣δ

(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
x4s+1

∣
∣
∣dx = n2s

∫1

−1
ρ(2s−1)

[
n
(
sinh−1x2

)]
x4s+1 dx

≤ n2s−1

2s−1
exp(s + 1)

∫1

−1

∣
∣
∣
∣
∣

[

1 − exp
(

−2t
n

)]2s
ρ(2s−1)(t)

∣
∣
∣
∣
∣
dt

=
n2s−1

2s−1
exp(s + 1)

∫1

−1

∣
∣
∣
∣
∣

[
2t
n

+O
(
n−2
)]2s

ρ(2s−1)(t)

∣
∣
∣
∣
∣
dt

≤ 22s+1n−1 exp(s + 1)
∫1

−1

[
1 +O

(
n−2/r

)]∣
∣
∣ρ(2s−1)(t)

∣
∣
∣ dt

= O
(
n−1
)
.

(2.30)

Thus, if ψ is an arbitrary continuous function, then

lim
n→∞

∫1

−1
δ
(2s−1)
n

[
sinh−1

(
sgn x · x2

)]
x4s+1ψ(x)dx = 0. (2.31)

If now ϕ is an arbitrary function in D[−1, 1], then by Taylor’s Theorem, we have

ϕ(x) =
4s∑

k=0

ϕ(k)(0)
k!

xk +
x4s+1

(4s + 1)!
ϕ(4s+1)(ξx), (2.32)

where 0 < ξ < 1, and so

N − lim
n→∞

〈
δ
(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
, ϕ(x)

〉

= N − lim
n→∞

2s−1∑

k=0

ϕ(2k+1)(0)
(2k + 1)!

∫1

−1
δ
(2s−1)
n

[
sinh−1

(
sgnx · x2

)]
x2k+1dx

+ lim
n→∞

1
(4s + 1)!

∫1

−1
δ
(4s+1)
n

[
sinh−1

(
sgnx · x2

)]
x4s+1ϕ(4s+1)(ξx)dx

=
2s−1∑

k=0

k∑

i=0

(
k

i

)
(−1)i+1bs,k,iϕ(k)(0)

2k+1(2k + 1)!
+ 0

=
2s−1∑

k=0

k∑

i=0

(
k

i

)
(−1)i+k+1bs,k,i
2k+1(2k + 1)!

〈
δ(k)(x), ϕ(x)

〉
,

(2.33)

on using (2.25) to (2.31), proving (2.22) on the interval (−1, 1). However, it is clear that
δ
(2s−1)
n [sinh−1(sgnx · x2)] = 0 for |x| > 0 and so (2.22) holds on the real line, completing

the proof of the theorem.
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Corollary 2.4. The composition δ′[sinh−1sgn x · x2)] exists and

δ′
[
sinh−1

(
sgn x · x2

)]
=
δ′(x)
4.3!

− 2δ(x). (2.34)

Proof. To prove (2.34) note that in the particular case s = 1, the usual limits hold and then
(2.34) is a particular case of (2.22). This completes the proof of the corollary.

For further related results on the neutrix operation of distributions, see [12–22] and
[2, 3, 23].
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