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The aim of this work is to describe the orthogonal polynomials sequences which are iden-
tical to their second associated sequence. The resulting polynomials are semiclassical of
class s≤ 3. The characteristic elements of the structure relation and of the second-order
differential equation are given explicitly. Integral representations of the corresponding
forms are also given. A striking particular case is the case of the so-called electrospheric
polynomials.

1. Introduction

A long time ago [4], Guillet and Aubert wrote a paper on electrospheric polynomials.
They are a particular case of orthogonal polynomials which are identical to their second
associated sequence. This property has not been noticed. More recently [7], the first au-
thor studied the second-order self-associated sequences in the case where they are positive
definite.

Here, we will describe all the orthogonal sequences which are identical to their second
associated sequence. Such a sequence depends on three parameters (τ,υ,ε), where τ ∈C,
υ ∈C−{−1,1}, and ε2 = 1.

When τ=0, we obtain the so-called electrospheric polynomials. When |τ|≤min(1,|υ|),
we have the positive definite case.

In Section 2, we deal with general features. Section 3 is devoted to the classification
of second-order self-associated sequences. In Section 4, we carry out the quadratic de-
composition of second-order self-associated sequences. This section is necessary for de-
termining the useful materials needed in Section 5 in which we establish the structure
relation between any second-order self-associated sequence and the differential equation
fulfilled by any polynomial of such a sequence. Finally, in Section 6, we give the integral
representation and the moments of the corresponding forms.

2. Preliminary results

2.1. Computing forms and Stieltjes function. Let � be the vector space of polynomials
with coefficients in C and let �

′
be its dual. We denote by 〈u, f 〉 the action of u ∈�′
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on f ∈�. In particular, we denote by (u)n := 〈u,xn〉, n ≥ 0, the moments of u. For any
form u and any polynomial h, we let Du= u′ and hu be the forms defined by duality:

〈u′, f 〉 :=−〈u, f ′〉, 〈hu, f 〉 := 〈u,h f 〉, f ∈�. (2.1)

We recall the definition of right multiplication of a form by a polynomial:

(up)(x) :=
〈
u,
xp(x)− ξ p(ξ)

x− ξ
�

, u∈�′, p ∈�. (2.2)

By duality, we obtain the Cauchy’s product of two forms:

〈uv, p〉 := 〈u,vp〉, u,v ∈�′, p ∈�. (2.3)

We define [1] the form (x− c)−1u, c ∈C, through

〈
(x− c)−1u, p

〉
:= 〈u,θc p

〉
, (2.4)

with

(
θc p
)
(x) := p(x)− p(c)

x− c , u∈�′, p ∈�. (2.5)

From the definitions, we have (uθ0 f )(x)= 〈u, ( f (x)− f (ξ))/(x− ξ)〉, u∈�′, f ∈�.

Hence, W (1)
n (x)= (w0θ0Wn+1)(x).

We introduce the operator σ : �→� defined by (σ f )(x) := f (x2) for all f ∈�.
By transposition, we define σu by duality:

〈σu, f 〉 = 〈u,σ f 〉, ∀u∈�′, ∀ f ∈�. (2.6)

Consequently, (σu)n = (u)2n. The following results are fundamental [1, 13].

Lemma 2.1. For any f ,g ∈�, u,v ∈�′, and c ∈C,

f (x)(uv)= ( f (x)v
)
u+ x

(
vθ0 f

)
(x)u, (2.7)

(x− c)−1( f u)= f (c)
(
(x− c)−1u

)
+
(
θc f

)
u− 〈u,θc f

〉
δc

(〈
δc, f

〉= f (c)
)
, (2.8)

f
(
(x− c)−1u

)= f (c)
(
(x− c)−1u

)
+
(
θc f

)
u, (2.9)

( f u)′ = f u′ + f ′u, (2.10)(
uθ0 f

)
(x)= (θ0u f

)
(x), (2.11)

f (x)σu= σ( f (x2)u), (2.12)

2(σu)′ = σ((x−1u
)′)

, (2.13)

σu′ = 2
(
σ(xu)

)′
. (2.14)
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We will also use the so-called formal Stieltjes function associated with u ∈ �′ and
defined by

S(u)(z) :=−
∑
n≥0

(u)n
zn+1

. (2.15)

Lemma 2.2. For any f ∈� and u,v ∈�′ [13],

S( f u)(z)= f (z)S(u)(z) +
(
uθ0 f

)
(z),

S(u′)(z)= S′(u)(z),

S(uv)(z)=−zS(u)(z)S(v)(z),

S
(
un
)
(z)= (−1)n−1zn−1(S(u)(z)

)n
, n≥ 1,

S
(
x−nu

)
(z)= z−nS(u)(z), n≥ 1.

(2.16)

2.2. Dual sequences and orthogonal sequences. Let {Wn}n≥0 be a monic polynomials
sequence (MPS), degWn = n, n ≥ 0, and let {wn}n≥0 be its dual sequence, wn ∈�′, de-

fined by 〈wn,Wm〉 := δn,m, n,m≥ 0. The sequence {W (1)
n }n≥0 defined by

W (1)
n (x) :=

〈
w0,

Wn+1(x)−Wn+1(ξ)
x− ξ

�
, n≥ 0, (2.17)

is called an associated sequence of {Wn}n≥0 (with respect to w0).Any polynomial W (1)
n is

monic and degW (1)
n = n. We denote by {w(1)

n }n≥0 the dual sequence of {W (1)
n }n≥0.

The dual sequence {w(1)
n }n≥0 is given by [8]

w(1)
n = (xwn+1

)
w−1

0 , n≥ 0, (2.18)

where w−1 exists if and only if (w)0 	= 0 and then ww−1 = δ (δ = δ0 is the Dirac measure
at origin).

The form w is called regular if we can associate with it an MPS {Wn}n≥0 such that

〈
w,WmWn

〉= rnδn,m, n,m≥ 0, rn 	= 0, n≥ 0. (2.19)

The sequence {Wn}n≥0 is orthogonal with respect to w; it is a monic orthogonal polyno-
mials sequence (MOPS). Necessarily, w = λw0, λ 	= 0. In this case, we have wn =
(〈w0,W2

n〉)−1Wnw0, n ≥ 0, and {Wn}n≥0 fulfils the following second-order recurrence
relation:

W0(x)= 1, W1(x)= x−β0,

Wn+2(x)= (x−βn+1
)
Wn+1(x)− γn+1Wn(x), n≥ 0.

(2.20)
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Likewise, the sequence {W (1)
n }n≥0 verifies the recurrence relation

W (1)
0 (x)= 1, W (1)

1 (x)= x−β1,

W (1)
n+2(x)= (x−βn+2

)
W (1)

n+1(x)− γn+2W
(1)
n (x), n≥ 0,

(2.21)

and it is orthogonal with respect to w(1)
0 , where [10]

γ1w
(1)
0 =−x2w−1

0 . (2.22)

Through the formal Stieltjes function [16],

γ1S
(
w(1)

0

)
(z)=− 1

S
(
w0
)
(z)

− (z−β0
)
. (2.23)

The successive associated sequences are defined recursively:

W (r+1)
n = (W (r)

n

)(1)
, w(r+1)

n = (w(r)
n

)(1)
, n,r ≥ 0. (2.24)

The sequence {W (r+1)
n }n≥0 satisfies the recurrence relation

W (r+1)
0 (x)= 1, W (r+1)

1 (x)= x−βr+1,

W (r+1)
n+2 (x)= (x−βn+r+2

)
W (r+1)

n+1 (x)− γn+r+2W
(r+1)
n (x), n≥ 0.

(2.25)

From (2.23), we have

γn+r+1S
(
w(n+r+1)

0

)
(z)=− 1

S
(
w(n+r)

0

)
(z)

− (z−βn+r
)
, n,r ≥ 0. (2.26)

Hence, we get [6, 10, 13]

γn+r+1S
(
w(n+r+1)

0

)
(z)=−W

(r+1)
n (z) +W (r)

n+1(z)S
(
w(r)

0

)
(z)

W (r+1)
n−1 (z) +W (r)

n (z)S
(
w(r)

0

)
(z)

, n,r ≥ 0. (2.27)

Let {Wn}n≥0 be an MPS. It is always possible to associate with it two MPSs {Pn}n≥0

and {Rn}n≥0, degPn = degRn = n, n≥ 0, and two polynomials sequences {an(x)}n≥0 and
{bn(x)}n≥0 such that

W2n(x)= Pn
(
x2)+ xan−1

(
x2),

W2n+1(x)= xRn
(
x2)+ bn

(
x2), n≥ 0,

(2.28)

where degan ≤ n and degbn ≤ n.



P. Maroni and M. I. Tounsi 141

Since degPn = degRn = n, n ≥ 0, there exist two tables of coefficients (λnν ) and (θnν ),
0≤ ν≤ n, n≥ 0, such that

an(x)=
n∑

ν=0

λnνRn(x), n≥ 0,

bn(x)=
n∑

ν=0

θnνPn(x), n≥ 0.

(2.29)

2.3. Semiclassical forms. Let Φ (monic) and Ψ be two polynomials (degΨ = p ≥ 1,
degΦ = t). A form w is called semiclassical when it is regular and satisfies the equation
[8, 11]

(Φw)′ +Ψw = 0. (2.30)

When w is semiclassical, the orthogonal sequence {Wn}n≥0 is also called semiclassical.
The pair (Φ,Ψ) is not unique. Equation (2.30) can be simplified if and only if there

exists a root c of Φ such that

Ψ(c) +Φ′(c)= 0,
〈
w,θcΨ+ θ2

cΦ
〉= 0. (2.31)

Then u fulfils the equation ((θcΦ)w)′ + {θcΨ+ θ2
cΦ}w = 0.

We call the class of w the minimum value of the integer max(degΦ− 2,degΨ− 1) for
all pairs satisfying (2.30). Given the pair (Φ0,Ψ0), the class s ≥ 0 is unique. When s = 0,
the form w is classical (Hermite, Laguerre, Bessel, Jacobi).

When the form w is of class s, the orthogonal sequence associated with respect to w is
known to be of class s.

The class of semiclassical forms is s if and only if the following condition is satisfied
[11]:

∏
c∈Θ

(∣∣Ψ(c) +Φ′(c)
∣∣+

∣∣〈w,θcΨ+ θ2
cΦ
〉∣∣) 	= 0, (2.32)

where Θ= {c,φ(c)= 0}.
Lemma 2.3. Let w be a regular semiclassical form verifying (2.30). Let a be a root of Φ such
that

∣∣Ψ(a) +Φ′(a)
∣∣+

∣∣〈w,θaΨ+ θ2
aΦ
〉∣∣= 0, (2.33)∣∣Ψ(c) +Φ′(c)

∣∣+
∣∣〈w,θcΨ+ θ2

cΦ
〉∣∣ 	= 0, (2.34)

for all c roots of Φ different from a. Then the form w satisfies the equation

(
Φ1w

)′
+Ψ1w = 0, (2.35)
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where Φ1 = θaΦ and Ψ1 = θaΨ+ θ2
aΦ such that

∣∣Ψ1(c) +Φ′
1(c)

∣∣+
∣∣〈w,θcΨ1 + θ2

cΦ1
〉∣∣ 	= 0 (2.36)

for all c roots of Φ different from a.

Proof. We suppose that there exists a root c of Φ different from a verifying

Ψ1(c) +Φ′
1(c)= 0,

〈
w,θcΨ1 + θ2

cΦ1
〉= 0. (2.37)

We have

Φ(x)= (x− a)Φ1(x),
(
Ψ+Φ1

)
(x)= (x− a)Ψ1(x); (2.38)

then

Ψ(c) +Φ′(c)= (c− a)
(
Ψ1(c) +Φ′

1(c)
)
, θcΨ+ θ2

cΦ=Ψ1− (c− a)
(
θcΨ1 + θ2

cΦ1
)
.

(2.39)

On account of 〈w,Ψ1〉 = 0, we deduce that Ψ(c) +Φ′(c)= 0 and 〈w,θcΨ+ θ2
cΦ〉 = 0.

This contradicts the conditions given in (2.34). �

2.4. Affine transformation. We define the linear operators τb and ha in �′ as follows:

〈
τbu, p

〉
:= 〈u,τ−b p

〉= 〈u, p(x+ b)
〉

, b ∈C, u∈�′, p ∈�,〈
hau, p

〉
:= 〈u,hap

〉= 〈u, p(ax)
〉

, a∈C−{0}, u∈�′, p ∈�.
(2.40)

Let {Wn}n≥0 be an MPS with its dual sequence {wn}n≥0. The dual sequence {w̃n}n≥0

of {W̃n}n≥0 with W̃n(x)= a−nWn(ax+ b), n≥ 0, a 	= 0, is given by w̃n = an(ha−1 ◦ τ−b)wn,
n≥ 0.

Let {Wn}n≥0 be an MOPS with respect to w. Then {W̃n}n≥0 is an MOPS with respect
to w̃ = (ha−1 ◦ τ−b)w. We have

β̃n = βn− b
a

, γ̃n+1 = γn+1

a2
, n≥ 0. (2.41)

Lemma 2.4. For any f ∈�, u,v ∈�′, and (a,b)∈C−{0}×C [8, 13],

τb( f u)= (τb f )(τbu), (2.42)

ha( f u)= (ha−1 f
)(
hau

)
, (2.43)

τb(uv)= (τbu)(τbv)δ−1
b , (2.44)

ha(uv)= (hau)(hav). (2.45)
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As a result, if w is a semiclassical form of class s satisfying (2.30), then the shifted form
w̃ = (ha−1 ◦ τ−b)w is of class s satisfying the equation

(Φ̃w̃)′ + Ψ̃w̃ = 0, (2.46)

where

Φ̃(x)= a−tΦ(ax+ b), Ψ̃(x)= a1−tΨ(ax+ b). (2.47)

Lemma 2.5. Let {Wn}n≥0 be an MPS, degWn = n, n ≥ 0, and let {wn}n≥0 be its dual se-
quence. For any (a,b)∈C−{0}×C,

τb
(
w(1)
n

)= (τbwn
)(1)

, (2.48)

ha
(
w(1)
n

)= (hawn
)(1)

. (2.49)

Proof. By multiplying the two sides of (2.18) by the form w0, we obtain

w(1)
n w0 = xwn+1. (2.50)

By introducing the operator τb in the last expression, from (2.42) and (2.44), we obtain

(
τb
(
w(1)
n

))(
τbw0

)= ((x− b)
(
τbwn+1

))
δb. (2.51)

From (2.7),

(
τb
(
w(1)
n

))(
τbw0

)= ((x− b)δb
)(
τbwn+1

)
+ x
(
τbwn+1

)
− x(((τbwn+1

)
θ0(ξ − b)

)
(x)
)
δb.

(2.52)

Since

(x− b)δb = 0,
((
τbwn+1

)
θ0(ξ − b)

)
(x)= 0, n≥ 0, (2.53)

then

(
τb
(
w(1)
n

))(
τbw0

)= x(τbwn+1
)
, n≥ 0, (2.54)

or

τb
(
w(1)
n

)= (x(τbwn+1
))(

τbw0
)−1

, n≥ 0. (2.55)

From (2.18) and (2.55), we deduce (2.48).
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To prove (2.48), we introduce the operator ha in the expression (2.50). From (2.43)
and (2.45), we give

(
ha
(
w(1)
n

))(
haw0

)= a−1x
(
hawn+1

)
, n≥ 0. (2.56)

But

(
a−nhawn

)(1) = x(a−(n+1)hawn+1
)(
haw0

)−1
, n≥ 0. (2.57)

From (2.18) and (2.57), we deduce (2.49). �

2.5. Second-degree forms. The form w is a second-degree form [13] if it is regular and
if there exist polynomials B and C such that

B(z)S2(w)(z) +C(z)S(w)(z) +D(z)= 0, (2.58)

where D depends on B, C, and w.
The regularity of w means that we must have

B 	= 0, C2− 4BD 	= 0, D 	= 0. (2.59)

The following expressions are equivalent to (2.58), [13]:

B(x)w2 = xC(x)w,
〈
w2,θ0B

〉= 〈w,C〉. (2.60)

In the sequel, we will assume B to be monic and we will be looking for any regular
form w verifying (w)0 = 1.

A second-degree form w is a semiclassical form and satisfies (2.30), where [13]

kφ(x)= B(x)
(
C2(x)− 4B(x)D(x)

)
, φ monic, k 	= 0,

kψ(x)=−3
2
B(x)

(
C2(x)− 4B(x)D(x)

)′
.

(2.61)

3. The second-order self-associated orthogonal sequences and their classification

In this section, we quote the second-order self-associated sequences following the class of
their corresponding canonical forms.

Definition 3.1. Let any integer m≥ 1 be fixed. Then the MOPS {Wn}n≥0 is called an m-
order self-associated polynomials sequence when it fulfils

W (m)
n =Wn, n≥ 0. (3.1)

In this case, the form w0 is also called an m-order self-associated form. See also [14, 15].
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Then w0 satisfies

w(m)
0 =w0. (3.2)

From (3.1), the coefficients of (2.20) are given by

βn+m = βn, γn+m+1 = γn+1, n≥ 0. (3.3)

The case m= 1 is well known; w0 is the Tchebychev form of the second kind.
According to Lemma 2.5, we give the following result.

Proposition 3.2. Let {Wn}n≥0 be anm-order self-associated MPS, degWn = n, n≥ 0, and
let {wn}n≥0 be its dual sequence. Then the shifted sequence form {w̃n}n≥0 fulfils

w̃(m)
n = w̃n, m∈N−{0}, n≥ 0, (3.4)

where

w̃n = an
(
ha−1 ◦ τ−b

)
wn, b ∈C, a∈C−{0}, n≥ 0. (3.5)

The object of this subject is to treat the case where m= 2 by describing all the second-
order self-associated polynomials sequences and their classification. We denote by
{Zn}n≥0 these polynomials sequences and {zn}n≥0 their dual sequences. From (3.3), we get

βn+2 = βn, γn+3 = γn+1, n≥ 0. (3.6)

This implies

β2n = β0, β2n+1 = β1, n≥ 0,

γ2n+1 = γ1, γ2n+2 = γ2, n≥ 0.
(3.7)

For α = (1/2)(β0 + β1), β = (1/2)(β0 − β1), λ = (1/2)(γ2 + γ1), µ = (1/2)(γ1− γ2), n ≥ 0,
we have

βn = α+ (−1)nβ, n≥ 0, (α,β)∈C
2,

γn+1 = λ+ (−1)nµ, n≥ 0, (λ,µ)∈C
2, λ2 	= µ2.

(3.8)

By means of (2.23), we have

γ2S
(
z(2)

0

)
(z)=− 1

S
(
z(1)

0

)
(z)

− (z−β1
)
, (3.9)

γ1S
(
z(1)

0

)
(z)=− 1

S
(
z0
)
(z)

d− (z−β0
)
. (3.10)
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Substituting (3.10) into (3.9), we obtain

γ2S
(
z(2)

0

)
(z)= γ1S

(
z0
)
(z)

1 +
(
z−β0

)
S
(
z0
)
(z)

− (z−β1
)
. (3.11)

Since

z(2)
0 = z0, (3.12)

relation (3.11) becomes

(
z−β0

)
S2(z0

)
(z) +

1
γ2

(
γ2− γ1 +

(
z−β0

)(
z−β1

))
S
(
z0
)
(z) +

1
γ2

(
z−β1

)= 0. (3.13)

From (3.8), we get

(z−α−β)S2(z0
)
(z) +

1
λ−µ

(
z2− 2αz+α2−β2− 2µ

)
S
(
z0
)
(z) +

1
λ−µ (z−α+β)= 0.

(3.14)

Thus, the form z0 is a second-degree form [10, 14, 15].
It is also a semiclassical form of class s ≤ 3, satisfying the functional equation (2.30)

with

Φ(x)= (x− (α+β)
)((

(x−α)2− 2λ−β2)2− 4
(
λ2−µ2)),

Ψ(x)=−6(x−α)
(
x− (α+β)

)(
(x−α)2− 2λ−β2). (3.15)

Let δ1, δ2 be two complex numbers such that

δ2
1 = 2λ+β2 + 2

√
λ2−µ2, δ2

2 = 2λ+β2− 2
√
λ2−µ2. (3.16)

The polynomial Φ becomes

Φ(x)= (x−α−β)
(
x−α− δ1

)(
x−α+ δ1

)(
x−α− δ2

)(
x−α+ δ2

)
. (3.17)

We remark that δ2
1 − δ2

2 = 4
√
λ2−µ2. The regularity of z0 leads to λ2 	= µ2. Then δ2

1 	= δ2
2 ;

so necessarily one of these values is different from zero. We can suppose that δ1 	= 0.
We make a suitable shift such that α = 0 and δ1 = 1. With β = τ and δ2 = υ, from

(3.16), we have λ= (1/4)(1− 2τ2 + υ2) and µ= (1/2)εστ,υ, ε=±1, where

στ,υ =
√(
τ2− 1

)(
τ2− υ2

)
. (3.18)

Therefore, (3.14) becomes

(z− τ)S2(z0
)
(z) +

1
γ2

(
z2− τ2− εστ,υ

)
S
(
z0
)
(z) +

1
γ2

(z+ τ)= 0, (3.19)
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where

γ2 = 1
4

(
1− 2τ2 + υ2− 2εστ,υ

)
. (3.20)

The functional equation fulfilled by the form z0 becomes

(
Φz0

)′
+Ψz0 = 0, (3.21)

where

Φ(x)= (x− τ)
(
x2− 1

)(
x2− υ2), (3.22)

Ψ(x)=−3x(x− τ)
(
2x2− 1− υ2). (3.23)

Proposition 3.3. Let {Zn}n≥0 be a second-order self-associated polynomials sequence with
respect to z0. Then there exists (τ,υ)∈C2, υ2 	= 1, such that

Z0(x)= 1, Z1(x)= x− τ,

Zn+2(x)= (x− (−1)n+1τ
)
Zn+1(x)−

(
1
4

(
1− 2τ2 + υ2)+

(−1)n

2
εστ,υ

)
Zn(x), n≥ 0.

(3.24)

The form z0 is a semiclassical form of class s≤ 3 and satisfies the functional equation (3.21),
with the following initial conditions:

〈
z0,1

〉= 1,
〈
z0,x

〉= τ,
〈
z0,x2〉= 1

4

(
1 + 2τ2 + υ2)+

1
2
εστ,υ,〈

z0,x3〉= τ〈z0,x2〉. (3.25)

Noting that the sequence {Z(1)
n }n≥0 is also a second-order self-associated sequence,

(
Zn(τ,υ,ε;x)

)(1) = Zn(−τ,υ,−ε;x), n≥ 0. (3.26)

Proof. Let {Wn}n≥0 be an MOPS satisfying (2.20) with respect to w0. Generally, we have

〈
w0,x

〉= β0,
〈
w0,x2〉= β2

0 + γ1,
〈
w0,x3〉= β3

0 + 2β0γ1 +β1γ1. (3.27)

By means of relations (3.8), (3.22), and (3.23), we deduce the result. �

In the sequel, we quote all the second-order self-associated MPSs {Zn}n≥0. For this, we
need the following lemma. Let c be a root of Φ. We have c ∈ {−1,1,τ,−υ,υ}.
Lemma 3.4. Let {Zn}<n≥0 be a second-order self-associated polynomials sequence with re-
spect to z0. The expressions Φ′(c) +Ψ(c) and 〈z0,θ2

cΦ+ θcΨ〉 are given for all c roots of Φ in
Table 3.1.

Proof. From (3.22) and (3.23), a simple calculation gives us the values of Φ′(c) +Ψ(c) for
all c roots of Φ.
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Table 3.1

Roots of Φ Φ′(c) +Ψ(c)
〈
z0,θ2

cΦ+ θcΨ
〉

1 (τ − 1)
(
1− υ2

)
2
(
τ2− 1− εστ,υ

)
−1 −(τ + 1)

(
1− υ2

) −2
(
τ2− 1− εστ,υ

)
υ −υ(υ− τ)

(
υ2− 1

)
2υ
(
τ2− υ2− εστ,υ

)
−υ −υ(υ+ τ)

(
υ2− 1

) −2υ
(
τ2− υ2− εστ,υ

)
τ

(
τ2− 1

)(
τ2− υ2

) −2τε
√(
τ2− 1

)(
τ2− υ2

)

For calculating 〈z0,θ2
cΦ + θcΨ〉, we must initially calculate the polynomials (θ2

cΦ +
θcΨ)(x) explicitly. Through definition (3.1) and (3.22), (3.23), we have

(
θ2

1Φ+ θ1Ψ
)
(x)=−5x3 + (5τ− 4)x2 +

(
2υ2 + 4τ− 1

)
x+ υ2− 2υ2τ + τ − 1,(

θ2
−1Φ+ θ−1Ψ

)
(x)=−5x3 + (5τ + 4)x2 +

(
2υ2− 4τ− 1

)
x− υ2− 2υ2τ + τ + 1,(

θ2
τΨ+ θτΨ

)
(x)=−5x3 + τx2 +

(
2υ2 + τ2 + 2

)
x+ τ3− τυ2− τ,(

θ2
υΦ+ θυΨ

)
(x)=−5x3 + (5τ− 4υ)x2 +

(
4τυ− υ2 + 2

)
x+ τυ2− υ3 + υ− 2τ,(

θ2
−υΦ+ θ−υΨ

)
(x)=−5x3 + (5τ + 4υ)x2 +

(− 4τυ− υ2 + 2
)
x+ τυ2 + υ3− υ− 2τ.

(3.28)

From the expressions of the moments (z0)k, 0 ≤ k ≤ 3, given by (3.25), and relations
(3.28), we deduce the results of Table 3.1. �

Proposition 3.5. Let {Zn}n≥0 be a second-order self-associated MPS with respect to z0

(remember that the regularity of z0 means υ2 	= 1). Denoting by s the class of z0,

(a) if τ2 	= 1, τ2 	= υ2, and υ 	= 0, so s= 3 and z0 is given by (3.21), (3.22), (3.23), (3.24),
and (3.25);

(b) if υ 	= 0 and τ = 1, so s= 2 and z0 is given by

((
x2− 1

)(
x2− υ2)z0

)′
+
(− 5x3 + x2 +

(
3 + 2υ2)x− υ2)z0 = 0, (3.29)

where

(
z0
)

1 = 1,
(
z0
)

2 =
1
4

(
υ2 + 3

)
, (3.30)

and

βn = (−1)n, γn+1 = υ2− 1
4

, υ2 	= 1, υ 	= 0, n≥ 0; (3.31)

(c) if υ = 0, τ2 	= 1, and τ 	= 0, so s= 2 and z0 is given by

(
x(x− τ)

(
x2− 1

)
z0
)′

+ (x− τ)
(− 5x2 + 2

)
z0 = 0, (3.32)
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where

(
z0
)

1 = τ,
(
z0
)

2 =
1
4

(
1 + 2τ2)+

1
2
ετ
√(
τ2− 1

)
, (3.33)

and

βn = (−1)nτ, γn+1 =−1
4

(
τ − (−1)nε

√
τ2− 1

)2
, τ2 	= 1, τ 	= 0, n≥ 0; (3.34)

(d) if υ= 0 and τ = 1, so s= 1 and z0 is given by

(
x
(
x2− 1

)
z0
)′

+
(− 4x2 + x+ 2

)
z0 = 0,

(
z0
)

1 = 1,

βn = (−1)n, γn+1 =−1
4

, n≥ 0;
(3.35)

(e) if υ = 0 and τ = 0, so s= 0 and z0 is the Tchebychev form of the second kind [10, 12,
13], given by

((
x2− 1

)
z0
)′ − 3xz0 = 0, (3.36)

βn = 0, γn+1 = 1
4

, n≥ 0. (3.37)

Proof. (a) In the case τ2 	= 1, τ2 	= υ2, and υ 	= 0 and from Table 3.1, we have

∣∣Ψ(c) +Φ′(c)
∣∣+

∣∣〈z0,θcΨ+ θ2
cΦ
〉∣∣ 	= 0 (3.38)

for all c roots of Φ. Relation (2.32) is realized. Consequently, (3.21) is not simplified, so
the form z0 is of class s= 3.

(b) In the second case, the functional equation of z0 is given by

(
(x− 1)

(
x2− 1

)(
x2− υ2)z0

)′ − 3x(x− 1)
(
2x2− 1− υ2)z0 = 0. (3.39)

From Table 3.1, Ψ(1) + Φ′(1) = 0, 〈z0,θ1Ψ + θ2
1Φ〉 = 0, and |Ψ(c) + Φ′(c)|+ |〈z0,θcΨ +

θ2
cΦ〉| 	= 0 for all c ∈ {−1,υ,−υ}.

Then this equation is simplified by x− 1, and z0 fulfils

(
Φ1z0

)′
+Ψ1z0 = 0, (3.40)

where Φ1(x)= (x2− 1)(x2− υ2) and Ψ1(x)=−5x3 + x2 + (3 + 2υ2)x− υ2.
From Lemma 2.3,

∣∣Ψ1(c) +Φ′
1(c)

∣∣+
∣∣〈z0,θcΨ1 + θ2

cΦ1
〉∣∣ 	= 0 (3.41)
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for all c ∈ {−1,υ,−υ}; and taking into account Ψ1(1) +Φ′
1(1)= (1− υ2) 	= 0, we deduce

the result.
When υ 	= 0 and τ =−1, z0 satisfies the following equation and elements characteris-

tics:

((
x2− 1

)(
x2− υ2)z0

)′
+
(− 5x3− x2 +

(
3 + 2υ2)x+ υ2)z0 = 0, (3.42)

where

(
z0
)

1 =−1,
(
z0
)

2 =
1
4

(
υ2 + 3

)
, (3.43)

and

βn = (−1)n+1, γn+1 = υ2− 1
4

, υ2 	= 1, υ 	= 0, n≥ 0. (3.44)

This form is of class s= 2. Indeed, through a suitable shifting, we apply the operator h−1

in (3.42), (3.43), and (3.44). We obtain the previous case.
Likewise, if υ 	= 0 and τ = υ, z0 is given by

((
x2− 1

)(
x2− υ2)z0

)′
+
(− 5x3 + υx2 +

(
2 + 3υ2)x− υ)z0 = 0, (3.45)

where

(
z0
)

1 = υ,
(
z0
)

2 =
1
4

(
3υ2 + 1

)
, (3.46)

and

βn = (−1)n

υ
, γn+1 = 1− υ2

4
, υ2 	= 1, υ 	= 0, n≥ 0. (3.47)

Applying the operator hυ in (3.45) and (3.47), then while replacing υ by υ−1, we obtain
again case (b).

By a similar calculation, if υ 	= 0 and τ =−υ, then z0 is given by

((
x2− 1

)(
x2− υ2)z0

)′
+
(− 5x3− υx2 +

(
2 + 3υ2)x+ υ

)
z0 = 0, (3.48)

where

(
z0
)

1 =−υ,
(
z0
)

2 =
1
4

(
3υ2 + 1

)
, (3.49)

and

βn = (−1)n+1υ, γn+1 = 1− υ2

4
, υ2 	= 1, υ 	= 0, n≥ 0. (3.50)

Applying the operator h−υ in (3.48) and (3.50), then while replacing υ by υ−1, we obtain
again case (b).



P. Maroni and M. I. Tounsi 151

(c) In this case, we have

(
x2(x− τ)

(
x2− 1

)
z0
)′ − 3x(x− τ)

(
2x2− 1

)
z0 = 0. (3.51)

From Table 3.1, Ψ(0) +Φ′(0) = 0, 〈z0,θ0Ψ+ θ2
0Φ〉 = 0, and |Ψ(c) +Φ′(c)|+ |〈z0, θcΨ+

θ2
cΦ〉| 	= 0 for all c ∈ {−1,1,τ}.

Then this equation is simplified by x, and z0 satisfies (Φ1z0)′ +Ψ1z0 = 0, where

Φ1(x)= x(x− τ)
(
x2− 1

)
, Ψ1(x)= (x− τ)

(− 5x2 + 2
)
. (3.52)

From Lemma 2.3, Ψ1(c) +Φ′
1(c)|+ |〈z0,θcΨ1 + θ2

cΦ1〉| 	= 0 for all c ∈ {−1,1,τ}; and tak-
ing into account Ψ1(0) +Φ′

1(0)=−τ 	= 0, we deduce the result.
(d) From Table 3.1, the equation (x2(x− 1)(x2 − 1)z0)′ − 3x(x− 1)(2x2 − 1)z0 = 0 is

simplified twice by x and x− 1. In the first place, we have

(
x(x− 1)

(
x2− 1

)
z0
)′

+ (x− 1)
(− 5x2 + 2

)
z0 = 0. (3.53)

Next, we simplify once more by x− 1, and we have (Φ2z0)′ +Ψ2z0 = 0, where

Φ2(x)= x(x2− 1
)
, Ψ2(x)=−4x2 + x+ 2. (3.54)

Then we get Ψ2(0) + Φ′
2(0) = 1 	= 0, and according to Lemma 2.3, z0 is a semiclassical

form of class s= 1, which satisfies (3.35).
If υ = 0 and τ =−1, z0 is given by

(
x
(
x2− 1

)
z0
)′

+
(− 4x2− x+ 2

)
z0 = 0,

(
z0
)

1 =−1,

βn = (−1)n+1, γn+1 =−1
4

, n≥ 0.
(3.55)

This form is of class s= 1. In fact, applying the operator h−1 in (3.55), we have again case
(d).

(e) Similarly, from Table 3.1, it is easy to prove that the equation is simplified by x3.
Therefore, z0 is a classical form given by (3.36). �

4. Quadratic decomposition of the second-order self-associated orthogonal sequences

In order to build a structure relation and a differential equation related to second-order
self-associated sequences, we want their quadratic decomposition given by (2.28). In [9],
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the first author gave necessary and sufficient conditions for the sequences {Pn}n≥0 and
{Rn}n≥0 to be orthogonal.

Proposition 4.1. Let {Wn}n≥0 satisfy the recurrence relation (2.20), where

βn = (−1)nβ0, n≥ 0. (4.1)

Then there exist two MOPSs {Pn}n≥0, with respect to u0, and {Rn}n≥0, with respect to v0,
fulfilling the following relations:

P0(x)= 1, P1(x)= x− γ1−β2
0,

Pn+2(x)= (x− γ2n+2− γ2n+3−β2
0

)
Pn+1(x)− γ2n+1γ2n+2Pn(x), n≥ 0,

(4.2)

R0(x)= 1, R1(x)= x− γ1− γ2−β2
0,

Rn+2(x)= (x− γ2n+3− γ2n+4−β2
0

)
Rn+1(x)− γ2n+2γ2n+3Rn(x), n≥ 0,

(4.3)

Pn+1(x)= Rn+1(x) + γ2n+2Rn(x), n≥ 0, (4.4)(
x−β2

0

)
Rn(x)= Pn+1(x) + γ2n+1Pn(x), n≥ 0, (4.5)

since, in (2.28), an(x)= 0 and bn(x)=−β0Rn(x), n≥ 0.
Moreover, the forms u0, v0, and w0 satisfy

u0 = σw0, (4.6)

σ
(
xw0

)= β0
(
σw0

)
, (4.7)

v0 = 1
γ1

(
x−β2

0

)(
σw0

)
. (4.8)

Now, this result will be applied to {Zn}n≥0 which, by virtue of (3.24), fulfils (4.1) and

Z2n(x)= Pn
(
x2), (4.9)

Z2n+1(x)= (x− τ)Rn
(
x2). (4.10)

From (3.24) and (4.2), the sequences {Pn}n≥0 and {Rn}n≥0 become

P0(x)= 1, P1(x)= x− 1
4

(
1 + υ2 + 2τ2)− 1

2
εστ,υ,

Pn+2(x)=
(
x− 1

2

(
1 + υ2))Pn+1(x)−

(
υ2− 1

4

)2

Pn(x), n≥ 0,
(4.11)

R0(x)= 1, R1(x)= x− 1
2

(
1 + υ2),

Rn+2(x)=
(
x− 1

2

(
1 + υ2))Rn+1(x)−

(
υ2− 1

4

)2

Rn(x), n≥ 0.
(4.12)
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We remark that the sequence {Pn}n≥0 is the corecursive sequence of {Rn}n≥0 with the
value −γ2 = −(1/4)(1 + υ2 − 2τ2) + (1/2)εστ,υ. For the parameter Pn(x) = Rn(−γ2;x),
n≥ 0, we have

Pn+1 = Rn+1 + γ2R
(1)
n = Rn+1 + γ2Rn, n≥ 0, (4.13)

in accordance with (4.4). Moreover, (4.5) becomes

(
x− τ2)Rn(x)= Pn+1(x) + γ1Pn(x), n≥ 0. (4.14)

From (4.12), we easily see that

Rn(x)= anP̂(1/2,1/2)
n

(
a−1(x− b)

)
, n≥ 0, a= 1

2

(
υ2− 1

)
, b = 1

2

(
1 + υ2), (4.15)

where {P̂(α,β)
n }n≥0 is the monic Jacobi polynomials sequence, orthogonal with respect to

the Jacobi form �(α,β), with parameters α, β, see [11, 12], fulfilling the following equa-
tion:

((
x2− 1

)
�(α,β)

)′
+
(− (α+β+ 2)x+α−β)�(α,β)= 0,

(
�(α,β)

)
0 = 1. (4.16)

Usually, �(1/2,1/2) is denoted by � which fulfils (3.36), and {P̂(1/2,1/2)
n (x)}n≥0 is defined

by (3.37).
Since v0 = (τb ◦ha)�, we have

(
Φ0v0

)′
+Ψ0v0 = 0, (4.17)

where

Φ0(x)= (x− 1)
(
x− υ2), Ψ0(x)=−3

2

(
2x− 1− υ2). (4.18)

Likewise, from (4.6) and (4.8), taking (4.17) into account, we obtain

(
Φ1u0

)′
+Ψ1u0 = 0,

(
u0
)

1 =
(
σz0
)

1 = τ2 + γ1 = 1
4

(
1 + υ2 + 2τ2)+

1
2
εστ,υ,

(4.19)

where

Φ1(x)= (x− 1)
(
x− υ2)(x− τ2), Ψ1(x)=−3

2

(
2x− 1− υ2)(x− τ2). (4.20)
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Lemma 4.2. The following cases hold:

(a) if τ2 	= 1 and τ2 	= υ2, the class of u0 is s= 1;
(b) if τ2 = 1 and τ2 	= υ2, the form u0 is classical (s= 0) and fulfils the equation

(
(x− 1)

(
x− υ2)u0

)′ − 1
2

(
4x− 3− υ2)u0 = 0,

(
u0
)

1 =
1
4

(
3 + υ2); (4.21)

this implies

u0 =
(
τb ◦ha

)
�
(
− 1

2
,
1
2

)
(4.22)

with

a= 1
2

(
υ2− 1

)
, b = 1

2

(
1 + υ2); (4.23)

(c) if τ2 = υ2, the form u0 is classical and fulfils the equation

(
(x− 1)

(
x− τ2)u0

)′ − 1
2

(
4x− 1− 3τ2)u0 = 0,

(
u0
)

1 =
1
4

(
1 + 3τ2); (4.24)

this implies

u0 =
(
τb ◦ha

)
�
(

1
2

,−1
2

)
(4.25)

with

a= 1
2

(
τ2− 1

)
, b = 1

2

(
1 + τ2). (4.26)

Proof. From (4.20), we have

Φ′
1(1) +Ψ1(1)=−1

2

(
1− υ2)(1− τ2),

Φ′
1

(
υ2)+Ψ1

(
υ2)=−1

2

(
υ2− 1

)(
τ2− υ2),

Φ′
1

(
τ2)+Ψ1

(
τ2)= (τ2− 1

)(
τ2− υ2).

(4.27)

Assertion (a) is evident. When τ2 = 1 and τ2 	= υ2, we have

〈
u0,θ2

1Φ1 + θ1Ψ1
〉=〈u0,−2x+

1
2

(
3 + υ2)�=−2

(
u0
)

1 +
1
2

(
3 + υ2)= 0, (4.28)

whence (4.21) and (4.22). The same applies to (4.24) and (4.25). �
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5. Structure relation and differential equation

It is well known that a semiclassical orthogonal polynomials sequence fulfils a second-
order differential equation [3, 5, 10]. In this section, we give the following second-order
differential equation fulfilled by {Zn}n≥0. We have

J(x;n)Z′′n+1(x) +K(x;n)Z′n+1(x) +L(x;n)Zn+1(x)= 0, n≥ 0, (5.1)

with

J(x;n)=Φ(x)Dn+1(x), n≥ 0,

K(x;n)= C0(x)Dn+1(x)−W
(
Φ,Dn+1

)
(x), n≥ 0,

L(x;n)=W
(

1
2

(
Cn+1−C0

)
,Dn+1

)
(x)−Dn+1(x)

n∑
ν=0

Dν(x), n≥ 0,

(5.2)

where W( f ,g)= f g′ − g f ′ is the Wronskian of f and g.
The sequences {Cn}n≥0 and {Dn}n≥0 are defined by

Φ(z)S′
(
z(n)

0

)
(z)= Bn(z)S2(z(n)

0

)
(z) +Cn(z)S

(
z(n)

0

)
(z) +Dn(z), n≥ 0, (5.3)

and fulfil

B0(z)= 0,

C0(z)=−Φ′(z)−Ψ(z),

D0(z)=−(z0θ0Φ
)′

(z)− (z0θ0Ψ
)
(z),

(5.4)

Bn+1(z)= γn+1Dn(z), n≥ 0,

Cn+1(z)=−Cn(z) + 2
(
z−βn

)
Dn(z), degCn ≤ 4, n≥ 0,

γn+1Dn+1(z)=−Φ(z) +Bn(z)− (z−βn)Cn(z) +
(
z−βn

)2
Dn(z), degDn ≤ 3, n≥ 0.

(5.5)

They are involved in the so-called structure relation [3, 10]

Φ(x)Z′n+1(x)= 1
2

(
Cn+1(x)−C0(x)

)
Zn+1(x)− γn+1Dn+1(x)Zn(x), n≥ 0. (5.6)

Here, from (3.22), (3.23), and (5.4), we have

Φ(z)= (z− τ)
(
z2− 1

)(
z2− υ2),

C0(z)= z4− 2τz3 + τ
(
1 + υ2)z− υ2,

D0(z)= 2z
(
z2 + 2γ1− 1

2

(
1 + υ2))= 2z

(
z2− τ2 + εστ,υ

)
.

(5.7)
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Indeed, from (2.2), we have

(
z0θ0Φ

)
(x)=

〈
z0,

Φ(x)−Φ(ξ)
x− ξ

�

=
〈
z0,

(x− τ)
(
x4− (1 + υ2

)
x2 + υ2

)− (ξ − τ)
(
ξ4− (1 + υ2

)
ξ2 + υ2

)
x− ξ

〉

= 〈z0,x4 + (ξ − τ)x3 +
(
ξ2− (1 + υ2)ξ − τξ)x2

+
(
ξ3− (1 + υ2)ξ − τξ2 +

(
1 + υ2)τ)x

+ ξ4− τξ3− (1 + υ2)ξ + τ
(
1 + υ2)ξ + υ2〉

= x4 +
((
z0
)

1− τ
)
x3 +

((
z0
)

2−
(
1 + υ2)− τ(z0

)
1

)
x2

+
((
z0
)

3− τ
(
z0
)

2−
(
1 + υ2)((z0

)
1− τ

))
x

+
(
z0
)

4− τ
(
z0
)

3−
(
1 + υ2)(z0

)
1 + τ

(
1 + υ2)(z0

)
1 + υ2.

(5.8)

Through (3.25), (z0)1 = τ, (z0)2 = γ1 + τ2, and (z0)3 = τ(z0)2; so

(
z0θ0Φ

)′
(x)= 4x3 + 2

(
γ1−

(
1 + υ2))x. (5.9)

In the same way, from (2.2) and (3.23), we get

(
z0θ0Ψ

)
(x)= 〈z0,−6x3 + (6τ− 6ξ)x2 +

(
6τξ − 6ξ2 + 3

(
1 + υ2))x

− 6ξ3 + 6τξ2 + 3
(
1 + υ2)(ξ − τ)

〉
=−6x3 +

(
3
(
1 + υ2)− 6γ1

)
x.

(5.10)

Thus, we deduce the expression of D0(x).
Generally, it is difficult to give the sequences {Cn}n≥0 and {Dn}n≥0 explicitly using the

recurrence relations (5.5). The quadratic decomposition allows us to do it.

Lemma 5.1. The following structure relations hold:

(x− 1)
(
x− υ2)R′n+1(x)= (n+ 1)

(
x− 1

2

(
1 + υ2))Rn+1(x)

− 2(n+ 2)
(

1− υ2

4

)2

Rn(x), n≥ 0,

(5.11)

Φ1(x)P′n+1(x)= A(n;x)Pn+1(x)−B(n;x)Pn(x), n≥ 0, (5.12)
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where

Φ1(x)= (x− 1)
(
x− υ2)(x− τ2), (5.13)

A(n;x)= (n+ 1)
(
x+ 2γ2− 1

2

(
υ2 + 1

))(
x+ γ1− 1

2

(
υ2 + 1

))

− (n+ 2)γ2

(
x+ 2γ1− 1

2

(
υ2 + 1

))
, n≥ 0,

(5.14)

B(n;x)= γ1γ2

{
(n+ 1)

(
x+ 2γ2− 1

2

(
υ2 + 1

))

+ (n+ 2)
(
x+ 2γ1− 1

2

(
υ2 + 1

))}
, n≥ 0.

(5.15)

Proof. Since, for the Jacobi sequence, we have [10, 11]

C
(α,β)
n (x)= (2n+α+β)x− α2−β2

2n+α+β
, n≥ 0,

D
(α,β)
n (x)= 2n+α+β+ 1, n≥ 0,

(5.16)

then, in the case α= β = 1/2, we obtain

CRn (x)= aC(1/2,1/2)
n

(
x− b
a

)
= (2n+ 1)

(
x− 1

2

(
1 + υ2)), n≥ 0,

DR
n (x)=D(1/2,1/2)

n

(
x− b
a

)
= 2n+ 2, n≥ 0,

(5.17)

where a= (1/2)(υ2− 1) and b = (1/2)(1 + υ2).
Hence, (5.11) holds.
Next, from (4.4), we have

Φ1(x)P′n+1(x)= (x− 1)
(
x− υ2)(x− τ2)R′n+1(x)

+ γ2(x− 1)
(
x− υ2)(x− τ2)R′n(x), n≥ 0.

(5.18)

According to (5.11) and taking (4.12) into account, we obtain

Φ1(x)P′n+1(x)= (n+ 1)
(
x+ 2γ1− 1

2

(
υ2 + 1

))(
x− τ2)Rn+1(x)

− (n+ 2)
(
γ2

(
x− 1

2

(
υ2 + 1

))
+ 2γ1γ2

)(
x− τ2)Rn(x), n≥ 0.

(5.19)

With (4.5), this yields (5.12), (5.13), (5.14), and (5.15). �
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Proposition 5.2. The sequence {Zn}n≥0 fulfils (5.6), where the sequences {Cn}n≥0 and
{Dn}n≥0 are given by

C2n(x)= (4n+ 1)x4− 2τ(2n+ 1)x3 + 4n
(

1
2

(
υ2 + 1

)− 2
(
γ1 + τ2))x2

+ τ
(
8
(
τ2 + γ1

)
n− (2n− 1)

(
1 + υ2))x− υ2, n≥ 0,

(5.20)

D2n(x)= 2x
(

(2n+ 1)x2− 2nτ2 + 2γ1− 1
2

(
υ2 + 1

))
, n≥ 0, (5.21)

C2n+1(x)= (4n+ 3)x4− 2τ(2n+ 1)x3 + 2(n+ 1)
(
4γ1−

(
υ2 + 1

))
x2

− 2τ
(

4γ1(n+ 1)− 1
2

(2n+ 1)
(
υ2 + 1

))
x+ υ2, n≥ 0,

(5.22)

D2n+1(x)= 4(n+ 1)x(x− τ)2, n≥ 0. (5.23)

Proof. We start with (5.11), where x→ x2. According to

Z′2n+3(x)= Rn+1
(
x2)+ 2x(x− τ)R′n+1

(
x2), n≥ 0, (5.24)

obtained by differentiating (4.10), relation (5.11) becomes

Φ(x)Z′2n+3(x)=
((
x2− 1

)(
x2− υ2)+ 2(n+ 1)x(x− τ)

(
x2− 1

2

(
υ2 + 1

)))
Z2n+3(x)

− 4
(

1− υ2

4

)2

(n+ 2)x(x− τ)2Rn
(
x2), n≥ 0.

(5.25)

But (4.9) and (4.13) provide

Φ(x)Z′2n+3(x)= E(n;x)Z2n+3(x)− 4γ1(n+ 2)x(x− τ)2Z2n+2(x), n≥ 0, (5.26)

where

E(n;x)= (x2− 1
)(
x2− υ2)+ 2x(x− τ)

(
(n+ 1)

(
x2− 1

2

(
υ2 + 1

))
+ 2(n+ 2)γ1

)
.

(5.27)

Comparing (5.26) with (5.6), where n→ 2n+ 2, leads to

(
E(n;x)− 1

2

(
C2n+3(x)−C0(x)

))
Z2n+3(x)

= γ1
(
4(n+ 2)x(x− τ)2−D2n+3(x)

)
Z2n+2(x), n≥ 0.

(5.28)
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This yields

1
2

(
C2n+1(x)−C0(x)

)= E(n− 1;x), n≥ 1,

D2n+1(x)= 4(n+ 1)x(x− τ)2, n≥ 1,
(5.29)

by virtue of a well-known result on orthogonal sequences. Routine calculation from (5.5)
shows that (5.29) is valid for n≥ 0, whence (5.22) and (5.23).

Next, from (5.12), where x→ x2, and with (4.9), we obtain

(x+ τ)Φ(x)Z′2n+2(x)= 2xA
(
n;x2)Z2n+2(x)− 2xB

(
n;x2)Z2n(x). (5.30)

But

Z2n(x)= 1
γ1

(x+ τ)Z2n+1(x)− 1
γ1
Z2n+2(x) (5.31)

implies

(x+ τ)Φ(x)Z′2n+2(x)= 2x
(
A
(
n;x2)+ γ−1

1 B
(
n;x2))Z2n+2(x)

− 2γ−1
1 x(x+ τ)B

(
n;x2)Z2n+1(x).

(5.32)

Taking (5.14) and (5.15) into account, we have

A
(
n;x2)+ γ−1

1 B
(
n;x2)= (n+ 1)

(
x2− τ2)(x2 + 2γ2− 1

2

(
υ2 + 1

))
. (5.33)

This leads to

Φ(x)Z′2n+2(x)= 2(n+ 1)x(x− τ)
(
x2 + 2γ2− 1

2

(
υ2 + 1

))
Z2n+2(x)

− 2γ2x
(

(n+ 1)
(
x2 + 2γ2− 1

2

(
υ2 + 1

))

+ (n+ 2)
(
x2 + 2γ1− 1

2

(
υ2 + 1

)))
Z2n+1(x), n≥ 0.

(5.34)

As above, we obtain

C2n(x)= C0(x) + 4nx(x− τ)
(
x2 + 2γ2− 1

2

(
υ2 + 1

))
,

D2n(x)= 2x
(
n
(
x2 + 2γ2− 1

2

(
υ2 + 1

))
+ (n+ 1)

(
x2 + 2γ1− 1

2

(
υ2 + 1

)))
, n≥ 2.

(5.35)

In fact, these relations are valid for n≥ 0, whence (5.20) and (5.21).
Now, we are able to calculate the coefficients of (5.1) defined by (5.2). �
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Proposition 5.3. The sequence {Zn}n≥0 fulfils (5.1), where the elements characteristics
J(x;n), K(x;n), and L(x;n) are given as follows:

J(x;2n)= 4(n+ 1)x(x− τ)3(x2− 1
)(
x2− υ2), (5.36)

J(x;2n+ 1)= 2x(x− τ)
(
x2− 1

)(
x2− υ2){(2n+ 3)x2− 2(n+ 1)τ2 + 2γ1− 1

2

(
υ2 + 1

)}
,

(5.37)

K(x;2n)= 4(n+ 1)(x− τ)2{3x5− 5τx4 + 2τ
(
1 + υ2)x2− 3υ2x+ τυ2}, n≥ 0,

(5.38)

K(x;2n+ 1)= (x− τ)
{

3(4n+ 6)x6− (20(n+ 1)τ2− 5
(
4γ1−

(
υ2 + 1

)))
x4

+
((

1 + υ2)(8(n+ 1)τ2− 2
(
4γ1−

(
υ2 + 1

)))− 3(4n+ 6)υ2)x2

+ (4n+ 1)τ2υ2− υ2(4γ1−
(
υ2 + 1

))}
, n≥ 0,

(5.39)

L(x;2n)=−4(n+ 1)(x− τ)
{

(2n+ 1)(2n+ 3)x5− (8n2 + 16n+ 5
)
τx4

+ 4n(n+ 2)τ2x3 + 2
(
1 + υ2)τx2

− 3υ2x+ τυ2}, n≥ 0,

(5.40)

L(x;2n+ 1)=−4(n+ 1)(n+ 2)x2{2(2n+ 3)x4− 2(2n+ 3)τx3

+
(
3
(
4γ1−

(
υ2 + 1

))− 4nτ2)x2− ((4γ1−
(
υ2 + 1

))
+ 4(n+ 2)τ2)τx}, n≥ 0.

(5.41)

Proof. From (5.2), (5.7), (5.21), and (5.23), it is easy to obtain (5.36) and (5.37). Next,
we have

K(x,2n)= (C0(x) +Φ′(x)
)
D2n+1(x)−Φ(x)D′2n+1(x),

K(x,2n+ 1)= (C0(x) +Φ′(x)
)
D2n+2(x)−Φ(x)D′2n+2(x).

(5.42)

On account of (5.7), (5.21), and (5.23), we have (5.38) and (5.39).
Finally, from (5.2), we have

L(x;2n)=W
(

1
2

(
C2n+1−C0

)
,D2n+1

)
(x)−D2n+1(x)

2n∑
ν=0

Dν(x), n≥ 0. (5.43)
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Successively, we get

1
2

(
C2n+1−C0

)
(x)= E(n− 1;x)

= (x2− 1
)(
x2− υ2)

+ 2x(x− τ)
{
n
(
x2− 1

2

(
υ2 + 1

))
+ 2(n+ 1)γ1

}
,

1
2

(
C2n+1−C0

)
(x)D′2n+1(x)

= 4(n+ 1)(x− τ)(3x− τ)
{

(2n+ 1)x4− 2nτx3 + (n+ 1)
(
4γ1−

(
υ2 + 1

))
x2

− τ(4(n+ 1)γ1−n
(
1 + υ2))x+ υ2}

= 4(n+ 1)(x− τ)
{

3(2n+ 1)x5− (8n+ 1)τx4 +
(
3(n+ 1)

(
4γ1−

(
υ2 + 1

))
+ 2nτ2)x3

− τ(16(n+ 1)γ1− (4n+ 1)
(
1 + υ2))x2

+
(
τ2(4(n+1)γ1−n

(
1+υ2))+3υ2)x−τυ2}.

(5.44)

Next

1
2

(
C2n+1−C0

)′
(x)D2n+1(x)

= 8(n+ 1)x(x− τ)2
{

2(2n+ 1)x3− 3nτx2 + (n+ 1)
(
4γ1−

(
υ2 + 1

))
x

− τ
(

2(n+ 1)γ1− 1
2

(
1 + υ2)n)}

= 4(n+ 1)(x− τ)
{

4(2n+ 1)x5− 2(7n+ 2)τx4 + 2
(
(n+ 1)

(
4γ1−

(
υ2 + 1

))
+ 3nτ2)x3

− 2τ
(

6(n+ 1)γ1− 1
2

(2n+ 1)
(
1 + υ2))x2

+ 2τ2
(

2(n+ 1)γ1− 1
2
n
(
1 + υ2))x}.

(5.45)

Further, since

2n∑
ν=0

Dν(x)=
n∑

ν=0

D2ν(x) +
n−1∑
ν=0

D2ν+1(x),

n∑
ν=0

D2ν(x)= 2(n+ 1)x
(

(n+ 1)x2 +
(

2γ1− 1
2

(
υ2 + 1

)−nτ2
))

,

n−1∑
ν=0

D2ν+1(x)= 2n(n+ 1)x(x− τ)2,

(5.46)
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we obtain

D2n+1(x)
2n∑

ν=0

Dν(x)

= 4(n+ 1)2(x− τ)
{

2(2n+ 1)x5− 2(4n+ 1)τx4

+
(
4γ1−

(
υ2 + 1

)
+ 4nτ2)x3− (4γ1−

(
υ2 + 1

))
τx2}.

(5.47)

This leads to (5.40). Similar calculations can be used to prove (5.41). �

6. The integral representations of the second-order self-associated forms

Throughout this section, we will suppose υ∈R−{−1,1}. It will be sufficient to consider
0≤ υ < 1 or υ > 1.

From (3.19), the formal Stieltjes function S(z0) is given by

S
(
z0
)
(z)= 1

2
γ−1

2 (z− τ)−1{(z2− 1
)1/2(

z2− υ2)1/2− 2γ2−W(z)
}

(6.1)

with W(z)= z2− (1/2)(υ2 + 1), z0 = z0(τ,υ,ε), and γ2 = γ2(τ,υ,ε). Putting

w(τ)=w(τ,υ,ε)= (x− τ)z0(τ,υ,ε), (6.2)

we have S(w(τ))(z)= (z− τ)S(z0)(z) + 1. Therefore, taking (6.1) into account, we get

S
(
w(τ,υ,ε)

)
(z)= 1

2
γ−1

2 Q(z), (6.3)

where

Q(z)= (z2− 1
)1/2(

z2− υ2)1/2−W(z). (6.4)

Since γ2(τ,υ,−ε)= γ1(τ,υ,ε), we have

S
(
w(τ,υ,−ε))(z)= 1

2
γ−1

1 Q(z). (6.5)

Consequently, it is sufficient to study the case ε = 1.
Choosing the branch which is positive when z2− 1 > 0 and z2− υ2 > 0, we see that Q

is regular in the upper half-plane. Moreover, it is easy to prove

sup
y>0

∫ +∞

−∞

∣∣Q(x+ iy)
∣∣2
dx < +∞. (6.6)

Consequently, the function Q possesses the following representation [2]:

Q(z)= 1
π

∫ +∞

−∞
�Q(t+ i0)
t− z dt, �z > 0. (6.7)



P. Maroni and M. I. Tounsi 163

We obtain from (6.4) that

(i) for 0≤ υ < 1,

�Q(x+ i0)=




0, |x| > 1,

sgnx
√(

1− x2
)(
x2− υ2

)
, υ < |x| < 1,

0, |x| < υ;

(6.8)

(ii) for υ > 1,

�Q(x+ i0)=




0, |x| > υ,

sgnx
√(
x2− 1

)(
υ2− x2

)
, 1 < |x| < υ,

0, |x| < 1.

(6.9)

In accordance with (6.3), this leads to

〈
w(τ), f

〉= 1
2πγ2

∫ +υ

−υ
�Q(x+ i0) f (x)dx, f ∈�, (6.10)

where

υ :=max(1,υ). (6.11)

But from (6.2), we have

z0 = δτ + (x− τ)−1z(τ). (6.12)

This yields

〈
z0, f

〉= f (τ) +
1

2πγ2

∫ +υ

−υ
�Q(x+ i0)

f (x)− f (τ)
x− τ dx. (6.13)

When τ ∈C−]− υ,+υ[, we get

〈
z0, f

〉= {1− 1
2πγ2

∫ +υ

−υ
�Q(x+ i0)
x− τ dx

}
f (τ) +

1
2πγ2

∫ +υ

−υ
�Q(x+ i0)
x− τ f (x)dx. (6.14)

On account of (6.4) and (6.7), we obtain

(
τ2− 1

)1/2(
τ2− υ2)1/2− τ2 +

1
2

(
υ2 + 1

)= 1
π

∫ +υ

−υ
�Q(t+ i0)
t− τ dt. (6.15)

But 2γ1 = (τ2− 1)1/2(τ2− υ2)1/2− τ2 + 1/2(υ2 + 1); accordingly, (6.14) becomes

〈
z0, f

〉= (1− γ1γ
−1
2 ) f (τ) +

1
2πγ2

∫
υ<|x|<υ

sgnx
√(
υ2− x2

)(
x2− υ2

)
x− τ f (x)dx, (6.16)

where υ :=min(1,υ).
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When τ ∈]− υ,υ[, we distinguish two cases.
(a) υ≤ |τ| < υ. From (6.13), we have

〈
z0, f

〉= f (τ) +
1

2πγ2

∫
υ<|x|<υ

�Q(x+ i0)
f (x)− f (τ)

x− τ dx (6.17)

with

γ2(τ)= 1
2

(
1 + υ2)− τ2− 1

2
Q(τ + i0). (6.18)

It is easy to see that


Q(x+ i0)=




√(
x2− υ2

)(
x2− υ2)−W(x), |x| > υ,

−W(x), υ ≤ |x| < υ,

−
√(
υ2− x2

)(
υ2− x2

)−W(x), |x| < υ.
(6.19)

Consequently,

γ2(τ)=−1
2

(
W(τ) + isgnτ

√(
υ2− τ2

)(
υ2− τ2

))
. (6.20)

Next, from (6.17), we can have

〈
z0, f

〉= {1− 1
2πγ2(τ)

P
∫
υ<|x|<υ

�Q(x+ i0)
x− τ dx

}
f (τ)

+
1

2πγ2(τ)
P
∫
υ<|x|<υ

�Q(x+ i0)
x− τ f (x)dx,

(6.21)

where P means principal value of the integral.
But from (6.7), the following limit relationship holds:


Q(x+ i0)= 1
π
P
∫
υ<|t|<υ

�Q(t+ i0)
t− x dt, x ∈R. (6.22)

With (6.19), this gives

1
π
P
∫
υ<|t|<υ

�Q(t+ i0)
t− x dt =−W(x), υ < |x| < υ. (6.23)

Consequently, (6.21) becomes

〈
z0, f

〉=−1
2
iγ−1

2 (τ)sgnτ
√(
υ2− τ2

)(
υ2− τ2

)
f (τ)

+
1

2πγ2(τ)
P
∫
υ<|x|<υ

�Q(x+ i0)
x− τ f (x)dx.

(6.24)

(b) |τ| < υ. From (6.13), we still have (6.17), where here

γ2(τ)= 1
2

(√(
υ2− τ2

)(
υ2− τ2

)−W(τ)
)
. (6.25)
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Taking (6.19) and (6.22) into account, we infer that

1
π
P
∫
υ<|t|<υ

�Q(t+ i0)
t− τ dt =−

(√(
υ2− τ2

)(
υ2− τ2

)
+W(τ)

)
. (6.26)

Thus, we obtain

〈
z0, f

〉= γ−1
2 (τ)

√(
υ2− τ2

)(
υ2− τ2

)
f (τ)

+
1

2πγ2(τ)

∫
υ<|x|<υ

�Q(x+ i0)
x− τ f (x)dx.

(6.27)

These results are summarized in the following proposition.

Proposition 6.1. Suppose either 0≤ υ < 1 or υ > 1. Let υ :=min(1,υ) and υ :=max(1,υ).
Then the form z0 possesses the following integral representation:

(1) for τ ∈C−]− υ,+υ[,

〈
z0, f

〉=−γ−1
2

(
τ2− 1

)1/2(
τ2− υ2)1/2

f (τ)

+
1

2πγ2

∫
υ<|x|<υ

sgnx
√(
υ2− x2

)(
x2− υ2

)
x− τ f (x)dx;

(6.28)

(2) for υ < |τ| < υ,

〈
z0, f

〉=−1
2
iγ−1

2 (τ)sgnτ
√(
υ2− τ2

)(
υ2− τ2

)
f (τ)

+
1

2πγ2(τ)
P
∫
υ<|x|<υ

sgnx
√(
υ2− x2

)(
x2− υ2

)
x− τ f (x)dx;

(6.29)

(3) for |τ| ≤ υ,

〈
z0, f

〉= γ−1
2 (τ)

√(
υ2− τ2

)(
υ2− τ2

)
f (τ)

+
1

2πγ2(τ)

∫
υ<|x|<υ

sgnx
√(
υ2− x2

)(
x2− υ2

)
x− τ f (x)dx.

(6.30)

Remark 6.2. In the last case |τ| ≤ υ, the form z0 is positive definite since γ1(τ) > 0 and
γ2(τ) > 0.

Regarding the moments, from (6.1), we easily obtain

(
z0(τ,υ,+1)

)
2n =

n∑
µ=0

τ2(n−µ)dµ, n≥ 0,

(
z0(τ,υ,+1)

)
2n+1 = τ

(
z0(τ,υ,+1)

)
2n, n≥ 0,

(6.31)
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where

d0 = 1, dn =−1
2
γ−1

2 cn+1, n≥ 1,

cn = 1
4π

∑
m+k=n

Γ(m− 1/2)
m!

Γ(k− 1/2)
k!

υ2k, n≥ 0.
(6.32)
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