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The aim of this work is to describe the orthogonal polynomials sequences which are iden-
tical to their second associated sequence. The resulting polynomials are semiclassical of
class s < 3. The characteristic elements of the structure relation and of the second-order
differential equation are given explicitly. Integral representations of the corresponding
forms are also given. A striking particular case is the case of the so-called electrospheric
polynomials.

1. Introduction

A long time ago [4], Guillet and Aubert wrote a paper on electrospheric polynomials.
They are a particular case of orthogonal polynomials which are identical to their second
associated sequence. This property has not been noticed. More recently [7], the first au-
thor studied the second-order self-associated sequences in the case where they are positive
definite.

Here, we will describe all the orthogonal sequences which are identical to their second
associated sequence. Such a sequence depends on three parameters (7,v,¢), where 7 € C,
veC—-{-1,1},and & = 1.

When 7=0, we obtain the so-called electrospheric polynomials. When |7|<min(1, |v|),
we have the positive definite case.

In Section 2, we deal with general features. Section 3 is devoted to the classification
of second-order self-associated sequences. In Section 4, we carry out the quadratic de-
composition of second-order self-associated sequences. This section is necessary for de-
termining the useful materials needed in Section 5 in which we establish the structure
relation between any second-order self-associated sequence and the differential equation
fulfilled by any polynomial of such a sequence. Finally, in Section 6, we give the integral
representation and the moments of the corresponding forms.

2. Preliminary results

2.1. Computing forms and Stieltjes function. Let P be the vector space of polynomials
with coefficients in C and let %" be its dual. We denote by (u, f) the action of u € %’
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on f € P. In particular, we denote by (1), := (u,x"), n = 0, the moments of u. For any
form u and any polynomial h, we let Du = 1" and hu be the forms defined by duality:

Wsfr==(uf"), (huf):=(uwhf), feP. (2.1)
We recall the definition of right multiplication of a form by a polynomial:

(up)(x) := <u,%>, ued, ped. (2.2)

By duality, we obtain the Cauchy’s product of two forms:
(uv,p) :=(u,vp), uveP,pe?. (2.3)
We define [1] the form (x — ¢)'u, ¢ € C, through
((x=0o)"u, p) := (u,0.p), (2.4)
with

_ p(x)—p(o)
T x—c¢

(6:p)(x) , ueP,pe?. (2.5)

From the definitions, we have (uf f)(x) = (u,(f(x) — f(E))/(x=&)), ueP’, f € P.
Hence, W;Sl)(x) = (WoOy Wii1)(x).
We introduce the operator ¢ : P — P defined by (0 f)(x) := f(x?) forall f € P.
By transposition, we define ou by duality:

(ou, f) ={u,0f), VYueP,VfeP (2.6)

Consequently, (ou), = (4)2,. The following results are fundamental [1, 13].

LemMA 2.1. Forany f,g € P, u,v € P, and c € C,

fe ) = (f)v)u+x(vbf)(x)u, (2.7)

=0 (fu) = fO(x—0)7 u) + (6 flu—(u,0.)0: ({8, f) = f(0),  (2.8)
flx=0) ) = fle)((x—c)"'u) + (0 f)u, (2.9)

(fw)' = fu'+ f'u, (2.10)

(ubo f)(x) = (Bouf)(x), (2.11)

fx)ou=0a(f(x*)u), (2.12)

2(0u) =o((x'u)), (2.13)

’

ou' =2(c(xu)) . (2.14)
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We will also use the so-called formal Stieltjes function associated with u € %’ and
defined by

S(u)(z) o= — 5 W (2.15)

LEmMA 2.2. Forany f € ® and u,v € P’ [13],

S(fu)(z) = f(2)S(u)(2) + (uby f) (2),
S(u')(2z) = §'(u)(2),
S(uv)(z) = —zS( )(2)S(v)(2), (2.16)
S(u")(2) = (=1)" 12" (S(w)(2))", n=1,
"u)( )—z "S(u)(z), n=1.

S(x™"u

2.2. Dual sequences and orthogonal sequences. Let {W,},-¢ be a monic polynomials
sequence (MPS), degW,, = n, n > 0, and let {w,},>¢ be its dual sequence, w, € %', de-
fined by (wy, Wi) := Onm» n,m = 0. The sequence {Wr(,l)}nzo defined by

ngl)(x) — <W0, Wn+1(X; : Zvnﬂ(f) >’ n=0, (2.17)

is called an associated sequence of { W, },~¢ (with respect to wy).Any polynomial W,Sl) is
monic and deg W,Sl) = n. We denote by {W;(ql) }n=0 the dual sequence of {Wfll) Fi=0.
The dual sequence (Wi Y=o is given by [8]

wil) = (xwpp)wyl, n=0, (2.18)

where w! exists if and only if (w)y # 0 and then ww™! = § (§ = &) is the Dirac measure
at origin).
The form w is called regular if we can associate with it an MPS { W, } .~ such that

(W, W W) = 1:0ums n,m=0,7,#0, n=0. (2.19)

The sequence {W,,} >0 is orthogonal with respect to w; it is a monic orthogonal polyno-
mials sequence (MOPS). Necessarily, w = Awg, A # 0. In this case, we have w, =
({wo, W2)) "' Wywo, n > 0, and {W,},=o fulfils the following second-order recurrence
relation:

W (X) = 1 W] =X ﬁ())

2.20
Wi (x ( ﬁnﬂ) o ( ) — Vn+l Wau(x), n=0. ( )
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Likewise, the sequence {W,(ZI)},,ZO verifies the recurrence relation

Wi (@) =1, Wi'x)=x-p,
1 (2.21)
n+2(x ( /3n+2) n+1 ) — Yn+2 W;S )(-x)’ nz=0,
and it is orthogonal with respect to w(()l), where [10]
yiw) = —x2wy . (2.22)
Through the formal Stieltjes function [16],
PS) () = = < — (2= o). (2.23)
S(wo)(2)
The successive associated sequences are defined recursively:
W = (w™W, o wit = )Y, o, (2.24)
The sequence {Wr(,rﬂ) } =0 satisfies the recurrence relation
WérJrl)(x) -1, Wl(rJrl)(x) =x _ﬁr+l> (2 25)
W (1) = (x = Busrs2) Wit () = pusria WD (), =0, '
From (2.23), we have
(n+r+1) 1
1S (W )(z2)=——————— — (2= Busr), n,r=0. (2.26)
e S @ P
Hence, we get [6, 10, 13]
(r+1) (r) (r)
n+r n + W, 2)S(w, z
yn+r+1S( (n+ +1))(Z) _ (rJrl ( ) n-:’—)l( ) ( (Or) )( )) nr> 0. (227)
W)+ W (2)S(w!) (2)

Let {W,}n=0 be an MPS. It is always possible to associate with it two MPSs {P,} =0
and {Ry} =0, degP, = degR, = n, n > 0, and two polynomials sequences {a,(x)} =0 and
{b,(x)} =0 such that

Wan(x) = Pu(x?) +xan-1 (x%),

2.28
Wani1 (%) = xR, (x*) + b, (x*), n=0, (2.28)

where dega, < n and degb, < n.
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Since degP, = degR, = n, n > 0, there exist two tables of coefficients (A?) and (0%),
0<v<mn,n=0,such that

an(x) = iAﬁRn(x), n=0,
0 (2.29)

bu(x) = > 0'P,(x), n=0.

v=0

2.3. Semiclassical forms. Let @ (monic) and ¥ be two polynomials (deg¥ = p > 1,
deg® =t). A form w is called semiclassical when it is regular and satisfies the equation
(8, 11]

(Ow) +¥Fw = 0. (2.30)

When w is semiclassical, the orthogonal sequence { W, } .- is also called semiclassical.
The pair (®,¥) is not unique. Equation (2.30) can be simplified if and only if there
exists a root ¢ of @ such that

Y(c)+ D' (c) =0, (w,0.¥ +62D) = 0. (2.31)

Then u fulfils the equation ((0,®)w)’ + {6, ¥ + 62D} w = 0.

We call the class of w the minimum value of the integer max(deg® — 2,deg¥ — 1) for
all pairs satisfying (2.30). Given the pair (g, ¥y), the class s = 0 is unique. When s = 0,
the form w is classical (Hermite, Laguerre, Bessel, Jacobi).

When the form w is of class s, the orthogonal sequence associated with respect to w is
known to be of class s.

The class of semiclassical forms is s if and only if the following condition is satisfied
[11]:

[T¥E)+D ()| + [ (w,0.F +6?D) | ) £0, (2.32)
ce®

where ©® = {¢,¢(c) = 0}.

LEmMA 2.3. Let w be a regular semiclassical form verifying (2.30). Let a be a root of ® such
that

[W(a)+D (a)] + | (w,0,¥ +02D) | =0, (2.33)
|[¥(c)+D (c)| + | (w,0.¥ + ?D) | #0, (2.34)

for all ¢ roots of @ different from a. Then the form w satisfies the equation

(Ow) +¥w =0, (2.35)
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where ®) = 0,0 and ¥, = 0,¥ + 020 such that
[W1(c) + @1 (c) | + | (w, 0%, +6701) | £0 (2.36)

for all ¢ roots of ® different from a.

Proof. We suppose that there exists a root ¢ of ® different from a verifying
Yi(c) +Dj(c) =0, (w,0.¥1 +6°D,) =0. (2.37)
We have
D(x) = (x —a)D;(x), (Y + D) (x) = (x—a)¥1(x); (2.38)
then

Y(c)+D'(c) = (c—a)(Wi(c) + Di(c)), .Y +6>0 =V, - (c—a)(0.¥, +6>D).
(2.39)

On account of (w,¥;) = 0, we deduce that ¥(c) + ®'(c) = 0 and (w, 0, ¥ + 0>®) = 0.
This contradicts the conditions given in (2.34). O

2.4. Affine transformation. We define the linear operators 1, and h, in %’ as follows:

(tpu, p) : = (u,7_pp) = (, p(x+b)), beC,uec?P, pe?,

2.40
(hau, p) : = (u,hap) = (u,p(ax)), ac€C—-{0}, uc?P, peP. (240)
Let {W,}u>0 be an MPS with its dual sequence {w,}>0. The dual sequence {W,} =0
of {W,}n=0 with W,(x) = a™"W,(ax+b), n >0, a # 0, is given by w,, = a" (hz-1 o T_p) Wy,
n=0.
Let {W,},=0 be an MOPS with respect to w. Then {W,},=0 is an MOPS with respect
to w = (hg1 o T_p)w. We have

5 n_b ~ n
ﬂn:ﬁa > Yol = yagla n=0. (2.41)

LEMMA 2.4. Forany f € P, u,v € ®', and (a,b) € C— {0} xC [8, 13],

w(fu) = (v f) (zpus), (2.42)
ha(fu) = (hat f) (haus), (2.43)
(uv) = (rou) (15v) 8, (2.44)
uv) = (hau) (hav). (2.45)
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As a result, if w is a semiclassical form of class s satisfying (2.30), then the shifted form
W = (hg1 o T_p)w is of class s satisfying the equation

(dw) +¥w =0, (2.46)
where

D(x) =a'®(ax+b), Y(x)=a'""W(ax+b). (2.47)

LEMMA 2.5. Let {W,} >0 be an MPS, degW, = n, n = 0, and let {w,}n>0 be its dual se-
quence. For any (a,b) € C - {0} xC,

T (wi)) = (rwa)" (2.48)
ha(wi(’ll)) = (huwn)(l)- (2.49)

Proof. By multiplying the two sides of (2.18) by the form wy, we obtain
w Wy = XWpy1. (2.50)

By introducing the operator 73, in the last expression, from (2.42) and (2.44), we obtain

(m (W) (zewo) = ((x = b) (7Wi11)) . (2.51)
From (2.7),
(7 (wi)) (7w0) = ((x = b)) (ThWns1) +x(Tp Wy ) (252)
— x(((T6Wns1) 00(€ = b)) (x)) Bp.
Since
(x=b)0 =0,  ((7swns+1)00(§ —b))(x) =0, n=0, (2.53)
then
(1 (WD) (w0) = x(TyWps1), 120, (2.54)
or
7y (wil) = (x(zownar)) (Twe) ', 120, (2.55)

From (2.18) and (2.55), we deduce (2.48).
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To prove (2.48), we introduce the operator h, in the expression (2.50). From (2.43)
and (2.45), we give

(ha (W) (hawo) = @ 'x(haWps1), n=0. (2.56)

But
(a*”haw,,)(]) =x(a " Dhawyar) (hawo) ', n=0. (2.57)
From (2.18) and (2.57), we deduce (2.49). O

2.5. Second-degree forms. The form w is a second-degree form [13] if it is regular and
if there exist polynomials B and C such that

B(2)S*(w)(z) + C(2)S(w)(z) + D(z) = 0, (2.58)

where D depends on B, C, and w.
The regularity of w means that we must have

B+0, C?—4BD #0, D #0. (2.59)

The following expressions are equivalent to (2.58), [13]:
B(x)w? = xC(x)w, (w?,00B) = (w,C). (2.60)
In the sequel, we will assume B to be monic and we will be looking for any regular

form w verifying (w)o = 1.
A second-degree form w is a semiclassical form and satisfies (2.30), where [13]

k¢(x) = B(x)(C*(x) —4B(x)D(x)), ¢ monic, k # 0,
, (2.61)

3
ky(x) = —EB(x)(CZ(x) —4B(x)D(x)) .
3. The second-order self-associated orthogonal sequences and their classification

In this section, we quote the second-order self-associated sequences following the class of
their corresponding canonical forms.

Definition 3.1. Let any integer m > 1 be fixed. Then the MOPS { W, } ,~ is called an m-
order self-associated polynomials sequence when it fulfils

wm =w, n=0. (3.1)

In this case, the form wy is also called an m-order self-associated form. See also [14, 15].
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Then w satisfies
W(()m) = wy. (3.2)
From (3.1), the coefficients of (2.20) are given by

ﬁner = ﬂm Yn+m+1 = Yntl, N = 0. (33)

The case m = 1 is well known; wy is the Tchebychev form of the second kind.
According to Lemma 2.5, we give the following result.

ProrosITION 3.2. Let {W,} -0 be an m-order self-associated MPS, degW,, = n, n > 0, and
let {wy} =0 be its dual sequence. Then the shifted sequence form { Wy} n=o fulfils

wm =w,, meN-{0},n=0, (3.4)

where
Wy =a"(hg1ot_p)w,, beC,acC-{0}, n=>0. (3.5)
The object of this subject is to treat the case where m = 2 by describing all the second-

order self-associated polynomials sequences and their classification. We denote by
{Zn} n=0 these polynomials sequences and {z,,} >0 their dual sequences. From (3.3), we get

ﬁn+2 = /3m Yu+3 = Ynr1, h=0. (3.6)
This implies

Ban = Po>  Pons1 =P, n=0,

3.7
Yant1 =Y Y2 =Y2, n=0. (3.7)

For a = (1/2)(Bo + 1), B = (1/2)(Bo = f1), A = (1/2)(y2 + y1), pp = (1/2)(y1 = y2), n = 0,

we have

Bu=a+(-1)"B, n=0, (a,p) €C?

V1 =)L+ (_l)n‘u’ n> 0) (/\’H) c (CZ,/V %‘“2- (3.8)
By means of (2.23), we have
1
YZS(Z(()Z))(Z) = —m —(z-p1), (3.9)
1Sz (2) = - : d—(z—Po). (3.10)

S(20)(2)
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Substituting (3.10) into (3.9), we obtain

@y _ y18(20) (2)
)/28(2'0 )(Z) = 1+ (Z*ﬂ())S(Zo)(Z) - (Z_ﬁl)' (3-11)
Since
2 =z, (3.12)

relation (3.11) becomes

<z—/30>32<zO)(z>+i<yz—y1+(z—/so><z—/31>)s<zO><z>+%(z—m —0.  (3.13)

From (3.8), we get

1
A—u

(22 = 2az+a® — B> —2u)S(z0) (2) +

(z—a—P)S*(z0)(2) + (z—a+p)=0.

(3.14)

1
A-u

Thus, the form z is a second-degree form [10, 14, 15].
It is also a semiclassical form of class s < 3, satisfying the functional equation (2.30)
with
O(x) = (x— (a+ ) (((x— @) =21 = )" — 4(A2 = 42?)),

(3.15)
P(x) = —6(x — ) (x = (a+B)) ((x — a)* =21 - B?).

Let 1, 8, be two complex numbers such that

87 = 20+ B2 +24/A2 — 12, 83 =20+ % — 24JA% — 2. (3.16)

The polynomial ® becomes

Ox)=(x—a—P)x—a—8)(x—a+d)(x—a—08&)(x—a+). (3.17)

We remark that 87 — 63 = 4,/A2 — 2. The regularity of z; leads to A> # y?. Then 87 # 63;
so necessarily one of these values is different from zero. We can suppose that &; # 0.

We make a suitable shift such that « = 0 and §; = 1. With =7 and &, = v, from
(3.16), we have A = (1/4)(1 — 272 + v?) and p = (1/2)&Gy,0, € = =1, where

Grw = (12— 1) (72 — 0v2). (3.18)
Therefore, (3.14) becomes
(z—1)8%(20) (2) + yi(z2 — 12— £6:.0)S(20) (2) + yi(z+1) =0, (3.19)
2 2
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where

(1-272+0v% - 2e6,,). (3.20)

N

Y2 =

The functional equation fulfilled by the form zy becomes

(®z) + ¥z =0, (3.21)

where
O(x) = (x—1)(x* = 1) (x* = v?), (3.22)
Y(x) = —3x(x— 1) (2x* — 1 —v?). (3.23)

ProrosrITiON 3.3. Let {Z,} >0 be a second-order self-associated polynomials sequence with
respect to zo. Then there exists (1,v) € C2, v* # 1, such that

Zo(x) =1, Zi(x)=x-r1,

Zual®) = (o= (110 Zua () - (122 +0) + e ) 2,00, mz0

(3.24)

The form z is a semiclassical form of class s < 3 and satisfies the functional equation (3.21),
with the following initial conditions:

1 1
1) =1, X)) =T, 08y = — (14272 +0%) + Z€6rs
(z0,1) (z0,x) =7 (z0,x7) 4( 7 +0?) 2€§r,v (3.25)
<Z(),X3> = T<Z(),X2>.
Noting that the sequence {Z,(f) Yn=0 18 also a second-order self-associated sequence,
(Zo(r,0,6)) Y = Zu(~1,0,—£5x), n=0. (3.26)

Proof. Let {W,},~0 be an MOPS satisfying (2.20) with respect to wy. Generally, we have

(wo,x) = fo,  (wo,x®) =f+y1,  (wo,x°) = B3 +2Boy1 +Piyr. (3.27)
By means of relations (3.8), (3.22), and (3.23), we deduce the result. O

In the sequel, we quote all the second-order self-associated MPSs {Z,,} 0. For this, we
need the following lemma. Let ¢ be a root of ®. We have c € {—1,1,7,—v,v}.

LemMMA 3.4. Let {Z,}<n=0 be a second-order self-associated polynomials sequence with re-
spect to zy. The expressions @’ (c) +¥(c) and (zo,0?® + 0.¥) are given for all ¢ roots of ® in
Table 3.1.

Proof. From (3.22) and (3.23), a simple calculation gives us the values of ®'(c) + ¥(c) for
all ¢ roots of .
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Table 3.1
Roots of ® D' (c)+¥(c) (20,020 + 6, %)
1 (r-1)(1-2?) 2(t2 = 1—¢6ry)
-1 —(r+1)(1-20?) —2(12 -1 - ¢6rp)
v —-v(v-1)(v?-1) 20(1% — 0% —&61)
-v —v(w+71)(v?-1) —20(12 —v? — €6rp)
T (2 =1) (72 - v?) —218\/(12— 1) (72 —0v?)

For calculating (zo,6?® + 6.¥), we must initially calculate the polynomials (62® +
0:¥)(x) explicitly. Through definition (3.1) and (3.22), (3.23), we have

(03D +6,¥)(x) = —5x° + (57 —4)x* + (2v* +47 — 1)x+v* - 20* 1 +7— 1,

(0>, ®+60_,¥)(x) = -5 + (57 +4)x* + (20> — 41— 1)x —v* = 20°T+71+]1,
(02 +6,¥)(x) = —5x° + x> + 20> + 2+ 2)x + 70 — 0% — 1, (3.28)
(020 +6,¥)(x) = —5x° + (57 — 4v)x* + (41v — V* +2)x + TV? — v’ + v - 27,

(0>, ®+60_,¥)(x) = —5x° + (57 +4v)x* + (— 410 — V> +2)x + T0* +0° — v — 21,

From the expressions of the moments (zo)x, 0 < k < 3, given by (3.25), and relations
(3.28), we deduce the results of Table 3.1. O

ProposiTION 3.5. Let {Z,}n=0 be a second-order self-associated MPS with respect to zy
(remember that the regularity of zy means v? # 1). Denoting by s the class of z,

(@) if? # 1, 2 #v* and v # 0, so s = 3 and z is given by (3.21), (3.22), (3.23), (3.24),
and (3.25);
(b) ifv# 0and 1 =1, s0s =2 and z, is given by

((2=1) (x> —v})z0) + (=5 +x2+ (3+20%)x — v?)z = 0, (3.29)
where
1
() =1 (20), = 7 (" +3), (3.30)
and
v? -
Bn=(=1)" Yu1= V4L, v#0,n=0; (3.31)

4 b
(©)ifv=0,72#1,and v # 0, so s = 2 and z is given by

(x(x—71)(x* = 1)z0) + (x —7)( = 5x2+2)z0 = 0, (3.32)
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where
1 1
(20), =1, (zo)Z:Z(1+ZT )+EST (r2-1), (3.33)
and
Bu=(=D"1, pp1= —i(f— (D)2 —1)%, 241,740, n=0; (3.34)
(d) ifv=0andt=1,s0s=1and z, is given by

(x(x* = 1)z) +(—4x> +x+2)20=0, (20), =1,
1 (3.35)
ﬁn:(_l)n’ YHHZ—Z, n=0;

(e) ifv=0and v =0, sos=0and z is the Tchebychev form of the second kind [10, 12,
13], given by

((x* =1)20)" = 3x20 =0, (3.36)
1

Bri=0, Yu1=-, n=0. (3.37)

e

Proof. (a) In the case 72 # 1, 7% # v?, and v # 0 and from Table 3.1, we have
[W(e)+ D (c) | + | (20,0.¥ + O2D) | £0 (3.38)

for all ¢ roots of ®. Relation (2.32) is realized. Consequently, (3.21) is not simplified, so

the form z; is of class s = 3.
(b) In the second case, the functional equation of z is given by

(x—1)(x2=1)(x® = v¥)z) = 3x(x—1)(2x2 =1 — 1)z = 0. (3.39)
From Table 3.1, ¥(1) + ®'(1) = 0, {20,0,¥ + 6?®) = 0, and |¥(c) + D' (c)| + | (20, 0. ¥ +
62®)| # 0 forall c € {—1,v,—v}.
Then this equation is simplified by x — 1, and z fulfils

(®120) + W20 = 0, (3.40)

where @1 (x) = (x> — 1)(x?> —v?) and ¥, (x) = —5x> + x> + (3 + 2v%)x — V.
From Lemma 2.3,

|\I"1(C) +(D’1 (C) | + | <ZQ,HC“I"1 +0C2(D1> | 7/: 0 (341)



150  The second-order self-associated orthogonal sequences

for all ¢ € {—1,v,—v}; and taking into account ¥; (1) + ®{(1) = (1 — v?) # 0, we deduce
the result.

When v # 0 and 7 = —1, 2 satisfies the following equation and elements characteris-
tics:
((x2=1) (x> —v})z0) + (=52 —x2+ (3+20%)x+0v?)z = 0, (3.42)
where
1
(z0), = -1, (z0), = Z(v2+3), (3.43)
and
v?—
Bu= (D" yp = T vV#£1,0v#0,n>0. (3.44)

This form is of class s = 2. Indeed, through a suitable shifting, we apply the operator h_,
in (3.42), (3.43), and (3.44). We obtain the previous case.
Likewise, if v # 0 and 7 = v, z, is given by

((2=1)(x* =) z0) + (=5 +vx? + (2+303)x —v)z = 0, (3.45)
where
1
(z0); = v, (z0), = Z(3u2 +1), (3.46)
and
_1)n _ .2
ﬁn:(l}), yn+1=14”, V4L, 040,120 (3.47)
Applying the operator h, in (3.45) and (3.47), then while replacing v by v™!, we obtain
again case (b).
By a similar calculation, if v # 0 and 7 = —v, then z; is given by
(2 =1) (x> —v})z0) + (=5x° —vx? + (2+30*)x+v)z9 = 0, (3.48)
where
1
(20); = v, (20), = Z(3u2 +1), (3.49)
and
n+1 1-v? 2
Bn= (1", yu = 7 Y +1,v4+0,n=0. (3.50)
Applying the operator h_, in (3.48) and (3.50), then while replacing v by v~!, we obtain

again case (b).
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(¢) In this case, we have
(P(x—1)(x2=1)z0) = 3x(x— 1) (2x> — 1)z = 0. (3.51)

From Table 3.1, ¥(0) + ®'(0) = 0, (20,00¥ + 03D) = 0, and |¥(c) + D' (c)| + |{zo, O.¥ +
O2®)| #£0forallc e {—1,1,7}.
Then this equation is simplified by x, and z, satisfies ($1z)" +¥12o = 0, where

D (x) =x(x— 1) (x> - 1), Yi(x) = (x—1)(—5x*+2). (3.52)

From Lemma 2.3, ¥ (c) + @} (c)| + {2, 0. ¥1 + 62®;)| # 0 for all c € {—1,1,7}; and tak-
ing into account W1 (0) + ®(0) = —7 # 0, we deduce the result.

(d) From Table 3.1, the equation (x?(x — 1)(x? — 1)z9)" — 3x(x — 1)(2x*> — 1)z = 0 is
simplified twice by x and x — 1. In the first place, we have

(x(x—1)(x* = 1)z9) +(x = 1)( = 5x*+2) 29 = 0. (3.53)
Next, we simplify once more by x — 1, and we have (®,z)" + ¥2z¢ = 0, where
Dy(x) = x(x* - 1), V,(x) = —4x> +x+2. (3.54)

Then we get ¥,(0) + ®5(0) = 1 # 0, and according to Lemma 2.3, z, is a semiclassical
form of class s = 1, which satisfies (3.35).
Ifv=0and 7 = —1, 2 is given by

(x(x2*1)20)/+(*4x2*x+2)zo=0, (z0), = -1,
1
1 (3.55)
ﬁn:(_l)rﬁl) Yn+1 = _Z, n=0.

This form is of class s = 1. In fact, applying the operator h_; in (3.55), we have again case
(d).

(e) Similarly, from Table 3.1, it is easy to prove that the equation is simplified by x>.
Therefore, zy is a classical form given by (3.36). O

4. Quadratic decomposition of the second-order self-associated orthogonal sequences

In order to build a structure relation and a differential equation related to second-order
self-associated sequences, we want their quadratic decomposition given by (2.28). In [9],
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the first author gave necessary and sufficient conditions for the sequences {P,}~¢ and
{Ry} n=0 to be orthogonal.

ProposiTION 4.1. Let { W, } =0 satisfy the recurrence relation (2.20), where
Bn=(=1)"Bo, n=0. (4.1)

Then there exist two MOPSs {P,} n=0, with respect to ug, and {R,} =0, with respect to vy,
fulfilling the following relations:

Py(x) =1, Pi(x)=x—y1—f5

5 (4.2)
Ppia(x) = (X = Yans2 = Yane3 — B5) Pur1 (X) = Yans1Yons2Pu(x), n=0,
Ry(x)=1, Ri(x)=x-y1—y2-f%, (4.3)
Rys2(x) = (x = Yanss — Yansa — B) Rur1(X) = pans2yans3Ru(x), n>0, ’
Pui1(x) = Ry (x) + )’2n+2Rn(x): n=0, (4.4)
(X - /—;(%)Rn(x) = Pn+l(x) + Y2n+1Pn(X), n= 0) (45)
since, in (2.28), a,(x) = 0 and b,(x) = —foR,(x), n = 0.
Moreover, the forms ug, vo, and wy satisfy

Ug = oWy, (4.6)
o(xwoy) = Bo(owo), (4.7)

1
Vo = " (x = B%) (awy). (4.8)

Now, this result will be applied to {Z,} >0 which, by virtue of (3.24), fulfils (4.1) and

Zon(x) = P (%), (4.9)
Zyni1(x) = (x = )Ry (x%). (4.10)

From (3.24) and (4.2), the sequences {P,},>0 and {R,},>0 become

1 1
Py(x)=1, Pi(x)=x- Z(l +0v2+27%) - &0

2ol (4.11)

4

2
Ppia(x) = (x— %(1+Uz))Pn+l(x)_ ( ) P,(x), n=0,
Ro(x) = 1, Rl(x)=x—%(1+vz),

4.12
o1 (4.12)

4

Ruia(x) = (x—%(1+vz)>Rn+1(x)— ( )an(x), n=>0.
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We remark that the sequence {P,} >0 is the corecursive sequence of {R,},>¢ with the
value —y, = —(1/4)(1 + v* — 272) + (1/2)&g,,. For the parameter P,(x) = R,(—y2;x),
n > 0, we have

Py = Rus1 +92RY = Ry + 2Ry, 120, (4.13)
in accordance with (4.4). Moreover, (4.5) becomes
(x = 72)Ru(x) = Pys1 (x) + y1Pu(x), n=0. (4.14)

From (4.12), we easily see that

Ru(x) = a"PV>V2) (s (x = b)), n=0,a= %(v2 -1),b= %(1 +0%), (4.15)

where {Isf,“’ﬁ )}nZO is the monic Jacobi polynomials sequence, orthogonal with respect to
the Jacobi form $(«,f3), with parameters a, f3, see [11, 12], fulfilling the following equa-
tion:

((xz—1)}(a,[3)),+(—(oc+/)’+2)x+(x—[3)}((x,[3)=0, (}(‘x’/j))o: L (4-16)

Usually, $(1/2,1/2) is denoted by AU which fulfils (3.36), and {pﬁll/z’m)(x)}nzo is defined
by (3.37).
Since vy = (13 © h,)WU, we have

(Dovo) +¥ovo =0, (4.17)
where
Dy(x) = (x—1)(x—v?), Yo(x) = —%(Zx—l—vz). (4.18)
Likewise, from (4.6) and (4.8), taking (4.17) into account, we obtain

(Drug) +Wiup =0,

1 1 (4.19)
(o), = (020), =2 +y1 = Z(1+U2+2T2) + 2 €60,

where

Dy (x) = (x—1)(x —v?) (x — 77), Wl(x):—§(2x—1—vz)(x—rz). (4.20)



154  The second-order self-associated orthogonal sequences

LEmMa 4.2. The following cases hold:

(a) if 1 # 1 and 12 # v, the class of ug is s = 1;
b) if 72 = 1 and 12 # v, the form uy is classical (s = 0) and fulfils the equation

(= D= )uo) = S (x =3 - =0, (w), = 3 G+ (42D

this implies

Uy = (1p 0 ha)}( ~ %%) (4.22)
with
azé(vz—l), b:%(1+v2); (4.23)

c) if 72 = v2, the form uyq is classical and fulfils the equation
(x—1)(x = 1) up) — %(4}( —1-31)ug =0, (), = i(l +372); (4.24)

this implies

up = (1 oha)csﬂ(%,—%) (4.25)
with
1, 1
a= E(T —1), b= E(1+T ) (4.26)
Proof. From (4.20), we have
)+ (1) = 3 (1) (1 -7,
@ (02) + W1 (1) = 2 (07 = 1) (2~ v), (427)
O () + Vi (1?) = (2 - 1) (1% — 7).

Assertion (a) is evident. When 72 = 1 and 72 # v?, we have
1
(ug, 2®y +0,¥,) = <u0, 2x+2(3+v )> 2(u0)1+5(3+vz) =0, (4.28)

whence (4.21) and (4.22). The same applies to (4.24) and (4.25). O
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5. Structure relation and differential equation

It is well known that a semiclassical orthogonal polynomials sequence fulfils a second-
order differential equation [3, 5, 10]. In this section, we give the following second-order
differential equation fulfilled by {Z, } ,>0. We have

J(xsn)Z) 1 (x) +K(xsn)Z, 1 (x) + L(x;n) Zy (x) =0, n >0, (5.1)

with

J(x;n) = ®(x)Dyyi (x), n=0,
K(x;n) = Co(x)Dps1(x) = W(P,Dpy1)(x), n=0,

(5.2)
1
L(x§n):W(§(Cn+1_C0)a n+1>(x Dy ( ZD n=0,
where W(f,g) = fg' —gf’ is the Wronskian of f and g.
The sequences {C, } >0 and {D,} ,~¢ are defined by
D(2)8 (25" (2) = Bu(2)$*(2,") (2) + Cu(2)S(25”) (2) + Du(2), 120, (5.3)
and fulfil
BO(Z) = 0)

Co(z) = —D'(2) - ¥(2), (5.4)

Dy(2) = —(2000®) " (2) = (2000'F) (2),

Bu1(2) = Pu+1Dy (z), n=0,
Cui1(2) = =Cy(2) +2(z2— Bn)Du(z), degC,<4,n=0,

Yus1Dui1(2) = =®(2) + Bu(2) — (z = Bu) Cu(2) + (z = u) ' Du(2), degD, <3, n= 0.
(5.5)

They are involved in the so-called structure relation [3, 10]

(Cus1(x) = Co(x)) Znt1 (%) = a1 D1 () Zu(x),  n = 0. (5.6)

NI*—‘

Here, from (3.22), (3.23), and (5.4), we have

O(z) = (z—1)(2* — 1) (2 — v?),

_ A 3 2 2
Colz) =z* =212 + (1 +0v*)z — 0%, (5.7)

1
Dy(z) = 22(22 +2y1 — 5(1 +v2)) =22(2* — 12 +6r).
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Indeed, from (2.2), we have

x—&
= (zo,x* + (§ —1) + (& — (1 +0°) ¢ — 18)x*
+(E - (1+vH)E-18+ (1+0v*)1)x (5.8)
+&8 18 - (1+vH)E+T(1+0H)E+0?)

=x'+((z0), —1)x> + ((20), — (1+0*) — 7(z0),)x*

+((20)5 — 7(20), = (1+0°) ((20), — 7))x

+(20), —7(20)5 — (1+0%) (20), + (1 + %) (20), + ™.
Through (3.25), (z0)1 = 7, (20)2 = y1 + 7%, and (20)3 = 7(20)2; $0
(2000®) " (x) = 4x> +2(y1 — (1 +0%))x. (5.9)
In the same way, from (2.2) and (3.23), we get

(2000%¥) (x) = {20, —6x> + (67 — 6)x* + (67 — 66> +3(1+0?))x
- 68 +618+3(1+0?)(E—1)) (5.10)
=—6x>+ (3(1+0%) — 6y1)x.

Thus, we deduce the expression of Dy(x).
Generally, it is difficult to give the sequences {C,} >0 and {D,} ,~¢ explicitly using the
recurrence relations (5.5). The quadratic decomposition allows us to do it.

LemMa 5.1. The following structure relations hold:

(8= 1) (= )Ry () = 1+ 1) (= 3 (1407) Ry (0

, (5.11)

2
v ) Rn(x)> nZO)

_2(n+2) (
@1 (x)Py, 1 (x) = A(m56) Ppy1 (x) — B(n;x)Py(x), n=0, (5.12)
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where

D(x) = (x— 1) (x—0?) (x - 17), (5.13)
A(n;x)=(n+1)<x+2y2—%(v2+1))<x+y1—%(v2+1)> 51
—(n+2)y2<x+2y1—%(vz+l)), n=0,
1
B(m;x) = y1yai (n+1){x+2y, — = (v* +1)
{0 (x5 0ten) .

+(n+2)<x+2y1 - %(vz+l)>}, n=>0.

Proof. Since, for the Jacobi sequence, we have [10, 11]

2 _ @2
Cifx’ﬁ)(x) =Q2n+a+p)x— M, n=>0,
2n+(x+/3 (5.16)
(a,B)

no (x)=2n+a+pf+1, n=0,

then, in the case « = § = 1/2, we obtain

CR(x) = aC,(f/Z’l/Z)(x—; b) =(2n+ 1)(x— %(1 +vz)>, n=0,

b (5.17)
DR(x) = D21/ (L) —2n+2, n=0,
a
where a = (1/2)(v? — 1) and b = (1/2)(1 + v?).
Hence, (5.11) holds.
Next, from (4.4), we have
(Dl(x)P;H-l(x) =(x— l)(x—vz)(x—TZ)R;lH(x) (5.18)
+y2(x = 1) (x—v*) (x—7?)R,(x), n=0. '
According to (5.11) and taking (4.12) into account, we obtain
@ (x)Pyyq(x) = (n+ 1)(x+2y1 - %(v2 + 1)) (x = 7*) Ry (x)
(5.19)

— (n+2)<y2 (x— %(v2 + 1)) +2y1y2> (x=7*)Ry(x), n=0.

With (4.5), this yields (5.12), (5.13), (5.14), and (5.15). O
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ProrosITION 5.2. The sequence {Z,},~0 fulfils (5.6), where the sequences {Cp}n=o and
{Dy}n=0 are given by

Con(x) = (4n+x* —=272n+1)x° +4n(%(v2 +1) =2(p +T2)>x2

(5.20)
+7(8(*+y1)n—2n-1)(1+0?))x—v?, n=0,

D2n(x)=2x((2n+1)x2—2n72+2y1—%(v2+1)>, n=0, (5.21)

Cons1(x) = (4n+3)x* = 212n+ 1)x> +2(n+1) (4y; — (v +1))x?
1 (5.22)

—21(4y1(n+1)—E(2n+1)(v2+1)>x+v2, n=0,
Dapsr(x) =4(n+ Dx(x—1)%, n=0. (5.23)

Proof. We start with (5.11), where x — x2. According to

Z505(x) = Ryyy (x%) +2x(x — T)R,,; (x%), n=0, (5.24)

obtained by differentiating (4.10), relation (5.11) becomes

D) Z4500) = (= 1) (2 = 0) + 200+ D= 1) (7 = (074 1)) ) Zans )

2
—4( ! _402> (n+2)x(x—1)?R,(x?), n=0.

(5.25)
But (4.9) and (4.13) provide
D(x)Z5 013 (x) = E(15%) Zo13(x) — 4y1(n+2)x(x = 7)*Zopia(x), n=0, (5.26)

where

E(mx) = (x* — 1) (x* — v?) +2x(x — T)((n+ 1)(x2 - %(v2 + 1)) +2(n+2)y1).
(5.27)

Comparing (5.26) with (5.6), where n — 2n+ 2, leads to

(BO52) = 3 (Canes@) = Co() ) Zas )
=y1(4(n+2)x(x — 7)* = Daps3(x)) Zansz (x), n=0.

(5.28)
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This yields

1
5 (Cona () = Co(x)) = E(n - Lx), n=1, (5.29)

Dopii(x) =4(n+ Dx(x—1)%, n=1,

by virtue of a well-known result on orthogonal sequences. Routine calculation from (5.5)
shows that (5.29) is valid for n > 0, whence (5.22) and (5.23).
Next, from (5.12), where x — x?, and with (4.9), we obtain

(x+T)D(x) 25,15 (x) = 2xA(15X%) Zapia () — 2xB(15x%) Zon (). (5.30)
But
Zon(X) = = (x4 T) Zo1 (¥) = —Zasa(x) (5.31)
Y1 Y1
implies

(x+1)D(x) 25,15 (x) = 2x(A(m3x%) +y7 'B(n55%) ) Zansa (%)

~ 27 x4 DB (1) Zow (3). (332
Taking (5.14) and (5.15) into account, we have
A(mx?) +y7'B(mx?) = (n+1) (x* — 1%) <x2 +2y, — %(v2 + 1)) (5.33)
This leads to
D) Zha(x) = 201+ D =) (x4 272 = 2 (87 +1) ) Zonsa ()
—2y2x((n+1)(x2+2y2— %(02+1)) (5.34)

+(n+2) (xz +2y; — %(v2 + 1)))ZZn+1(x), n=0.
As above, we obtain
Con(x) = Co(x) +4nx(x — 1) (xz +2y, — %(v2 + 1)),

Dy, (x) = 2x<n(x2+2y2 - %(v2+ 1)) +(n+ 1)<x2+2y1 - %(v2+ 1))), n=>2.
(5.35)

In fact, these relations are valid for n > 0, whence (5.20) and (5.21).
Now, we are able to calculate the coefficients of (5.1) defined by (5.2). O
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ProrosITiON 5.3. The sequence {Z,},~o fulfils (5.1), where the elements characteristics
J(x;n), K(x;n), and L(x;n) are given as follows:

J(x;2n) = 4(n+ Dx(x — 7)° (x* = 1) (x* — v?), (5.36)
J2n+1) = 2x(x — 1) (x> = 1) (x* — 1)2){(2n+3)x2 —2(n+ 1)1 +2y, - %(v2 + 1)},
(5.37)

K(x;2n) = 4(n+1)(x — 7)?{3x° — 57x* + 27(1 + v?)x? - 3v’°x+ 10*}, n =0,
(5.38)

K(x;2n+1) = (x — 1){3(4n+6)x° — (20(n+ 1)7* = 5(4y; — (v* +1)))x*
+((1+0*) (8(n+1)12 = 2(4y; — (V¥ +1))) —3(4n+6)v*)x*

+@dn+ 17?0 — v (4 — (V¥ +1))}, n=0,
(5.39)

L(x;2n) = —4(n+1)(x — 1) {2n+1)(2n+3)x° — (8n* + 16n+5)Tx*
+4n(n+2)72x° +2(1 +v?) a2 (5.40)
-3v’x+10%}, n=0,
Lx;2n+1) = —4(n+1)(n+2)x*{22n+3)x* — 2(2n+3) x>
+(3(4y1 — (V¥ +1)) —4nt?)x* — ((491 — (¥ +1))

+4(n+2)t})1x}, n=0.
(5.41)

Proof. From (5.2), (5.7), (5.21), and (5.23), it is easy to obtain (5.36) and (5.37). Next,
we have

K(x,2n) = (Co(x) + @' (x)) Dans1 (x) = @(x) Dy (%),

(5.42)
K(x,2n+1) = (Co(x) + O (x)) Days2(x) — ®(x) D5, 5 ().
On account of (5.7), (5.21), and (5.23), we have (5.38) and (5.39).
Finally, from (5.2), we have
1 2n
L(x;2n) = W(g (Cant1 — CO))D2n+1> (x) = Daus1 (%) D Dy(x), n=0. (5.43)

=0
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Successively, we get

2 (Cant = Co) (@) = Bln = 1)

=2 -1)(x*-0?)
+2x(x — ‘r){n(x2 - %(v2 + 1)) +2(n+ l)yl},

2 (Coner = Co) (D} ()
=4(n+1)(x—1)Bx—1){2n+1)x* = 2n7x’ + (n+1) (4y; — (V> +1))x?
—t(4(n+ Dy —n(1+0?))x+0v?}
=4(n+1)(x—1){3Q2n+1)x° — (8n+ D)rx*+ (3(n+1)(4y; — (v +1)) +2n7?)x°
—7(16(n+1)y; — (4n+1)(1+0v?))x?

+ (1 (4(n+1)y1 —n(1+0%)) +30%) x—10?}.
(5.44)

Next
1

5 (Conet = Go) (X) Do ()
=8(n+1)x(x— 7)2{2(2n+ Dx® = 3ntx? + (n+1) (4y; — (V¥ +1))x

—1(2(n+ Dy — %(l+vz)n)}
=4(n+1)(x— T){4(2n+ D’ —2(7n+2)tx* +2((n+1) (4y; — (0¥ +1)) +3n7?)x°

—21’(6(n+ Dy — %(2n+ 1)(1 +v2)>x2

+27° (2(n+ Dy — %n(l +v2))x}.

(5.45)
Further, since
2n n n—1
Z Dy(x) = Z Doy (x) + Z Dyyi1(x),
v=0 v=0 v=0
;)DZV(X) —2n+ 1)x<(n a2 <2y1 - %(u2 +1) - n12>), (5.46)

n—1
> Dy (x) = 2n(n+1)x(x — 7)?,
=0
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we obtain
2n
Daui1(x) D" Dy(x)
v=0
5.47
=4(n+1)>2(x-1){2Q2n+1)x° - 2(4n+1)7x* (5:47)
+ (4y; — (VP +1) +4nt?)x° — (49 — (v +1)) 2%}
This leads to (5.40). Similar calculations can be used to prove (5.41). O

6. The integral representations of the second-order self-associated forms

Throughout this section, we will suppose v € R — {—1,1}. It will be sufficient to consider
O<v<lorv>l.
From (3.19), the formal Stieltjes function S(zy) is given by

$(20)(2) = %y{l(z— @ -1 (@ -0 -2 - W) (6.1)
with W(z) = 22 — (1/2)(v* + 1), 20 = z0(7,0,¢€), and y, = y2(7,0,¢€). Putting
w(t) = w(t,0,6) = (x — T)20 (T, 0, 8), (6.2)

we have S(w(1))(z) = (z—1)S(20)(2) + 1. Therefore, taking (6.1) into account, we get

S((r,0.0)(2) = 377 Q) (63)
where
Qz) = (Z-1)" (2 -v)"* - W(2). (6.4)

Since y,(1,v,—¢) = y1(7,0,¢), we have

S(w(r,0,-6)) (2) = 277 Q). (6.5)

Consequently, it is sufficient to study the case € = 1.
Choosing the branch which is positive when z? — 1 > 0 and z> — v? > 0, we see that Q
is regular in the upper half-plane. Moreover, it is easy to prove

+o0

sup | |Qx+iy)| dx < +co. (6.6)
y>0 J -

Consequently, the function Q possesses the following representation [2]:

0(2) = lj “ 3Q(t +10)

dt, 9z>0. (6.7)
T J-co t_ z
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We obtain from (6.4) that
(i) forO<v<1,

0, [x] > 1,
IQ(x+i0) = {sgnxy/ (1 —x2) (x2—02), v<lx|<1, (6.8)
0, x| < vs
(ii) forv > 1,
0, x| >v,
IJQ(x+i0) = {sgnxy/(x2 — 1) (v2 —x2), 1<|x|[<v, (6.9)
0) |x| <1.

In accordance with (6.3), this leads to

(w(z), f) = %YZL:SQ(x+iO)f(x)dx, few, (6.10)

where
v := max(1,v). (6.11)

But from (6.2), we have

z0=0;+(x— 1) 'z(7). (6.12)
This yields
(20, f) = f(T)+2ﬂly2 _:SQ(eriO)%dx. (6.13)
When 7 € C—] —1,+0[, we get
(1 (T73Q(x+i0) 1 ("7 3Q(x +i0)
(o) = {1 g | T g | SR a6

On account of (6.4) and (6.7), we obtain

+v :
(1) (22 g Ly o L[ 2QUEHO) (6.15)
2 nl)s t—71

But 2y; = (72 — 1)V2(7% — v?)V2 — 12+ 1/2(v? + 1); accordingly, (6.14) becomes

T2 x2) (2 — 1)2
(20, f) = (1= 1y ) (D) + vasgnw(v x?) (x2 — 0?)

21y, P — f(x)dx,  (6.16)

where v := min(1,v).
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When 7 €] —7,7[, we distinguish two cases.
(a) v < |7| < v. From (6.13), we have

f(T)

(20, ) = f(7) Lmﬂstu+nnf

271)/2
with

(1+0v?) - 72— %Q(T-l—l'O).

y(0=3

It is easy to see that

Jo@ - 2) (2 -7) - W), Ixl>7,
RQ(x+i0) =1 —W(x), v <|x| <7D,
\/(v2 -x2)(0* - x2) = W(x), |x|<uv.

Consequently,

yz(‘r):—%< (T)+1sgnr\/( —12)(1) —12)>

Next, from (6.17), we can have

(o 1 IQ(x+i0) }
<ZO)f> - {1 2mya (1) Jucixi<s X7 dxy /()
1 J JQ(x+i0)
+ p —— f(x)dx,
27T)/2(T) v<|x|<D X—T f( )
where P means principal value of the integral.
But from (6.7), the following limit relationship holds:
RQ(x+i0) = —PJ wcﬁ x€R.
v<|t|<v -

With (6.19), this gives

lPJ 3Qt+i0) . _
v<|t|<v

-W(x), v<l|x|<u.
Vs F—x

Consequently, (6.21) becomes

(z0, f) = —%iy;l(r) sgnr\/ v2—12)(v* - 12) f(7)

1 JQ(x+10)
+ P dx.
277)’2(7) L<\x\<u X—T f( x)

(b) |7] < v. From (6.13), we still have (6.17), where here

1

720 =S (V@2 =) (@ ) - W),

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)
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Taking (6.19) and (6.22) into account, we infer that

lPJU<‘t‘<EMdt= _(\/(Q _Tz)(l) _T2)+W(T)) (626)

T t—7

Thus, we obtain

(20, f) = yz’l(r)\/(y —-12)(v* - 12) f (1)
1 JQ(x+10) (6.27)
! 2y2(7) Jocixlw X —7T flxdx.
These results are summarized in the following proposition.

ProposITION 6.1. Suppose either 0 < v <1 orv > 1. Let v := min(1,v) and v := max(1,v).
Then the form zy possesses the following integral representation:

1) fort e C-]-10,+0][,

(20, f) ==y (2 = 1) (22 =) P £ (1)

1 sgnx\/ (V> = x2) (x2 — v2) y (6.28)
27T)/2 Jy<\x\<v f(x %

X—T

2) forv< 7| <7,

(20, f) = —fzyzl(r sgnr\/ 2—12)(0* - 12) f(7)

(6.29)
B el
! 27'[)/2(1') Jv<\x\<u X—T f(x dx>
3) for |7] < v,
(a, f) = 73 (O (w2 =) (7 = ) f (1)
1 Sgnx\/ (T — x2) (x2 — 12) (6.30)
! 2”))2(‘[) Iy<|x|<u X—T f(x)dx

Remark 6.2. In the last case 7| < v, the form z is positive definite since y;(7) >0 and

)/2(‘[) >0

Regarding the moments, from (6.1), we easily obtain

n
(20(7,0,41)),, = >. 7" ¥d,, n=0,
= ! (6.31)

(z0(1,0,41)) 5, = T(20(7,0,+1)),,, n=0,
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where
1 -1
d():l, dn:_i)/z Cn+ls 7’[21,
bel Y Dm-1/2)T(k=1/2) » . (6.32)
"4m 4 m! k! =
m+k=n
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