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Analyzing posteriors by the information

inequality

Willem Kruijer and Aad van der Vaart

Wageningen UR and Universiteit Leiden

Abstract: We give bounds on the concentration of (pseudo) posterior distri-
butions, both for correct and misspecified models. The bounds are derived us-
ing the information inequality, entropy estimates, and empirical process meth-
ods.

1. Introduction

The posterior distribution corresponding to a prior probability distribution Π on
a set P of probability densities on a given measurable space (X ,A) is the random
probability measure defined through

(1) dΠ(p|X) ∝ p(X) dΠ(p).

Here the element X of X is considered distributed according to some fixed true
density q on (X ,A), which may or may not belong to P . To make the expression
well defined we assume that Π is a probability distribution on a σ-field on P for
which the map (x, p) �→ p(x) is jointly measurable, that the dominating measure μ
for P on (X ,A) is σ-finite, and that the “norming constant”

∫
p(X) dΠ(p) is finite

and positive with probability one under q.
Several authors have studied whether the posterior distribution can recover the

true density q, often in an asymptotic setting where X is a vector of n i.i.d. ob-
servations and n → ∞. The study of posterior consistency, the contraction of a
sequence of posterior distributions to a Dirac measure at q, was initiated by [9],
while study of the rate of contraction, in the nonparametric situation, was taken
up more recently by [2]. These papers phrase their results in terms of a testing
criterion, which can be traced back to [8]. Subsequently refinements and different
approaches were found. In the present note we give a simplified presentation of
the interesting approach by [13], which is based on the information inequality, and
relate it to the testing approach. We also cover misspecified models and the range
of pseudo posteriors that bridge the gap between Bayes and maximum likelihood.

We are mainly interested in the true posterior distribution (1), but consider,
more generally, the random probability measures defined by, for ρ > 0,

(2) dΠρ(p|X) ∝ pρ(X) dΠ(p).

For ρ ∈ (0, 1] these distributions are defined as soon as the posterior distribution,
which is the special case ρ = 1, is defined. For ρ > 1 finiteness of the norming
integral

∫
pρ(X) dΠ(p) is not automatic, but must be assumed.
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It turns out that results are easiest to obtain for the random measures with
ρ < 1. This makes this choice attractive for the purpose of recovery of a true
parameter. The disadvantage is that these “pseudo-posteriors” lack a clear inter-
pretation, which may also make them computationally inaccessible. Admittedly
not much is known at this time about the frequentist meaning of the spread in the
(pseudo) posterior distribution (and the corresponding posterior credibility sets),
so that even the interpretation of the true posterior distribution may not extend
beyond the Bayesian realm.

For increasing ρ the “pseudo likelihood” p �→ pρ(X) increasingly accentuates
the high points of the likelihood and decreases its lows. The pseudo posterior in
the limit case ρ = ∞ could be interpreted as a Dirac measure at the maximum
likelihood estimator(s). The potential instability of the nonparametric maximum
likelihood estimator and stability of a Bayesian estimator is well documented. It
seems interesting that further deaccentuating the heights in the likelihood (ρ < 1)
increases the stability.

We note that “stability” means here that the method works in more situations.
It is not a measure of quality in a given situation, when multiple methods work.

2. Information theory

For nonnegative, integrable functions p and q on a measure space (X ,A, μ), and
α > 0, we define

ρα(p, q) =

∫
pαq1−α dμ (Hellinger transform),

Rα(p, q) = − log

∫
pαq1−α dμ (Renyi divergence),

KL(p, q) =

∫ (
log(q/p)

)
q dμ (Kullback-Leibler divergence),

h(p, q) =

√∫
(
√
p−√

q)2 dμ (Hellinger distance).

For α > 1 the Hellinger transform and negative Renyi divergence may be infinite,
depending on p and q. The Kullback-Leibler divergence may be infinite, but is
always well defined; by convention K(p, q) = ∞ if Q(p = 0) > 0. We note that the
Hellinger distance is sometimes defined as our h(p, q)/2; furthermore, the order of
the arguments in K(p, q) may differ.

In the following lemma we recall some elementary properties. Let P denote the
measure with density p, and let ‖P‖ = P (X ) =

∫
p dμ denote its L1-norm.

Lemma 2.1. For nonnegative integrable functions p and q the map α �→ ρα(p, q) is
convex on [0, 1] with limits Q(p > 0) and P (q > 0), and derivatives −KL(p, q1p>0)
and −KL(q, p1q>0) at α = 0 at α = 1. Furthermore, the maps p �→ ρα(p, q) and
p �→ KL(p, q) from L1(μ) to R are upper and lower semicontinuous, respectively,
and for α ∈ (0, 1),

(i) ρα(p, q) ≤ ‖P‖α ‖Q‖1−α ≤ α‖P‖+ (1− α)‖Q‖.
(ii) h2(p, q) = ‖P‖+ ‖Q‖ − 2ρ1/2(p, q).
(iii) (α ∧ (1− α))h2(p, q) ≤ α‖P‖+ (1− α)‖Q‖ − ρα(p, q) ≤ h2(p, q).
(iv) ‖Q‖ − ρα(p, q) ≤ αKL(p, q), if Q � P .
(v) h2(p, q) + ‖Q‖ − ‖P‖ ≤ KL(p, q).
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Finally, for probability densities p and q, and α ∈ (0, 1),

(vi) Rα(p, q) ≥ 0.
(vii) 1− ρα(p, q) ≤ Rα(p, q) ≤ ρ−1

α (p, q)− 1.
(viii) (α ∧ (1− α))h2(p, q) ≤ Rα(p, q) ≤ h2(p, q)/(1− h2(p, q)), if h(p, q) < 1.
(ix) α−1(1 − α)−1Rα(p, q) tends to KL(p, q) and KL(q, p) as α ↓ 0 or α ↑ 1,

respectively, if P and Q are mutually absolutely continuous.

Proof. The first assertion follows from convexity of the map α �→ eαy, for any
y ∈ R; for a precise proof see e.g. [5]. Statement (i) follows from Hölder’s and
Young’s inequalities. The lower inequality of statement (iii) for α < 1/2 follows from
rearranging the inequality ρα ≤ (1− 2α)ρ0 +2αρ1/2, which is a consequence of the
convexity of α �→ ρα, combined with the bound (i) on ρ0 and the rewrite (ii) of ρ1/2;
the inequality for α ≥ 1/2 follows similarly from ρα ≤ (2−2α)ρ1/2+(2α−1)ρ1. The
upper inequality follows similarly from considering 1/2 as the convex combination
of α and 1−α. Assertion (iv) is equivalent to ρ0(p, q)−αKL(p, q1p>0)α ≤ ρα(p, q),
which is true again by convexity and the fact that KL(p, q1p>0) is the derivative of
α �→ ρα(p, q) at α = 0. Statement (v) follows from combining (iv) (with α = 1/2)
and (ii) if Q � P ; in the other case it is trivial, because KL(p, q) = ∞. Assertion
(vii) follows from 1− x ≤ − log x ≤ 1/x− 1, for x > 0. Inequalities (viii) are found
by combining (vii) with (iii).

Part (viii) of the lemma shows that for probability densities any Renyi divergence
is (almost) interchangeable with the squared Hellinger distance. An advantage of the
former is its exact additivity for product measures. Unfortunately, the equivalence
does not extend to general nonnegative functions. Part (iii) of the lemma suggests
to redefine the Renyi divergence as Rα(p, q) + log(α‖P‖+ (1− α)‖Q‖) if p or q do
not integrate to one, in which case it becomes again comparable to h2(p, q).

For probability densities the Kullback-Leibler divergence dominates the squared
Hellinger distance, and hence essentially also the Renyi divergence, but by its asym-
metry it does not compare easily on arguments with different total masses.

For a collection P of densities we define

ρα(P , q) = sup
p∈conv (P)

ρα(p, q),

Rα(P , q) = inf
p∈conv (P)

Rα(p, q),

KL(P , q) = sup
p∈conv (P)

KL(p, q).

Here conv (P) denotes the convex hull of P , defined as the set of all averages∫
p dΠ(p) relative to priors Π on P . One motivation for taking the supremum or

infimum over the convex hull is that the functionals become sub-multiplicative and
super-additive relative to product measures. See Lemma 4.1. Because the Kullback-
Leibler divergence is convex in its arguments, taking the supremum over the convex
hull rather than over just P does not make the expression bigger in this case.

The Hellinger transform, as a function of α, is well known from the theory of
statistical experiments (see [7]). The function α �→ ρα(p, q) fully characterizes the
binary statistical experiment (P,Q). In [5] it is used in the Bayesian setting to
bound testing errors, through the following lemma.

Lemma 2.2. For any set P of densities, and numbers c, d > 0, with φ ranging
over all tests, and any α ∈ (0, 1),

inf
φ

sup
P∈P

(cPφ+ dQ(1− φ)) ≤ cαd1−αρα(P , q).
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In the intended applications the error probabilities Pφ and Q(1−φ) are typically

exponentially small, of the form e−cε2 for ε → ∞ and a positive constant c whose
numerical value is not essential. Then there may also not be much loss in using
affinities rather than tests, in particular in the symmetric case c = d, in view of the
following lemma.

Lemma 2.3. For any set P of probability densities, and numbers c, d > 0,

ρ21/2(P , q) ≤ c+ d

cd
inf
φ

sup
P∈P

(cPφ+ dQ(1− φ)).

Proof. By the minimax theorem for testing the infimum over φ on the right side
can be expressed as the supremum of (c+d−‖cp−dq‖1)/2 over p ranging through
the convex hull of P . Furthermore, using the Cauchy-Schwarz inequality we can
bound the square L1-distance ‖cp− dq‖21 by (c+ d)2 − 4cdρ1/2(p, q). Some algebra
concludes the proof.

The main tool in the following is the nonnegativeness of the Kullback-Leibler
divergence (for probability densities), which is a well-known and immediate con-
sequence of Jensen’s inequality, and also of Lemma 2.1(v). For easy reference we
state this fact in a slightly adapted form.

Lemma 2.4. For a given, arbitrary nonnegative function v and a probability mea-
sure Π on a measurable space P, we have for every probability density w relative
to Π,

(3)

∫
(logw)w dΠ−

∫
(log v)w dΠ ≥ − log

∫
v dΠ.

Equality is attained for w ∝ v.

Proof. Were v a probability density, then the right side would be zero and the state-
ment follows from the nonnegativity of the Kullback-Leibler information. A general
function v can be normalized to a probability density by dividing by

∫
v dΠ. Because∫

w dΠ = 1, this changes the left side by adding log
∫
v dΠ, which is independent

of w and thus does not change the minimizing w.

3. General result

The following theorem, due to [13], gives a bound on the concentration of the pseudo
posterior Πρ, defined in (2).

Theorem 3.1. For any numbers α ≥ 0, β ∈ (0, 1), γ ≥ 0 and X distributed
according to q, for ρ = (γα+ β)/(γ + 1),

E

∫
Rβ(p, q) dΠρ(p|X) ≤− (γ + 1) log

∫
e−ρKL(p,q) dΠ(p)

+ γE log

∫ (
p

q

)α

(X) dΠ(p).

Proof. Applying (3) for a fixed observation X with v(p) ∝ (p/q)α(X), we find, for
any probability density w relative to Π,∫

(logw)w dΠ− α

∫ (
log

p

q
(X)

)
w(p) dΠ(p) ≥ − log

∫ (
p

q

)α

(X) dΠ(p).
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Applying (3) again, this time with v(p) ∝ (p/q)β(X)/ρβ(p, q), we find∫
(logw)w dΠ− β

∫ (
log

p

q
(X)

)
w(p) dΠ(p) +

∫
log ρβ(p, q)w(p) dΠ(p)

≥ − log cβ(X),

where cβ(X) =
∫
(p/q)β(X)/ρβ(p, q) dΠ(p) is the norming constant. We add the

second inequality to γ times the first inequality. The resulting inequality can be
reorganized into∫

Rβ(p, q)w(p) dΠ(p)

≤ (γ + 1)

∫
(logw)w dΠ− (γα+ β)

∫ (
log

p

q
(X)

)
w(p) dΠ(p)(4)

+ γ log

∫ (
p

q

)α

(X) dΠ(p) + log cβ(X),

If X is distributed according to the density q, then, by Jensen’s inequality,

E log cβ(X) ≤ log Ecβ(X) = log

∫
E(p/q)β(X)

ρβ(p, q)
dΠ(p) ≤ log 1 = 0.

This shows that the last term on the right of (4) can be deleted after taking the
expectation. The expectation R: = Eγ log

∫
(p/q)α(X) dΠ(p) of the second last term

is copied to the bound given by the theorem. By Lemma 2.4 the remaining part of
the right side (the difference of the first two terms) is minimized with respect to
probability densities w, for fixed X, by w(p) ∝ pρ(X). For this minimizing function
w(p) dΠ(p) in the left side becomes dΠρ(p|X). It follows that

1

γ + 1

[
E

∫
Rβ(p, q) dΠρ(p|X)−R

]

≤ E inf
w

[∫
(logw)w dΠ− ρ

∫ (
log

p

q
(X)

)
w(p) dΠ(p)

]

≤ inf
w

[∫
(logw)w dΠ+ ρ

∫
E

(
log

q

p
(X)

)
w(p) dΠ(p)

]

= inf
w

[∫
(logw)w dΠ−

∫ (
log e−ρKL(p,q)

)
w(p) dΠ(p)

]

= − log

∫
e−ρKL(p,q) dΠ(p).

Here the last step follows again by Lemma 2.4.

The Renyi divergence Rβ(p, q) is nonnegative and vanishes for p = q. Hence
the left side of the theorem can be viewed as a measure for the concentration of
the pseudo posterior distribution near q. The easiest interpretation is obtained by
bounding the Renyi divergence below by the Hellinger distance, e.g. for β = 1/2
twice the left side of Theorem 3.1 is an upper bound on E

∫
h2(p, q) dΠρ(p|X), as

2R1/2 ≥ h2.
The first term on the right of the theorem is a measure of concentration of the

prior Π near q. As e−ρKL(p,q) ≤ 1 for all p and Π is a probability measure, this term
is always nonnegative; it is near zero if KL(p, q) ≈ 0 with high prior probability. An
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explicit bound, following from Markov’s inequality Ee−ρZ ≥ e−ρzP(Z < z), valid
for any variable Z and any z, is

− log

∫
e−ρKL(p,q) dΠ(p) ≤ ε2ρ− log Π(p:KL(p, q) < ε2).

The right side is bounded by ε2(ρ+ c) if

(5) Π
(
p:KL(p, q) < ε2

)
≥ e−cε2 .

This is a version of the prior mass condition in [2] or [3] stripped from any reference
to a sampling model. The condition requires that the prior sufficiently charges
Kullback-Leibler neighbourhoods of q, and in some form is necessary for sufficient
posterior concentration near q.

The downside of the theorem is the second term on its right side. By Jensen’s
inequality,

E log

∫ (
p

q

)α

(X) dΠ(p) ≤ log

∫
ρα(p, q) dΠ(p).(6)

For α ≤ 1, the Hellinger transform ρα(p, q) is bounded by 1, and hence the right
side is bounded above by log 1 = 0. For α > 1, the inequality is still valid, but the
right side may not even be finite.

Therefore, for α ≤ 1 the second term of the upper bound can be omitted and
the theorem is very satisfying; for α > 1 additional arguments are necessary. Closer
inspection shows that the case α ≤ 1 covers the pseudo posteriors with ρ < 1, but
unfortunately excludes the true posterior (ρ = 1) and pseudo posteriors with ρ > 1.
The parameters are related by

ρ =
γα+ β

γ + 1
.

For fixed α ≥ β the parameter ρ increases from β to α as γ increases from 0 to ∞;
for α < β it decreases from β to α. Any choice β < 1 requires to choose α > 1 to
reach ρ = 1 for some finite γ.

On the other hand, any ρ < 1 is possible. Combined with the preceding obser-
vations this yields the following corollary.

Corollary 3.1. If (5) holds for given c, ε > 0, then for any ρ < 1,

E

∫
h2(p, q) dΠρ(p|X) ≤ ε2(ρ+ c)

((1− ρ) ∧ ρ)
.

Proof. We use Theorem 3.1 with β = 1/2, so that its left side is an upper bound
on twice the left side of the lemma, with the first term on its right side bounded
using the prior mass condition (5) as indicated, and with a value of α smaller than
1, so that the second term on its right side is bounded above by 0.

For 0 < ρ < 1/2 we choose α = 0 and γ + 1 = 1/(2ρ); for ρ = 1/2 we choose
γ = 0; and for 1/2 < ρ < 1 we choose α = 1 and γ = (ρ − 1/2)/(1 − ρ), giving
γ + 1 = 1/(2(1− ρ)).

For α > 1 the second term in the bound must be analyzed separately. This diffi-
culty reflects the finding that posterior contraction cannot be ensured by sufficient
prior mass in a neighbourhood of the true density alone, but the full model, or
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the spread of the posterior over the model, must be taken into account. Various
approaches have made this precise. Conditions that imply the existence of good
tests of q versus elements of P are one possibility. As shown by [8] and [1] bounds
on the metric entropy of (subsets of) P ensure existence of suitable tests. Tests are
related to affinities, as shown in Lemma 2.2. The next theorem shows that affinities
may also be used to analyze the additional term.

Following [5] for β ∈ (0, 1) and an arbitrary metric d on P define the cover-
ing number for testing Nt,β(ε,P , d) (for ε > 0) as the minimal number of sets
B1, . . . , BN needed to cover {p ∈ P : ε ≤ d(p, q) < 2ε} and such that

Rβ(Bi, q) ≥
ε2

4
, i = 1, . . . , N.

Theorem 3.2. Let P = ∪k∈KPk be a countable partition of P such that Nt,β(ε,Pk,
d) ≤ Nk(ε) for every ε ≥ ε0 > 0, for nonincreasing functions Nk: (0,∞) → R. If
(5) holds, then for any 0 < δ < β < 1, any ε > ε0, and for X distributed according
to q,

1

16
E

∫
p:KL(p,q)≥ε2

d2(p, q) dΠ(p|X)

≤ ε2
[
1 +

(1 + c)β(1− δ)

β − δ

]
+

1− β

β − δ
log

[
2 + 4ε−2

0

∑
k∈K

Nk(ε)Π(Pk)
δ

]
.

Proof. Let P0,1,∗ = {p ∈ P :KL(p, q) < ε2}, P0,2,∗ = {p ∈ P : d(p, q) < ε}, and
for i = 1, 2, . . . and k ∈ K let Pi,1,k, . . . ,Pi,Ni,k,k be a minimal cover of the set
{p ∈ Pk: iε ≤ d(p, q) < (i + 1)ε} by sets such that Rβ(Pi,j,k, q) ≥ i2ε2/4, for
every (j, k). By the definition of the covering numbers for testing we can choose
Ni,k ≤ Nt,β(iε,Pk, d) ≤ Nk(iε) ≤ Nk(ε) for i ≥ 1. Make the sets Pi,j,k disjoint by
sequentially omitting previous sets, thus giving a partition {Pi,j,k} of P , indexed
by M : = {(i, j, k): i = 1, 2, . . . ; j = 1, . . . , Ni,k; k ∈ K} ∪ {(0, 1, ∗), (0, 2, ∗)}.

If p ∈ Pi,j,k for i ≥ 1, then d2(p, q) ≤ (i+ 1)2ε2 ≤ 16Rβ(Pi,j,k, q). Consequently

(7)
1

16

∫
p/∈P0,1,∗∪P0,2,∗

d2(p, q) dΠ(p|X) ≤
∑

(i,j,k)

Rβ(Pi,j,k, q)Π(Pi,j,k|X).

In the right side we can replace Pi,j,k inRβ(Pi,j,k, q), in view of the latter’s definition
as an infimum, by any pi,j,k in the convex hull of Pi,j,k.

View the numbers (Π(Pi,j,k): (i, j, k) ∈ M) as a prior on the model (pi,j,k: (i, j,
k) ∈ M) consisting of the densities pi,j,k defined by

pi,j,k =

∫
Pi,j,k

p
dΠ(p)

Π(Pi,j,k)
.

The corresponding posterior gives the posterior probabilities of the densities pi,j,k
and can be identified with the collection of numbers

pi,j,k(X)Π(Pi,j,k)∑
(i,j,k) pi,j,k(X)Π(Pi,j,k)

=

∫
Pi,j,k

p(X) dΠ(p)∫
p(X) dΠ(p)

= Π(Pi,j,k|X).

In other words, the posterior in this “discretized setting” is the collection (Π(Pi,j,k|
X): (i, j, k) ∈ K) of posterior probabilities of the partitioning sets in the original
setting.
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By Theorem 3.1 applied with ρ = 1, the given β, and α and γ satisfying γα+β =
γ + 1, the expected value of the right side of (7) is bounded above by

−(γ + 1) log
∑

(i,j,k)

e−KL(pi,j,k,q)Π(Pi,j,k) + γE log
∑

(i,j,k)

(
pi,j,k
q

)α

(X)Π(Pi,j,k).

The first term becomes bigger if we leave off all terms of the sum except the (0, 1, ∗)-
term, which is

−(γ + 1) log
[
e−KL(p0,1,∗,q)Π(P0,1,∗)

]
≤ (γ + 1)(1 + c)ε2,

in view of (5). By the subadditivity of the map x �→ xδ, for δ ≤ 1, the second term
is bounded by

γ

δ
E log

∑
(i,j,k)

(
pi,j,k
q

)αδ

(X)Π(Pi,j,k)
δ ≤ γ

δ
log

∑
(i,j,k)

ραδ(pi,j,k, q)Π(Pi,j,k)
δ,

by Jensen’s inequality and concavity of the logarithm. We choose αδ = β < 1
and then have that ραδ(pi,j,k, q) is bounded by 1 for any (i, j, k) and equal to

ρβ(pi,j,k, q) = e−Rβ(pi,j,k,q) ≤ e−i2ε2/4, for the remaining terms (i, j, k). Since
Pi,j,k ⊂ Pk, and there are at most Nk(ε) indices j for given (i, k), the series is

bounded by 2+
∑

i≥1

∑
k Nk(ε)e

−i2ε2/4Π(Pk)
δ = 2+

∑
k Nk(ε)Π(Pk)

δ/(eε
2/4 − 1).

Here eε
2/4 − 1 ≥ ε2/4 ≥ ε20/4.

For the given choices of parameters we have γ/δ = (1− β)/(β − δ) and γ + 1 =
β(1− δ)/(β − δ). This yields the bound as in the theorem.

The partition P = ∪kPk in the theorem allows to trade off the complexity of
submodels Pk versus their prior masses, similarly as in [4]. For simplicity in the
following we restrict to a partition in one set (no partition).

The theorem makes no assumption on the sampling model for the observation
X, and uses a distance on the full data model. Notwithstanding the notation, it
will typically be applied with a large ε. The factor 2 inside the logarithm will then
be negligible and a rate ε2 is attained if

∑
k Nk(ε)Π(Pk)

δ � eε
2

.

From the convexity of Hellinger balls and Lemma 2.1(viii), it can be seen that
for d the Hellinger distance the covering numbers for testing are dominated by the
more usual local covering numbers or Le Cam dimension:

Nt,β(ε,P , h) ≤ N(εb, {p ∈ P : ε < h(p, q) ≤ 2ε}, h),

where b = 1− (β ∧ (1− β))−1/2/2 and N(ε,P , d) is the minimal number of balls of
radius ε needed to cover P (cf. [10], [5], page 642; for β = 1/2 we can use b = 1/4).
This observation allows to deduce a result that is analogous to the main result of
[2].

Corollary 3.2. Suppose that N(ε/4, {p ∈ P : ε ≤ d(p, q) < 2ε}, h) ≤ N(ε) for
every ε > ε0 and a nonincreasing function N : (0,∞) → R. If (5) holds, then, for
X distributed according to q and every ε > ε0,

1

16
E

∫
h2(p, q) dΠ(p|X) ≤ ε2(3 + c) + logN(ε) + log+(4/ε

2
0) + log 3.
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Proof. We apply the theorem with d = h, β = 1/2 and a partition in a single
set. We bound Π(P)δ by 1, and next let δ ↓ 0. Then the parameter in square
brackets tends to 2 + c, and the parameter in front of the logarithm tends to
(1 − β)/β = 1/2. Because h2 ≤ KL, the “missing part” of the integral, over the
set {p:KL(p, q) < ε2}, is bounded by ε2, raising 2 + c to 3 + c. Finally we simplify
using the inequalities log(2 + x) ≤ log 3 + log+ x and log+(xy) ≤ log+ x + log+ y,
for any x, y > 0.

An alternative method, evoked in [13], to estimate the remainder term in The-
orem 3.1 for α > 1 is to cover the support of the prior by (upper) brackets. For
any partition P = ∪N

j=1Pj , by subadditivity of the map x �→ x1/α, for α > 1, and
Jensen’s inequality,

E log

∫ (
p

q

)α

(X) dΠ(p) ≤ αE log

N∑
j=1

(
sup
p∈Pj

p

q

)
(X)Π(Pj)

1/α

≤ α log

N∑
j=1

(∫
sup
p∈Pj

p dμ

)
Π(Pj)

1/α.

A crude bound on the sum in the right side is N maxj
∫
supp∈Pj

p dμ. Because
p ∈ Pj are probability densities, the integral will be bigger than 1. By constructing
the partition from a minimal set [l1, u1], . . . , [lN , uN ] of ε2-brackets in L1(μ) that
covers P , the overshoot is at most ε2, and the preceding display can be bounded
by

α logN[ ](ε
2,P , L1(μ)) + αε2.

Unfortunately, this approach does not appear to yield the “correct” rate in general.
For this we would like to see the entropy logN(ε,P , d) at ε, and not at ε2, in the
bound, probably for another metric d than the L1(μ)-metric. One might try to
compensate this by taking also the prior masses into account; see e.g. [6] for results
in this direction.

In the following section we use empirical process methods to improve the brack-
eting approach in the case of i.i.d. observations.

4. Independent experiments

If the observation is a random sample X1, . . . , Xn of size n, then we apply the
preceding with p and q product densities. The Hellinger affinity is multiplicative
and the Renyi divergence and Kullback-Leibler divergence are additive relative to
independent observations. For collections of measures we have defined these quan-
tities by taking the supremum or infimum over the convex hull. This destroys exact
multiplicativity or additivity, but sub-multiplicativity and super- or sub- additivity
are retained.

Given sets Pi of densities relative to dominating measures μi on measurable
spaces (Xi,Ai), let P1 × P2 denote the set of all densities (x1, x2) �→ p1(x1)p2(x2)
relative to μ1 ⊗ μ2.

Lemma 4.1. For any sets P1,P2 of probability densities and probability densities
q1, q2 and any α ∈ (0, 1),

ρα(P1 × P2, q1 × q2) ≤ ρα(P1, q1)ρα(P2, q2),

Rα(P1 × P2, q1 × q2) ≥ Rα(P1, q1) +Rα(P2, q2),

KL(P1 × P2, q1 × q2) = KL(P1, q1) +KL(P2, q2).
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Proof. The first inequality is due to Le Cam (also see [5], p. 866, or [13]). It follows
from writing ρα(

∫
p1 × p2 dΠ(p1, p2), q1 × q2) for a given probability measure Π in

the form∫ [∫ (∫
p1(x1)

∫
p2(x2) dΠ2|1(p2| p1)∫

p2(x2) dΠ2(p2)
dΠ1(p1)

)α

q1(x1)
1−α dμ1(x1)

]

×
(∫

p2(x2) dΠ2(p2)

)α

q2(x2)
1−α dμ2(x2).

Here Πi are the marginal distributions of Π and Π2|1 is a conditional distribution
(in the sense that dΠ2|1(p2| p1) dΠ1(p1) = dΠ(p1, p2); no regularity condition on
existence of a conditional is necessary). The term within square brackets is bounded
above by ρα(P1, q1). Next the remaining integral is bounded above by ρα(P2, q2).
The second inequality is an immediate consequence.

To prove the third we first note the Kullback-Leibler divergence is convex (in both
its arguments), whence the convex hull in the definition of KL(P , q) is unnecesaary:
this is equal to supp∈P KL(p, q). The assertion then follows from the additivity:
KL(p1 × p2, q1 × q2) = KL(p1, q1) +KL(p2, q2).

Consider an application of Theorem 3.2 to the case of i.i.d. observations from a
density q and a prior Π on a model P for one observation. Thus the model P in
Theorem 3.2 is the model Pn = {p×n: p ∈ P} in the present set-up. We replace ε in
Theorem 3.2 by

√
nε and the metric d on Pn by

√
nh for h the Hellinger distance

on the model P for one observation. The prior mass condition (5) becomes

(8) Π
(
p:KL(p, q) < ε2

)
≥ e−cnε2 .

Corollary 4.1. Suppose that N(ε/4, {p ∈ P : ε < d(p, q) < 2ε}, h) ≤ N(ε) for
every ε > 0 and a nonincreasing function N : (0,∞) → R. If (8) holds, then, for
X1, . . . , Xn an i.i.d. sample from q and ε ≥ 1/

√
n,

1

16
E

∫
h2(p, q) dΠ(p|X1, . . . , Xn) ≤ ε2(3 + c) +

1

n
logN(ε) +

1

n
log 12.

Proof. This follows from Theorem 3.2 upon making the substitutions as explained,
and using the inequality Nt,β(

√
nε,Pn, d) ≤ Nt,β(ε,P , h).

For logN(εn) � nε2n the bound is of the order ε2n. This is the “correct” expression
of the rate in the complexity of the model (cf. [8], [1]).

We have not been able to bound the concentration of pseudo posterior distribu-
tions with ρ > 1 by similar arguments. It seems that stronger control of the model
than just covering numbers are needed. For maximum likelihood estimators (the
case ρ = ∞) a basic result due to [12] is in terms of the bracketing integral

J[ ](δ,P , h) =

∫ δ

0

√
logN[ ](ε,P , h) dε,

where N[ ](ε,P , h) is the minimal number of ε-brackets relative to the Hellinger
distance needed to cover P (see Definition 2.1.6 of [11]). The maximum likelihood
estimator converges at rate εn equal to the minimal solution to

(9) J[ ](ε,P , h) ≤
√
nε2.
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(See [12], or [11], Section 3.4.1.) If J[ ](ε,P , h) � ε(logN[ ](ε,P , h))1/2, which is the
case if the bracketing entropy varies regularly, then this reduces to logN[ ](ε,P , h) �
nε2, which can be compared to the rate obtained in Corollary 4.1.

The pseudo posterior contracts at the same rate.

Theorem 4.1. If ε satisfies (8) and (9), then, for X1, . . . , Xn an i.i.d. sample from
q and any ρ > 0,

E

∫
h2(p, q) dΠρ(p|X1, . . . , Xn) � ε2.

Proof. We apply Theorem 3.1 to the product densities, with the substitutions ex-
plained before the statement of Corollary 4.1. It suffices to bound the last term on
the right side of Theorem 3.1, for some α > ρ, so that there exists γ ∈ (0,∞) with
ρ = (αγ + β)/(γ + 1) for some β ∈ (0, 1) (e.g. β = 1/2), whence Rβ � h2.

Let Gn be the empirical process of X1, . . . , Xn, and for τ < 0 define logτ x =
(log x) ∨ τ .

By Lemmas 4 and 5 in [12] there exists τ < 0 such that Q logτ (p/q) ≤ −c h2(p, q)
and ‖ logτ (p/q)/2‖Q,B ≤ d h(p,Q), for positive constants c, d that depend on τ
only, where ‖ · ‖Q,B is the “Bernstein norm” defined in [11], page 324. Furthermore,
following the approach of Theorem 3.4.4 of [11] it can be shown that there exist a
constant e, which also depends on τ only, such that ‖ logτ (p2/q)− logτ (p2/q)‖Q,B ≤
e h(p1, p2), for every pair of functions with p1 ≤ p2. These facts imply, by extension
of Lemma 3.4.3 in [11] to higher moments, that, for any δ > 0,

(10) E sup
h(p,q)≤δ

(
Gn logτ (p/q)

)4
+
� J4

[ ](δ,P , h)

(
1 +

J[ ](δ,P , h)√
nδ2

)4

.

Since δ �→ J[ ](δ,P , h) is the area under a decreasing, nonnegative function, the
function δ �→ J[ ](δ,P , h)/δ is decreasing. First this shows that J[ ](Cδ,P , h) ≤
CJ[ ](δ,P , h), for every C > 1. Second the function δ �→ J[ ](δ,P , h)/δ2 is also
decreasing, implying that (9) holds for any ε bigger than its minimal solution.
Therefore for δ bigger than this minimal solution the quotient inside the brackets
in (10) is bounded by one and the right side can be simplified to J4

[ ](δ,P , h).

For integers i ≥ 1 define Pi = {p ∈ P : 2i−1ε ≤ h(p, q) < 2iε}; also set P0 = {p ∈
P :h(p, q) < ε}. Then Q logτ (p/q) is bounded above by −ch2(p, q) ≤ −c22i−2ε2 if
p ∈ Pi and i ≥ 1, and is nonpositive for p ∈ P0. Because log x ≤ logτ x for every
x > 0,

1

αn
E log

∫ (
p×n

q×n

)α

(X) dΠ(p)

≤ 1

n
E sup

p∈P
logτ

p×n

q×n
(X)

≤ E sup
p∈P0

1√
n

(
Gn logτ

p

q

)
+

+ Esup
i≥1

(
sup
p∈Pi

1√
n
Gn logτ

p

q
− c22i−2ε2

)
+

.

By (10) the first expectation on the right is bounded above by a multiple of
n−1/2J[ ](ε,P , h) ≤ ε2. To bound the second term we apply Markov’s inequality
to see that, for x > 0,

P

(
sup
p∈Pi

1√
n
Gn logτ

p

q
− c22i−2ε2 > x

)
≤

E(supp∈Pi
Gn logτ (p/q))

4
+

n2(x+ c22i−2ε2)4

�
J4
[ ](2

iε,P , h)

n2(x+ c22i−2ε2)4
.



238 W. Kruijer and A. van der Vaart

Here J[ ](2
iε,P , h) ≤ 2iJ[ ](ε,P , h) ≤ 2i

√
nε2, for ε satisfying (9). It follows that the

second expectation in the far right side of the second last display is bounded above
by ∫ ∞

0

∞∑
i=1

24iε8

(x+ c22i−2ε2)4
dx = ε2

∞∑
i=1

2−2i26

3c3
� ε2.

This concludes the proof.

5. Misspecification

The right side of Theorem 3.1 can be small only if KL(p, q) is close to zero with
sufficient prior mass (for p ∼ Π). Therefore, the theorem does not cover the case
that the density q of the observation is not close to the support of the prior. To
remedy this we adapt the derivation as follows. Let q still be the true density of
the observation and let q̃ be another density, later taken to the “projection” of q
on the model.

Theorem 5.1. For any numbers α ≥ 0, β ∈ (0, 1), γ ≥ 0 and X distributed
according to q, for ρ = (γα+ β)/(γ + 1),

E

∫
Rβ(pq/q̃, q) dΠρ(p|X) ≤− (γ + 1) log

∫
e−ρ(KL(p,q)−KL(q̃,q)) dΠ(p)

+ γE log

∫ (
p

q̃

)α

(X) dΠ(p).

Proof. We follow the same steps as in the proof of Theorem 3.1, except that we make
the choices, first v(p) ∝ (p/q̃)α(X) and second v(p) ∝ (p/q̃)β(X)/ρβ(pq/q̃, q).

The bound of the theorem is true for any q̃. However, it is clear that the first
term on the right can be small only if the prior puts sufficient mass on densities p
such that KL(p, q)−KL(q̃, q) = Q log q̃/p is close to zero, i.e. on densities p close to
q̃. Furthermore, the theorem is useless unless Rβ(pq/q̃, q) is nonnegative. Because
pq/q̃ is not a probability density, this is not guaranteed, not even when β ∈ (0, 1).
This is illustrated in Figure 1, taken from [5]. The Renyi divergence Rβ(pq/q̃, q) is
positive if and only if the Hellinger affinity ρβ(pq/q̃, q) is bounded above by 1. As
a function of β the Hellinger affinity is convex with right limit Q(p > 0) at β = 0
and left limit

∫
q>0

pq/q̃ dν at β = 1. If the latter limit is strictly bigger than 1, then
there are two cases:

1. The right derivative at β = 0 is negative; then there exists β > 0 for which
ρβ(pq/q̃, q) ≤ 1.

2. The right derivative at β = 0 is positive; then ρβ(pq/q̃, q) ≥ Q(p > 0), which
is typically one, throughout (0, 1).

By Lemma 2.1, if the distributions are absolutely continuous, this right derivative
is equal to −KL(pq/q̃, q) = KL(q̃, q) − KL(p, q). We conclude that Rβ(pq/q̃, q)
will be positive for some β for a set P of p only if q̃ is chosen to minimize the
Kullback-Leibler divergence p �→ KL(p, q) over P .

This argument is made in [5] in a testing context, accompanied with examples
where ρβ(pq/q̃, q) < 1 for a sufficiently small β > 0, uniformly in densities p in the
support of the prior, and where Rβ(pq/q̃, q) is bounded below by a natural distance.
It would be interesting to investigate similar consequences of Theorem 5.1.
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Fig 1. The Hellinger transforms β �→ ρβ(p, q), for Q = N(0, 2) and P the measure defined by
dP = (dN(3/2, 1)/dN(0, 1)) dQ (left) and dP = (dN(3/2, 1)/dN(1, 1)) dQ (right). Intercepts with
the vertical axis at the right and left of the graphs equal ‖Q‖ = 1 = Q(p > 0) and ‖P‖ = P (q > 0)
respectively. The slope at 0 equals −KL(p, q), and has different sign in the two cases.
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