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The paper illustrates a novel approach to modify the Hopf bifurcation nature via a nonlinear state
feedback control, which leaves the equilibrium properties unchanged. This result is achieved by
recurring to linear and nonlinear transformations, which lead the system to locally assume the
ordinary differential equation representation. Third-order models are considered, since they can
be seen as proper representatives of a larger class of systems. The explicit relationship between the
control input and the Hopf bifurcation nature is obtained via a frequency approach, that does not
need the computation of the center manifold.

1. Introduction

Inmany fields of science, spacing from physics to biology and from engineering to economics,
the learning of phenomena, characterized by complex dynamics, and their properties opened
several new opportunities in the management of real processes. Consequently, new problems
arose in the area of control system design and among these particular attention has been
devoted to what is called the “bifurcation control”.

A nonlinear dynamical system frequently presents variations of its parameters,
and this can happen because of actual slow structural modifications of the considered
phenomenon or due to the uncertainties affecting its modeling. When such variations happen
around certain critical conditions, the system exhibits a qualitative change of behaviour
defined as a bifurcation. Since the related transitions can lead to substantial effects, even
destructive, for the system in study, their control has been deeply considered through
more than two decades, covering theoretical aspects and various concrete applications. In
this perspective, the control objective is to modify an existing bifurcation, changing its
characteristics or suitably moving it or introducing a new one, in order to avoid dangerous
conditions and obtain a desirable behaviour (see [1, 2] for an overview).
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In particular, the important case of Hopf bifurcation, leading to system oscillations, has
been studied by different approaches, usually reducing the system to the essential second-
order dynamics, that is, that concerning its central manifold. Time domain procedures use
washout filters to stabilize dynamical feedback in [3, 4], while linear and nonlinear state
feedback are considered in [5–7] and refer particularly to controller normal forms in [8–
12]. Frequency domain techniques have also been studied in terms of Harmonic Balance,
as reported in [13–15].

This paper exploits linear and local nonlinear transformations, derived from controller
normal form theory, in order to rewrite the original state equations of the system as a scalar
ordinary differential equation. Then, the use of a frequency approach based on the harmonic
balance method leads to analytically relate the original input to the bifurcation parameters,
so giving a mathematical tool to directly design the control input once the system is given.
Conditions to provide a robust control are investigated and discussed, as well. In particular,
third-order systems are here considered and sufficient conditions are provided to obtain the
corresponding scalar ODE representation. It is worth observing that such reduced models
frequently give an efficient representation of many processes, since they can exhibit a large
variety of complex dynamics (see, e.g., [16] and references within). This is the case of systems
characterized by fast third-order subdynamics, where the higher order components can be
seen as a slow varying external unknown input. Moreover, the scalar differential equation
form is an essential point to directly derive and approximate the system dynamics around
the Hopf bifurcation, since it allows one to detect the nature of such a phenomenon without
recurring to the center manifold. Finally, the main idea of the paper appears in principle to
be suitable for an extension to higher order systems.

The paper is organized as follows. In Section 2, we address the considered framework.
Then, we derive in Section 3 a set of linear and nonlinear transformations, which lead the
system to locally assume the ODE representation. An illustrative example is presented in
Section 4 and some considerations are reported in Section 5. A mathematical appendix ends
the paper.

2. Problem Formulation

Let us consider the affine control system

ξ̇ = F
(
ξ;μ
)
+G
(
ξ;μ
)
u, (2.1)

where

ξ ∈ R
3,

u ∈ R,

μ ∈ Γ ⊂ R
n,

F
(
ξ;μ
)
: R

3 × R
n −→ R

3,

G
(
ξ;μ
)
: R

3 × R
n −→ R

3.

(2.2)
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Assume that μ is a parametric vector, which may change in time according to an unknown
or unmodeled slow dynamics, so that the related modifications can be considered a
quasistatic process. Without loss of generality, let ξe(μ) represent the equilibrium point of
the autonomous part of system (2.1), that is, the point such that

F
(
ξe
(
μ
)
;μ
)
= 03, ∀μ ∈ Γ, (2.3)

and assume that ξe(μ) undergoes a Hopf bifurcation at μ = μ0 ∈ Γ.
In the following, we develop an analytic method to modify the nature of such

bifurcation via a locally nonlinear input, that leaves unaltered the fixed points manifold and
their stability properties.

Then, let us perform the change of coordinate, that brings the equilibrium points
manifold (2.3) in the origin, that is, define x = ξ − ξe(μ), so that

ẋ = ξ̇

= F
(
x + ξe

(
μ
)
;μ
)
+G
(
x + ξe

(
μ
)
;μ
)
w

= F
(
ξe
(
μ
)
;μ
)
+
∂F

∂ξ

(
ξe
(
μ
)
;μ
)
x + · · · +

(
G
(
ξe
(
μ
)
;μ
)
+
∂G

∂ξ

(
ξe
(
μ
)
;μ
)
x + · · ·

)
w

=
∂F

∂ξ

(
ξe
(
μ
)
;μ
)
x + · · · +

(
G
(
ξe
(
μ
)
;μ
)
+
∂G

∂ξ

(
ξe
(
μ
)
;μ
)
x + · · ·

)
w.

(2.4)

By denoting

f̃
(
x;μ
)
= F
(
x + ξe

(
μ
)
;μ
) − F(ξe

(
μ
)
;μ
)
,

Ã
(
μ
)
, such that Ã

(
μ
)
x = f̃ [1](x;μ

)
,

g̃
(
x;μ
)
= G
(
x + ξe

(
μ
)
;μ
)
,

B̃
(
μ
)
= G
(
ξe
(
μ
)
;μ
)
,

(2.5)

we obtain the transformed system

ẋ = Ã
(
μ
)
x + f̃ [2](x;μ

)
+ · · · +

(
B̃
(
μ
)
+ g̃[1](x;μ

)
+ · · ·

)
w. (2.6)

Since it is wellknown that, to study the super or subcritical nature of a nondegenerate Hopf
bifurcation, it is sufficient to consider the quadratic and cubic local terms [17–20], without
loss of generality in the following we will focus only on the subsystem

ẋ = Ã
(
μ
)
x + f̃ [2](x;μ

)
+ f̃ [3](x;μ

)
+
(
B̃
(
μ
)
+ g̃[1](x;μ

)
+ g̃[2](x;μ

))
w. (2.7)

In the next section, we narrow our theory to linearly controllable affine systems, that is,
models whose linear components satisfy the controllability condition (see, e.g., [21]).
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3. Hopf Bifurcation in Local ODE Models

Hereafter, we analytically point out a class of third-order affine control systems, which can be
locally represented via ODE models. The corresponding conditions are only sufficient and,
thus, the proposed method could be generalized to a large variety of systems though this
would require an increased amount of computations. However, a byproduct of our theory
is the explicit relationship between the coefficients of the starting model and its local ODE
representation. Hence, once such a transformation has been computed, it can be used as a
look-up table for every other system in that class.

Then, let us focus on linearly controllable systems. The following result holds.

Theorem 3.1. Consider system (2.7) and assume that (Ã(μ), B̃(μ)) is a controllable pair for each
μ ∈ Γ, then, an invertible T(μ) ∈ R

3×3 and

ν
(
μ
)
=
[
ν1
(
μ
)
ν2
(
μ
)
ν3
(
μ
)]

(3.1)

exist such that the linear transformation

y = T
(
μ
)
x,

u = ν
(
μ
)
T
(
μ
)
x +w

(3.2)

modifies the system into the model

ẏ = Ay + f [2](y;μ
)
+ f [3](y;μ

)
+
(
B + g[1](y;μ

)
+ g[2](y;μ

))
u, (3.3)

where the pair (A,B) is in Brunovsky form, that is,

A =

⎡

⎢⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥⎥
⎦, B =

⎡

⎢⎢
⎣

0

0

1

⎤

⎥⎥
⎦. (3.4)

It is worth underlining that transformation (3.2) can be directly computed from (A.2)
via standard algorithms used to point out the proper T(μ) satisfying (A.1) (see the appendix).

Corollary 3.2. System (3.3) controlled via the input

u = ν
(
μ
)
y + k[2]

(
y;μ
)
+ k[3]

(
y;μ
)

(3.5)

and system (2.7) with

w = k[2]
(
T
(
μ
)
x;μ
)
+ k[3]

(
T
(
μ
)
x;μ
)

(3.6)

are locally equivalent at their equilibria ξe(μ) ↔ 03.
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Hereafter, we derive a class of affine control systems, which can be locally described as
ODEs, when their inputs are designed as a state feedback. This approach is motivated by the
existence of simple though powerful analytic mathematical tools, developed to study Hopf
bifurcations in third order nonlinear ODE systems [19, 20, 22].

Theorem 3.3. Consider the linearly controllable system (3.3), with (A,B) in Brunovsky form, then,
by means of a nonlinear transformation

y = z + ϕ[2](z;μ
)
+ ϕ[3](z;μ

)
, (3.7)

v = u + ψ[2](z, u;μ
)
+ ψ[3](z, u;μ

)
, (3.8)

it assumes the form

ż1 = z2 + γ16
(
μ
)
z23 +

(
δ17
(
μ
)
z1 + δ18

(
μ
)
z2 + δ19

(
μ
)
z3
)
z23,

ż2 = z3,

ż3 = v,

(3.9)

which is locally equivalent to (3.3) around the equilibrium in the origin.

Corollary 3.4. Consider system (3.9), where the parameters γ16(μ), δ17(μ), δ18(μ), and δ19(μ) are
computed from the coefficients of the polynomial terms of the nonlinearities of model (3.3) according
to Tables 1, 2, and 3. If the condition

γ16
(
μ
)
= δ17

(
μ
)
= δ18

(
μ
)
= δ19

(
μ
)
= 0, ∀μ ∈ Γ (3.10)

holds, then (3.9) can be transformed into the ODE model

...
ζ = v, (3.11)

via the linear change of coordinates

z1 = ζ, z2 = ζ̇, z3 = ζ̈. (3.12)

The systems satisfying condition (3.9) can be explicitly pointed out by means of the
parametric relationships reported in the tables. However, they can also be represented via
the functional characterization of the following statement.
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Table 1: Relationships between the coefficients of f [2](z), g[1](z), and ϕ[2](z) in (A.10)–(A.12), that is,
pertaining the quadratic part of the nonlinear transformation (3.7).

α11 can be freely assigned.

α12 = a13 + α23 = a13 + b21

α13 = b11

α14 =
1
2
(a15 + α25 − b11) = 1

2
(a15 + b22 − b11)

α15 = b12

α16 =
1
2
b13

α21 = −a21
α22 = −a21 + 2α11

α23 = b21

α24 = −a14 + α12 = −a14 + a13 + b21
α25 = b22

α26 =
1
2
b23

α31 = −a21
α32 = −a22 + 2α21 = −a22 + 2(−a21)

α33 = −a23 + α22 = −a23 + (−a21 + 2α11)

α34 = −a24 + α22 = −a24 + (−a21 + 2α11)

α35 = −a25 + α23 + 2α24 = −a25 + b21 + 2(−a14 + a13 + b21)
α36 = −a26 + α25 = −a26 + b22

γ16 = α26 + a16 − b12 = 1
2
b23 + a16 − b12

Theorem 3.5. A system of the form (3.9) satisfies condition (3.10) if and only if ϕ[2](z), ϕ[3](z) :

R
3 → R

3 and ψ[2]
z (z), ψ[3]

z (z), ψ[1]
u (z), ψ[2]

u (z) : R
3 → R exist, which satisfy

Aϕ[2](z) + f [2](z) − ∂ϕ[2]

∂z
Az = Bψ[2]

z (z), (3.13)

g[1](z) − ∂ϕ[2]

∂z
B = Bψ[1]

u (z), (3.14)

Aϕ[3](z) + f [3](z) +
∂f [2]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z
Bψ

[2]
z (z) − ∂ϕ[3]

∂z
Az = Bψ[3]

z (z), (3.15)

g[2](z) +
∂g[1]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z
Bψ

[1]
u (z) − ∂ϕ[3]

∂z
B = Bψ[2]

u (z). (3.16)
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Table 2: Relationships between the coefficients of f̂ [3](z) and those of f [3](z), f [2](z) and ϕ[2](z) as they
result from condition (A.19).

i = 1, 2, 3

ĉi1 = ci1 + 2ai1α11 + ai2α21 + ai3α31 + 2αi1(−α21 − a11) + αi2(−α31 − a21) − αi3a31
ĉi2 = ci2 + 2ai1α12 + ai2α11 + ai2α22 + 2ai4α21 + ai3α32 + ai5α31 + 2αi1(−α22 − a12 + 2α11) + αi2(−α21 − a11) +
αi2(−α32 − a22 + 2α21) + 2αi4(−α31 − a21) + αi3(−a32 + 2α31) − αi5a31
ĉi3 = ci3 + 2ai1α13 + ai3α11 + ai2α23 + ai5α21 + ai3α33 + 2ai6α31 + 2αi1(−α23 − a13 + α12) + αi3(−α21 − a11) +
αi2(−α33 − a23 + α22) + αi5(−α31 − a21) + αi3(−a33 + α32) − 2αi6a31

ĉi4 = ci4 + 2ai1α14 + ai2α12 + ai2α24 + 2ai4α22 + ai3α34 + ai5α32 + 2αi1(−α24 − a14 + α12) + αi2(−α22 − a12 +
2α11) + αi2(−α34 − a24 + α22) + 2αi4(−α32 − a22 + 2α21) + αi3(−a34 + α32) + αi5(−a32 + 2α31)

ĉi5 = ci5 + ai2α14 + 2ai4α24 + ai5α34 + αi2(−α24 − a14 + α12) + 2αi4(−α34 − a24 + α22) + αi5(−a34 + α32)
ĉi6 = ci6 + ai2α15 + ai3α14 + 2ai4α25 + ai5α24 + ai5α35 + 2ai6α34 + αi2(−α25 − a15 + α13) + αi3(−α24 − a14 + α12) +
2αi4(−α35 − a25 + α23) + αi5(−α34 − a24 + α22) + αi5(−a35 + α33) + 2αi6(−a34 + α32)
ĉi7 = ci7 + 2ai1α16 + ai3α13 + ai2α26 + ai5α23 + ai3α36 + 2ai6α33 + 2αi1(−α26 − a26 + α15) + αi3(−α23 − a13 + α12) +
αi2(−α36 − a26 + α25) + αi5(−α33 − a23 + α22) + αi3(−a36 + α35) + 2αi6(−a31 + α32)
ĉi8 = ci8 + ai2α16 + ai3α15 + 2ai4α26 + ai5α25 + ai5α36 + 2ai6α35 + αi2(−α26 − a16 + α15) + αi3(−α25 − a15 + α13 +
2α14) + 2αi4(−α36 − a26 + α25) + αi5(−α25 − a25 + α23 + 2α24) + αi5(−a36 + α35) + 2αi6(−a35 + α33 + 2α34)

ĉi9 = ci9 + ai3α16 + ai5α26 + 2ai6α36 + αi3(−α26 − a16 + α15) + αi5(−α36 − a26 + α25) + 2αi6(−a36 + α35)
ĉi0 = ci0 + 2ai1α15 + ai2α13 + ai3α12 + ai2α25 + 2ai4α23 + ai5α22 + ai3α35 + ai5α33 + 2ai6α32 + 2αi1(−α25 − a15 +
α13 + 2α14) + αi2(−α23 − a13 + α12) + αi3(−α22 − a12 + 2α11) + αi2(−α35 − a25 + α23 + 2α24) + 2αi4(−α33 − a23 +
α22) + αi5(−α32 − a22 + 2α21) + αi3(−a35 + α33 + 2α34) + αi5(−a33 + α32) + 2αi6(−a32 + 2α31)

Table 3: Relationships between the coefficients of g[1](z) and those of ĝ[2](z) and ϕ[2](z) as they result
from conditions (A.20).

i = 1, 2, 3

d̂i1 = di1 + bi1α11 + bi2α21 + bi3α31 − 2αi1b11 − αi2b21 − αi3b31 − 2αi1α13 − αi2α23 − αi3α33
d̂i2 = di2 + bi1α12 + bi2α22 + bi3α32 − 2αi1b12 − αi2b11 − αi2b22 − 2αi4b21 − αi3b32 − αi5b31 + 2αi1α15 + αi2α13 +
αi2α25 + 2αi4α23 + αi3α35 + αi5α33

d̂i3 = di3 + bi1α13 + bi2α23 + bi3α33 − 2αi1b13 − αi3b11 − αi2b23 − αi5b21 − αi3b33 − 2αi6b31 + 4αi1α16 + αi3α13 +
2αi2α26 + αi5α23 + 2αi3α36 + 2αi6α33

d̂i4 = di4 + bi1α14 + bi2α24 + bi3α34 − αi2b12 − 2αi4b22 − αi5b32 − αi2α15 − 2αi4α25 − αi5α35
d̂i5 = di5 + bi1α15 + bi2α25 + bi3α35 − αi2b13 − αi3b12 − 2αi4b23 − αi5b22 − αi5b33 − 2αi6b32 + 2αi2α16 + αi3α15 +
4αi4α26 + αi5α25 + 2αi5α36 + 2αi6α35

d̂i6 = di6 + bi1α16 + bi2α26 + bi3α36 − αi3b13 − αi5b23 − 2αi6b33 − 2αi3α16 − 2αi5α26 − 4αi6α36

Hereafter, a local nonlinear transformation, which maintains unaltered the linear part
of the system, is introduced.

Theorem 3.6. System (3.3) controlled via the input

u = ν
(
μ
)
y + k[2]

(
y;μ
)
+ k[3]

(
y;μ
)

(3.17)
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and system (3.9), or the ODE model (3.11), controlled by

v = ν
(
μ
)
z + v[2](z;μ

)
+ v[3](z;μ

)
(3.18)

are locally equivalent around their equilibria in the origin, when the following conditions, related also
to the polynomial functions in (3.7) and (3.8), are satisfied:

k[2]
(
z;μ
)
= v[2](z;μ

) − ν(μ)ϕ[2](z;μ
) − ψ[2](z, ν

(
μ
)
z;μ
)
,

k[3]
(
z;μ
)
= v[3](z;μ

) − ν(μ)ϕ[3](z, ν
(
μ
)
z;μ
) − ∂k[2]

∂z
ϕ[2](z;μ

)

− ∂ψ[2]

∂u
ϕ[2](z;μ

) − ∂ψ[2]

∂u
k[2]
(
z;μ
) − ψ[3](z, ν

(
μ
)
z;μ
)
.

(3.19)

The above Theorem 3.6 allows us to design the nonlinear terms of the control input of
system (3.3) and, then, of the original model (2.7), just by referring to the ODE system (3.11)
driven by the input

v = ν1
(
μ
)
ζ + ν2

(
μ
)
ζ̇ + ν3

(
μ
)
ζ̈ + v[2](ζ, ζ̇, ζ̈;μ

)
+ v[3](ζ, ζ̇, ζ̈;μ

)
. (3.20)

Therefore, the Hopf bifurcation nature can be modified by a suitable choice of the
nonlinearities v[2](ζ, ζ̇, ζ̈;μ) and v[3](ζ, ζ̇, ζ̈;μ). Since the control system (3.11)–(3.20) is an ODE
model, a generalized frequency approach, as that shown in [20, 22], can still be fruitfully
employed. Moreover, by computing also the explicit relationship between the coefficients of
the nonlinearities in the starting model and in the final ODE system, one can also point out
the simplest input w, that provides the desired result. However, in order to illustrate this
frequency approach by keeping the computational burden low, hereafter we describe how
the bifurcation is affected by the only quadratic term v[2](ζ, ζ̇, ζ̈;μ), when the cubic component
v[3](ζ, ζ̇, ζ̈;μ) is set to zero.

Proposition 3.7. Consider the ODE system

...
ζ = ν3

(
μ
)
ζ̈ + ν2

(
μ
)
ζ̇ + ν1

(
μ
)
ζ

+r1
(
μ
)
ζ2+r2

(
μ
)
ζ̇ζ+r3ζ̈ζ+r4

(
μ
)
ζ̇2+r5

(
μ
)
ζ̈ζ̇+r6

(
μ
)
ζ̈2=0,

(3.21)

and assume that its equilibrium point in ζ = 0 undergoes a nondegenerate Hopf bifurcation at μ = μ0.
Then the bifurcation is supercritical, if detM(μ0) < 0, and subcritical if detM(μ0) > 0, where matrix
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M(μ) is defined as

M=

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ν3 1
2
(−r1 − (−r4 + r3)ν2 − r6ν22

)
0

−2r1 − r3ν2 0 A

r2(−ν2)1/2 0 B

0
1
2
(−r1 + (−r3 − r4)ν2 − r6ν22

)
3ν1

0
1
2
(−ν2)1/2(r2 + r5ν2) 6(−ν2)3/2

0 0

B 2ν3(−ν2)1/2

A −2ν2

−6(−ν2)3/2 0

3ν1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.22)

where A denotes −r1 − (−2r4 + (5/2)r3)ν2 − 4r6ν22 and B denotes (−ν2)1/2((−1/2)r2 + r5ν2), being
the dependency on μ neglected for the sake of simplicity (for a detailed proof of the statement refer to
[19]).

Remark 3.8. It is worth noticing that also the limit cycle features can be set up via the same
frequency approach, as illustrated in [19, 20].

Proposition 3.7, along with the explicit relationships of Tables 1–4 between the
coefficients of the starting systems and the final ODE model, can be fruitfully exploited to
design the nonlinear components of input w in order to obtain the desired results about the
Hopf bifurcation at μ = μ0.

To this aim, it is important to underline that in general the control input designed this
way depends on the bifurcation parameter μ. However, in certain situations the parameters
of the model, which slowly vary in time according to an unknown law, could not be accessible
to compute the proper input. In such a case, where μ cannot be observed, controlw solves the
problem only if it does not depend on it. This scenario can be regarded as a robust bifurcation
control approach. Such a case is summarized by the following statement.

Proposition 3.9 (Robust control design). Let one consider system (2.7) along with the control
input (3.6), computed according to (3.19) and related conditions. Set

v[2](z;μ
)
= r1
(
μ
)
z21 + r2

(
μ
)
z2z1 + r3

(
μ
)
z3z1 + r4

(
μ
)
z22 + r5

(
μ
)
z3z2 + r6

(
μ
)
z23,

v[3](z;μ
)
= 0,

(3.23)

and denote by

r
(
μ
)
=
[
r1(μ) r2(μ) r3(μ) r4(μ) r5(μ) r6(μ)

]T (3.24)

the control parametric vector. Moreover, consider matrix (3.22) and define the sets

Rsup =
{
r
(
μ
)
: detM

(
μ0
)
< 0
}
,

Rsup =
{
r
(
μ
)
: detM

(
μ0
)
> 0
}
,

(3.25)
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Table 4: Relationships between the coefficients of f [3](z), g[2](z), and ϕ[3](z) in (A.10)–(A.12), that is,
pertaining the cubic part of the nonlinear transformation (3.7).

β11 can be freely assigned.

β12 = β23 + ĉ13 = d̂21 + ĉ13

β13 = d̂11

β14 =
1
2
(β20 + ĉ10 − 2β13) =

1
2
(d̂22 + ĉ10 − 2d̂11)

β15 =
1
3
(β26 + ĉ16 − β10) = 1

3
(d̂24 + ĉ16 − d̂12)

β16 = d̂14

β17 =
1
2
d̂13

β18 =
1
2
d̂15

β19 =
1
3
d̂16

β10 = d̂12

β21 = −ĉ11
β22 = −ĉ12 + 3β11 = −ĉ12 + 3β11

β23 = d̂21

β24 = −ĉ14 + 2β12 = −ĉ14 + 2(d̂21 + ĉ13)

β25 = −ĉ15 + β14 = −ĉ15 + 1
2
(d̂22 + ĉ10 − 2d̂11)

β26 = d̂24

β27 =
1
2
d̂23

β28 =
1
2
d̂25

β29 =
1
3
d̂26

β20 = d̂22

β31 = −ĉ21
β32 = −ĉ22 + 3β21 = −ĉ22 − 3ĉ11

β33 = −ĉ23 + β22 = −ĉ23 − ĉ12 + 3β11

β34 = −ĉ24 + 2β22 = −ĉ24 + 2(−ĉ12 + 3β11)

β35 = −ĉ25 + β24 = −ĉ25 − ĉ14 + 2(d̂21 + ĉ13)

β36 = −ĉ26 + 3β25 + β10 = −ĉ26 + 3(−ĉ15 + 1
2
(d̂22 + ĉ10 − 2d̂11)) + d̂12

β37 = −ĉ27 + β20 = −ĉ27 + d̂22
β38 = −ĉ28 + β27 + 2β26 = −ĉ28 + 1

2
d̂23 + 2(d̂24)

β39 = −ĉ29 + β28 = −ĉ29 + 1
2
d̂25

β30 = −ĉ20 + β20 + 2β23 + 2β24 = −ĉ20 + d̂22 + 2(d̂21) + 2(−ĉ14 + 2(d̂21 + ĉ13))

δ17 = β27 + ĉ17 − β10 = 1
2
d̂23 + ĉ17 − d̂12

δ18 = β28 + ĉ18 − 2β16 − β17 = 1
2
d̂25 + ĉ18 − 2d̂14 − 1

2
d̂13

δ19 = β29 + ĉ19 − β18 = 1
3
d̂26 + ĉ19 − 1

2
d̂15
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representing all the controls of the form (3.23), which provide, respectively, supercritical and
subcritical Hopf bifurcations of the equilibrium point. Then, the corresponding bifurcation of the
original system (2.7) can be turned supercritical (subcritical) without regard of the model variations,
that is, it can be made supercritical (subcritical) via robust control if r(μ) ∈ Rsup (r(μ) ∈ Rsub) exist,
such that the corresponding w does not depend on μ.

Remark 3.10. When only the linear part of the starting system depends on the parameter μ,
any constant vector r provides a robust control in the sense of the above proposition.

4. Example

In order to illustrate the proposed approach to Hopf bifurcation control, let us consider a
system already in the form (3.3), that is,

ẏ1 = y2 + y2
1 − 2y3y2

1 +
(
y1 − 3y3y1

)
u,

ẏ2 = y3 − 2y2y1 − 2y3
1 +
(
y2 − 3y3y2

)
u,

ẏ3 = u,

(4.1)

which corresponds to

f [2](y
)
=

⎡

⎢⎢
⎣

y2
1

−2y2y1
0

⎤

⎥⎥
⎦, f [3](y

)
=

⎡

⎢⎢
⎣

−2y3y2
1

−2y3
1

0

⎤

⎥⎥
⎦,

g[1](y
)
=

⎡

⎢⎢
⎣

y1

y2

0

⎤

⎥⎥
⎦, g[2](y

)
=

⎡

⎢⎢
⎣

−3y3y1
−3y3y2

0

⎤

⎥⎥
⎦.

(4.2)

Then, it is straightforward to check that such a system satisfies condition (3.10), when the
transformation

ϕ[2](z) =

⎡

⎢⎢
⎣

z3z1

−z21 + z2z3
z23

⎤

⎥⎥
⎦, ϕ[3](z) =

⎡

⎢⎢
⎣

−z2z21
−z3z21 − 2z1z22
−2z32 − 2z1z2z3

⎤

⎥⎥
⎦,

ψ
[2]
z (z) = 0, ψ

[1]
u (z) = −2z3,

ψ
[3]
z (z) = 8z3z22 + 2z1z2z3, ψ

[2]
u (z) = 4z23 − 2z1z2

(4.3)
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is considered. Also the following relationships hold:

f̂ [3](z) =

⎡

⎢
⎢
⎣

0

−4z1z2z3
0

⎤

⎥
⎥
⎦, ĝ[2](z) =

⎡

⎢
⎢
⎣

0

−z21
4z23

⎤

⎥
⎥
⎦. (4.4)

Then, suppose that μ0 = 0, and let us assume that

ν1
(
μ
)
= ν1, ν2

(
μ
)
= ν2 + μ, ν3

(
μ
)
= ν3 (4.5)

are such that the linear part of the system undergoes a Hopf bifurcation at μ = μ0. Hence, if
we consider the class of controllers (3.23) featuring

r1
(
μ
)
= r1, r4

(
μ
)
= r4, ri

(
μ
)
= 0, i = 2, 3, 5, 6, (4.6)

we have that

M
(
μ0
)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−ν3 1
2
(−r1 + r4ν2) 0 0 0

−2r1 0 −r1 + 2r4ν2 0 2ν3(−ν2)1/2

0 0 0 −r1 + 2r4ν2 −2ν2

0
1
2
(−r1 − r4ν2) 3ν1 −6(−ν2)3/2 0

0 0 6(−ν2)3/2 3ν1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.7)

Therefore, the supercritical bifurcation condition at μ = μ0 is given by

detM
(
μ0
)
= 3ν3(r1 + r4ν2)(−r1 + 2r4ν2)(ν1ν2 + 2ν3(−ν2))

− 2ν2r1(r1 − r4ν2)
(
9ν21 + 36(−ν2)3

)
< 0,

(4.8)

defining the manifold of the pairs (r1, r4), which realize a proper control. The explicit form of
the corresponding nonlinear part of u is obtained substituting the above functions and

v[2](z) = r1z21 + r4z
2
2,

v[3](z) = 0
(4.9)

in (3.19).
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5. Conclusions

In this paper, we have introduced an approach to set up the Hopf bifurcation nature, without
modifying the related equilibrium point features. This goal is achieved by introducing in the
system specifically designed nonlinear terms, which only locally affect it in a close around of
that fixed point. Then, the explicit form of classes of suitable control inputs has been obtained
by exploiting local transformations, which lead the system to assume the ordinary differential
equation form. In particular, we have considered third-order models, since they can be also
used to represent certain classes of higher order systems. Indeed, they can be regarded as
proper representations of more complex models characterized by an inner fast subsystem.
Moreover, the control input has been designed via a frequency approach, which has not
required the computation of the center manifold dynamics.

Appendix

Proofs

Proof of Theorem 3.1. By assumption, the pair (Ã(μ), B̃(μ)) is controllable for each μ ∈ Γ.
Therefore, it is wellknown (see, e.g. [21]) that for all μ ∈ Γ, an invertible T(μ) ∈ R

3×3 exist
such that

T
(
μ
)
Ã
(
μ
)
T−1(μ

)
=

⎡

⎢⎢
⎣

0 1 0

0 0 1

ν1
(
μ
)
ν2
(
μ
)
ν3
(
μ
)

⎤

⎥⎥
⎦, T

(
μ
)
B̃
(
μ
)
=

⎡

⎢⎢
⎣

0

0

1

⎤

⎥⎥
⎦. (A.1)

Therefore, consider the row vector (3.1), and let us perform the linear affine transformation
(20) with T(μ) defined as above. Then, it follows that

ẏ = T
(
μ
)
Ã
(
μ
)
T−1(μ

)
y + T

(
μ
)
f̃ [2]
(
T−1(μ

)
y;μ
)
+ T
(
μ
)
f̃ [3]
(
T−1(μ

)
y;μ
)

+ T
(
μ
)(
B̃
(
μ
)
+ g̃[1]

(
T−1(μ

)
y;μ
)
+ g̃[2]

(
T−1(μ

)
y;μ
))
w

=
(
T
(
μ
)
Ã
(
μ
)
T−1(μ

) − T(μ)B̃(μ)ν(μ)
)
y

+ T
(
μ
)(
f̃ [2]
(
T−1(μ

)
y;μ
)
− g̃[1]

(
T−1(μ

)
z;μ
)
ν
(
μ
)
y
)

+ T
(
μ
)(
f̃ [3]
(
T−1(μ

)
y;μ
)
− g̃[2]

(
T−1(μ

)
yμ
)
ν
(
μ
)
y
)

+
(
T
(
μ
)
B̃
(
μ
)
+ T
(
μ
)
g̃[1]
(
T−1(μ

)
y;μ
)
+ T
(
μ
)
g̃[2]
(
T−1(μ

)
y;μ
))(

w + ν
(
μ
)
y
)

= Ay + f [2](y;μ
)
+ f [3](y;μ

)
+
(
B + g[1](y;μ

)
+ g[2](y;μ

))
u,

(A.2)

where the pair (A,B) is in Brunovsky form.
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Proof of Theorem 3.3. The main idea beyond transformation (3.7) and (3.8) and representation
(3.9) is derived from controller normal form theory (see [9–11, 23] for complete reference).
However, hereafter we develop a slightly different approach in order to prove that model
(3.9) can always be locally obtained. Moreover, thanks to the proposed approach, we are also
able to point out the explicit general form of the functions (3.7) and (3.8). For the sake of
simplicity, in the following, the explicit dependency on the bifurcation parameter μ will be
neglected.

Hence, let us consider the nonlinear state transformation (3.7) and notice that

ẏ =

(

I +
∂ϕ[2]

∂z
+
∂ϕ[3]

∂z

)

ż, (A.3)

which implies also that

ż =

(

I +
∂ϕ[2]

∂z
+
∂ϕ[3]

∂z

)−1
ẏ. (A.4)

Moreover, observe that

(

I +
∂ϕ[2]

∂z
+
∂ϕ[3]

∂z

)−1
= I − ∂ϕ[2]

∂z
+
∂ϕ[2]

∂z

∂ϕ[2]

∂z
− ∂ϕ[3]

∂z
+O[3](z), (A.5)

and that

f [2]
(
z + ϕ[2](z) + · · ·

)
= f [2](z) +

∂f [2]

∂z
ϕ[2](z) + · · · ,

f [3](z + · · · ) = f [3](z) + · · · ,

g[1]
(
z + ϕ[2](z) + ϕ[3](z) + · · ·

)
= g[1](z) +

∂g[1]

∂z
ϕ[2](z) +

∂g[1]

∂z
ϕ[3](z) + · · · ,

g[2]
(
z + ϕ[2](z) + · · ·

)
= g[2](z) +

∂g[2]

∂z
ϕ[2](z) + · · · .

(A.6)
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Therefore, it results that

ż =

(

I − ∂ϕ[2]

∂z
+
∂ϕ[2]

∂z

∂ϕ[2]

∂z
− ∂ϕ[3]

∂z
+O[3](z)

)

×
(

Az +Aϕ[2](z) +Aϕ[3](z) + f [2](z) +
∂f [2]

∂z
ϕ[2](z) + f [3](z) +O[4](z)

+

(

B + g[1](z) +
∂g[1]

∂z
ϕ[2](z) + g[2](z) +O[2](z)

)

u

)

= Ay + Bu

(A.7)

+Aϕ[2](z) + f [2](z) − ∂ϕ[2]

∂z
Az − ∂ϕ[2]

∂z
Bu + g[1](z)u (A.8)

+Aϕ[3](z) +
∂f [2]

∂z
ϕ[2](z) + f [3](z) +

∂g[1]

∂z
ϕ[2](z)u + g[2](z)u

− ∂ϕ[2]

∂z
Aϕ[2](z) − ∂ϕ[2]

∂z
f [2](z) − ∂ϕ[2]

∂z
g[1](z)u

+
∂ϕ[2]

∂z

∂ϕ[2]

∂z
Az − ∂ϕ[3]

∂z
Az +

∂ϕ[2]

∂z

∂ϕ[2]

∂z
Bu − ∂ϕ[3]

∂z
Bu + · · · .

(A.9)

Let us first study the quadratic terms (A.8) of the above representation. According to (3.9)
and (3.8), it must result that

ϕ
[2]
2 (z) + f [2]

1 (z) − ∂ϕ
[2]
1

∂z1
z2 −

∂ϕ
[2]
1

∂z2
z3 −

∂ϕ
[2]
1

∂z3
u + g[1]

1 (z)u = γ16z23, (A.10)

ϕ
[2]
3 (z) + f [2]

2 (z) − ∂ϕ
[2]
2

∂z1
z2 −

∂ϕ
[2]
2

∂z2
z3 −

∂ϕ
[2]
2

∂z3
u + g[1]

2 (z)u = 0, (A.11)

f
[2]
3 (z) − ∂ϕ

[2]
3

∂z1
z2 −

∂ϕ
[2]
3

∂z2
z3 −

∂ϕ
[2]
3

∂z3
u + g[1]

3 (z)u = ψ[2](z, u). (A.12)

Let us denote

f
[2]
i (z) = ai1z21 + ai2z2z1 + ai3z3z1 + ai4z

2
2 + ai5z3z2 + ai6z

2
3,

g
[1]
i (z) = bi1z1 + bi2z2 + bi3z3,

ϕ
[2]
i (z) = αi1z21 + αi2z2z1 + αi3z3z1 + αi4z

2
2 + αi5z3z2 + αi6z

2
3, i = 1, 2, 3.

(A.13)
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Then, in order to delete u form the first and second equations, the following parametric
conditions have to be satisfied:

∂ϕ
[2]
i

∂z3
= αi3z1 + αi5z2 + 2αi6z3 = bi1z1 + bi2z2 + bi3z3, i = 1, 2, (A.14)

thus, leading to the relationships

αi3 = bi1, αi5 = bi2, αi6 =
1
2
bi3, i = 1, 2. (A.15)

Then, by observing that

∂ϕ
[2]
1

∂z2
z3 = α12z3z1 + 2α14z3z2 + α15z23 = α12z3z1 + 2α14z3z2 + b12z23,

∂ϕ
[2]
1

∂z1
z2 = 2α11z2z1 + α12z22 + α13z3z2 = 2α11z2z1 + α12z22 + b11z3z2,

(A.16)

the following considerations are in order. After deleting u in the second equation (A.11), the
other components of ϕ[2]

2 (z) could be used to delete from (A.10) the terms z21, z1z2 and z22.
Similarly, after deleting u in (A.10) by means of ϕ[2]

1 (z), this function could also be employed
to delete z1z2, z2z3, and one between z1z3, and z22. The optimal choice in order to delete most
of the elements is taking care of z2z3 and z1z3. Doing that way, it is straightforward to check
that the only quadratic term of the first equation (A.10) that cannot be deleted by a proper
choice of ϕ[2](z) is z23.

The rest of the second equation (A.11), conversely, can be delete by choosing

ϕ
[2]
3 (z) = −f [2]

2 (z) +
∂ϕ

[2]
2

∂z1
z2 +

∂ϕ
[2]
2

∂z2
z3, (A.17)

while third equation (A.12) just becomes the very definition of ψ[2](z, u). The related
coefficients of ϕ[2](z) are reported in Table 1 and in particular it results that

γ16 = α26 + a16 − b12 = 1
2
b23 + a16 − b12. (A.18)

Let us now consider the cubic part of the problem. First, let us denote

f̂ [3](z) = f [3](z) +
∂f [2]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z
Aϕ[2](z) − ∂ϕ[2]

∂z
f [2](z) +

∂ϕ[2]

∂z

∂ϕ[2]

∂z
Az, (A.19)

ĝ[2](z) = g[2](z) +
∂g[1]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z
g[1](z) +

∂ϕ[2]

∂z

∂ϕ[2]

∂z
B (A.20)
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and for i = 1, 2, 3,

f
[3]
i (z) = ci1z31 + ci2z2z

2
1 + ci3z3z

2
1 + ci4z1z

2
2 + ci5z

3
2 + ci6z3z

2
2

+ ci7z1z23 + ci8z2z
2
3 + ci9z

3
3 + ci0z1z2z3,

g
[2]
i (z) = di1z21 + di2z2z1 + di3z3z1 + di4z

2
2 + di5z3z2 + di6z

2
3,

f̂
[3]
i (z) = ĉi1z31 + ĉi2z2z

2
1 + ĉi3z3z

2
1 + ĉi4z1z

2
2 + ĉi5z

3
2 + ĉi6z3z

2
2

+ ĉi7z1z23 + ĉi8z2z
2
3 + ĉi9z

3
3 + ĉi0z1z2z3,

ĝ
[2]
i (z) = d̂i1z21 + d̂i2z2z1 + d̂i3z3z1 + d̂i4z

2
2 + d̂i5z3z2 + d̂i6z

2
3,

ϕ
[3]
i (z) = βi1z31 + βi2z2z

2
1 + βi3z3z

2
1 + βi4z1z

2
2 + βi5z

3
2 + βi6z3z

2
2 + βi7z1z

2
3

+ βi8z2z23 + βi9z
3
3 + βi0z1z2z3.

(A.21)

Then, by observing for each i = 1, 2, 3 that

f̂
[3]
i (z) = f [3]

i (z) +
∂f

[2]
i

∂z1
ϕ
[2]
1 (z) +

∂f
[2]
i

∂z2
ϕ
[2]
2 (z) +

∂f
[2]
i

∂z3
ϕ
[2]
3 (z)

− ∂ϕ
[2]
i

∂z1
ϕ
[2]
2 (z) − ∂ϕ

[2]
i

∂z2
ϕ
[2]
3 (z)

− ∂ϕ
[2]
i

∂z1
f
[2]
1 (z) − ∂ϕ

[2]
i

∂z2
f
[2]
2 (z) − ∂ϕ

[2]
i

∂z3
f
[2]
3 (z)

+
∂ϕ

[2]
i

∂z1

∂ϕ
[2]
1

∂z1
z2 +

∂ϕ
[2]
i

∂z1

∂ϕ
[2]
1

∂z2
z3 +

∂ϕ
[2]
i

∂z2

∂ϕ
[2]
2

∂z1
z2

+
∂ϕ

[2]
i

∂z2

∂ϕ
[2]
2

∂z2
z3 +

∂ϕ
[2]
i

∂z3

∂ϕ
[2]
3

∂z1
z2 +

∂ϕ
[2]
i

∂z3

∂ϕ
[2]
3

∂z2
z3,

ĝ
[2]
i (z) = g[2]

i (z) +
∂g

[1]
i

∂z1
ϕ
[2]
1 (z) +

∂g
[1]
i

∂z2
ϕ
[2]
2 (z) +

∂g
[1]
i

∂z3
ϕ
[2]
3 (z)

− ∂ϕ
[2]
i

∂z
g
[1]
1 (z) − ∂ϕ

[2]
i

∂z
g
[1]
2 (z) − ∂ϕ

[2]
i

∂z
g
[1]
3 (z)

+
∂ϕ

[2]
i

∂z1

∂ϕ
[2]
1

∂z3
+
∂ϕ

[2]
i

∂z2

∂ϕ
[2]
2

∂z3
+
∂ϕ

[2]
i

∂z3

∂ϕ
[2]
3

∂z3
,

(A.22)

the relationships among the coefficients of the pair f [3](z), g[2](z, u) and those of f̃ [3](z),
g̃[2](z, u) turn out to be as reported in Tables 2 and 3.
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Exploiting the above results, let us consider the cubic part problem (71). It assumes
the form

Aϕ[3](z) + f̂ [3](z) − ∂ϕ[3]

∂z
Az − ∂ϕ[3]

∂z
Bu + ĝ[2](z)u

=
[
δ17z

3
3 + δ18z1z

2
3 + δ19z2z

2
3 0 ψ[3](z, u)

]T
,

(A.23)

that is,

ϕ
[3]
2 (z)+f̂ [3]

1 (z)− ∂ϕ
[3]
1

∂z1
z2−

∂ϕ
[3]
1

∂z2
z3−

∂ϕ
[3]
1

∂z3
u+ĝ[2]

1 (z)u=δ17z33+δ18z1z
2
3+δ19z2z

2
3,

(A.24)

ϕ
[3]
3 (z) + f̂ [3]

2 (z) − ∂ϕ
[3]
2

∂z1
z2 −

∂ϕ
[3]
2

∂z2
z3 −

∂ϕ
[3]
2

∂z3
u + ĝ[2]

2 (z)u = 0, (A.25)

f̂
[3]
3 (z) − ∂ϕ

[3]
3

∂z1
z2 −

∂ϕ
[3]
3

∂z2
z3 −

∂ϕ
[3]
3

∂z3
u + ĝ[2]

3 (z)u = ψ[3](z, u). (A.26)

Then, we may proceed similarly to the quadratic case. Deleting u from the first and second
equations (A.24) and (A.25) implies that

∂ϕ
[3]
i

∂z3
= βi3z21 + βi6z

2
2 + 2βi7z1z3 + 2βi8z2z3 + 3βi9z23 + βi0z1z2

= d̂i1z21 + d̂i2z2z1 + d̂i3z3z1 + d̂i4z
2
2 + d̂i5z3z2 + d̂i6z

2
3, i = 1, 2,

(A.27)

which corresponds to the following parametric conditions:

βi3 = d̂i1, βi6 = d̂i4, βi7 =
1
2
d̂i3,

βi8 =
1
2
d̂i5, βi9 =

1
3
d̂i6, βi0 = d̂i2, i = 1, 2.

(A.28)

Therefore, by observing that

∂ϕ
[3]
1

∂z2
z3 = β12z21z3 + 2β14z1z2z3 + 3β15z22z3 + 2β16z2z23 + β18z

3
3 + β10z1z

2
3,

∂ϕ
[3]
1

∂z1
z2 = 3β11z21z2 + 2β12z1z22 + 2β13z1z3z2 + β14z32 + β17z

2
3z2 + β10z3z

2
2,

(A.29)

it is straightforward to check that ϕ[3]
2 (z) still allows one to delete in the first equation (A.24)

the terms z31, z2z
2
1, z1z

2
2, and z32. By exploiting ϕ[3]

1 (z), in turn, one could delete in the same
equation also the terms z3z22 (via β15), z2z

2
1 (via β11), one between z3z21 and z1z

2
2 (via β12) and
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one between z1z2z3 and z32 (via β14). Hence, by choosing to delete via ϕ[3]
1 (z) the terms z3z22,

z3z
2
1 and z1z2z3, we have that in the first equation (A.24) only the terms z33, z1z

2
3, and z2z

2
3

still remain. Then, in order to delete every one element in the second equation (A.25), we set

ϕ
[3]
3 (z) = −f̂ [3]

2 (z) +
∂ϕ

[3]
2

∂z1
z2 +

∂ϕ
[3]
2

∂z2
z3. (A.30)

Finally, the third equation (A.26) can be regarded just as the definition of ψ[3](z, u). The
parametric relationships related to ϕ[3](z) and ψ[3](z, u) are reported in Table 4. In particular,
we have that

δ17 = β27 + ĉ17 + β10,

δ18 = β28 + ĉ18 + 2β16 + β17,

δ19 = β29 + ĉ19 + β18.

(A.31)

Proof of Theorem 3.5. Consider system (A.10)–(A.12), which describe the transformation
equation for the quadratic component (A.8). Moreover, denote

ψ[2](z, u) = ψ[2]
z (z) + ψ[1]

u (z)u,

ψ[3](z, u) = ψ[3]
z (z) + ψ[2]

u (z)u.
(A.32)

Then, it is straightforward to check that balancing (A.10)–(A.12) under condition (3.10) is
equivalent to solving (3.13) and (3.14).

Observe that

f̂ [3](z) = f [3](z) +
∂f [2]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z

(

Aϕ[2](z) + f [2](z) − ∂ϕ[2]

∂z
Az

)

= f [3](z) +
∂f [2]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z
Bψ

[2]
z (z),

ĝ[2](z) = g[2](z) +
∂g[1]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z

(

g[1](z) − ∂ϕ[2]

∂z
B

)

= g[2](z) +
∂g[1]

∂z
ϕ[2](z) − ∂ϕ[2]

∂z
Bψ

[1]
u (z).

(A.33)

Then, consider system (A.24)–(A.26), related to the constraints on (71). Exploiting the above
functions in the computation of (71), it follows that solving (A.24)–(A.26) under condition
(3.10) boils down to find the solutions of just (3.15) and (3.16).
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Proof of Theorem 3.6. Let us consider control (3.17) and the local nonlinear state change of
coordinate (3.7). Moreover, observe that the nonlinear terms of (3.17) in the new variable
z satisfy

k[2]
(
z + ϕ[2](z) + · · · ;μ

)
= k[2]

(
z;μ
)
+
∂k[2]

∂z
ϕ[2](z;μ

)
+ · · · ,

k[3]
(
z + · · · ;μ) = k[3](z;μ) + · · · .

(A.34)

Hence, we have that such an input can be locally written as a feedback of the state z according
to the following representation:

u = ν
(
μ
)
z + ν

(
μ
)
ϕ[2](z) + ν

(
μ
)
ϕ[3](z) + k[2]

(
z;μ
)
+
∂k[2]

∂z
ϕ[2](z;μ

)
+ k[3]

(
z;μ
)
. (A.35)

Notice that we have neglected the higher terms, since we are dealing with local equivalence
(i.e., up to the third-order elements).

Then, exploiting the above u in the transformation (A.35) and observing that

ψ[2]
(
z, ν
(
μ
)
z + ν

(
μ
)
ϕ[2](z) + k[2]

(
z;μ
)
+ · · ·

)

= ψ[2](z, ν
(
μ
)
z
)
+
∂ψ[2]

∂u
ϕ[2](z) +

∂ψ[2]

∂u
k[2]
(
z;μ
)
+ · · · ,

ψ[3](z, ν
(
μ
)
z + · · · ) = ψ[3](z, ν

(
μ
)
z
)
+ · · · ,

(A.36)

we can compute the locally equivalent input (3.18), expressed as a function of z, via the
following equation:

v = v[1](z) + v[2](z) + v[3](z)

= ν
(
μ
)
z + ν

(
μ
)
ϕ[2](z) + ν

(
μ
)
ϕ[3](z) + k[2]

(
z;μ
)
+
∂k[2]

∂z
ϕ[2](z;μ

)
+ k[3]

(
z;μ
)

+ ψ[2](z, ν
(
μ
)
z
)
+
∂ψ[2]

∂u
ϕ[2](z) +

∂ψ[2]

∂u
k[2]
(
z;μ
)
+ ψ[3](z, ν

(
μ
)
z
)
.

(A.37)

Tables

(The proposed approach is based on multiple changes of the state variables and the input
command. It is important to notice that the global and local transformations illustrated above
can always be described explicitly by deriving the relationships between the coefficients of
the involved functions. Therefore, such transformations have to be computed only once, then
using the resulting parametric dependencies as look-up tables. In this regard, we report these
explicit relationships in Tables 1–4).
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