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Bayesian analysis of deer reproductive

condition

Edwin J. Green1 and Susan Predl2
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Abstract: A hunting program was instituted in a previously un-hunted 836-
ha county park in New Jersey for white-tailed deer (Odocoileus virginianus) in
1994. Harvested deer were aged and weighed. The reproductive tracts of female
deer were examined and the number of embryos counted. Hierarchical Bayes
modeling was used to examine whether or not compensatory reproduction
was occurring in the park. Compensatory reproduction is an issue which is
frequently raised by anti-hunting groups.
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1. Introduction

Compensatory reproduction is an increase in wildlife reproductive rate as habitat
condition improves. This phenomenon is frequently cited as a reason to forego
a hunting program. Hunting opponents argue that following harvest, reproduction
rates of the residual animals will increase (due to the decreased population density),
and perhaps eventually culminate in a population that is larger and in poorer
physical condition than the one present prior to harvesting. In support of this thesis,
it has been documented that when deer are in poor physical condition, reproductive
rates may increase as the physical condition of deer improves. For instance, in a 252-
ha enclosure in Michigan, [11] found in utero productivity of yearling does doubled
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Table 1

Number of deer harvested annually during study.

yr total number harvested
1994 88
1995 50
1996 167
1997 185
1998 169
1999 118
2000 53
2001 50
2002 47
2003 —
2004 99
2005 82
2006 57
2007 70
2008 56

with supplemental feeding and increased by 50% among 2.5-year-olds and 21% for
older does. [18] found that productivity may decrease with increasing deer density
even when supplemental feed is available and [15] found that fertility rates of deer
in urban areas may be influenced by population density and physical condition.

This study takes advantage of a unique opportunity to study potential changes in
reproductive rates of a previously un-hunted deer population. Hunting was prohib-
ited in the Watchung Reservation in northern New Jersey for at least one hundred
years. During the 1980s, the number of neighboring homeowners complaining of
deer (Odocoileus virginianus) damage to backyard gardens increased, as did the
number of deer - vehicle accidents on roads surrounding the Reservation. Notice-
able damage to the native plant community was observed in the Reservation. As a
result, deer hunts were held annually from 1994–2008, with the exception of 2003
(Table 1). Data were collected on harvested deer during each year of the program.
Each deer was aged, and the sex and weight recorded. For pregnant does, the num-
ber of embryos and corpora lutea was also recorded.

We examined whether reproductive rates and weights of harvested deer varied
over the course of the program. If average weights and reproductive rates increased,
this might suggest that compensatory reproduction ([9, 14, 2]) has occurred in
the park. Our objective was to determine if reducing the deer population at the
Watchung Reservation in Union County, New Jersey, led to an improvement in
the physical condition, as measured by a trend of increasing weight, and/or female
reproductive rates of harvested deer.

2. Hierarchical Models

We use Bayesian Hierarchical modeling in this study. These are models in which
the parameters in the prior distribution for the data model are themselves assigned
prior distributions. The parameters in the prior are called hyperparameters, and
the prior(s) for the hyperparameters are usually termed hyperprior distributions
(e.g. see [7]).

In non-Bayesian modeling, models are categorized as either fixed or random ef-
fects models depending on whether or not the experimental subjects are assumed
to have been randomly drawn from a larger population or not, and whether interest
focuses on the specific subjects in the experiment, or on the population from which
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those subjects were drawn (e.g. see [4]). In Bayesian hierarchical modeling, this dis-
tinction is unnecessary. In Bayesian modeling, the terms random effects and fixed
effects are not often used, since even fixed effects are not fixed according to the
Bayesian paradigm. However, Bayesian models often appeal to a related concept
known as exchangeability. Suppose there are k experimental units, yi, i = 1, 2, . . . , k.
Individual yi’s are said to be exchangeable if the probability density p (y1, y2, . . . , yk)
is invariant to permutations of the subscripts of the yi’s (e.g. see [1] or [7]). In prac-
tical terms, this means that there is nothing distinctive about any of the individual
yi’s, and all the subscript i does is separate data on one subject from another.

In principle, there is no limit to the number of levels in a hierarchical model. The
appropriate number of levels of prior distributions to specify varies from problem to
problem. However, as mentioned in [3], typically there is little advantage to adding
additional priors beyond the second-stage prior, or what we called the hyperprior
above. The reason for this is that data are usually relatively non-informative for
parameters above the hyperprior level, and adding additional levels of prior struc-
ture generally results in only very small changes to the posterior distributions of
the parameters at the data model or (first) prior distribution level.

3. Data collection

Volunteer agents brought harvested deer to a deer check station located in the
Reservation. The deer were weighed and, for females, the number of corpora lutea
in the ovaries and number of embryos in the uterus were counted. Deer were aged
using a tooth eruption and wear technique [12]. The number of deer harvested, by
year is displayed in Table 1. The average number of embryos per year, by age class
is shown in Table 2. Finally, Table 3 shows the average weight (kg) of harvested
deer, by age class, for each year of the study.

4. Analyses

4.1. Reproduction rate model

The response variable of interest in the reproduction study was yijk, the number
of embryos observed in animal k in age class i at year j; i = 1, 2, 3; j = 1, 2, . . . , 15;
k = 1, 2, . . . , nij ; nij = number of animals observed in age class i at year j. The

Table 2

Reproductive Rates (embryos per doe) of deer harvested, sample size in parentheses.

fawn yearling adult
1994 0.00 (12) 1.50 (16) 1.51 (39)
1995 0.00 (4) 1.29 (7) 1.71 (14)
1996 0.25 (24) 1.52 (29) 1.92 (54)
1997 0.06 (31) 1.37 (27) 1.85 (52)
1998 0.21 (34) 1.60 (23) 1.91 (46)
1999 0.58 (24) 2.00 (14) 2.11 (18)
2000 0.50 (2) 1.80 (9) 1.50 (6)
2001 0.33 (3) 1.63 (8) 2.00 (6)
2002 0.00 (7) 2.00 (8) 2.20 (5)
2003 — — —
2004 0.20 (10) 1.50 (20) 1.90 (20)
2005 0.40(5) 1.50 (10) 1.90 (21)
2006 0.50 (4) 1.40 (5) 2.00 (6)
2007 0.38 (13) 2.00 (8) 1.87 (15)
2008 0.75 (8) 1.60 (5) 1.80 (10)
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Table 3

Weight (kg) of fawns, yearlings and adult deer harvested during study.

male female
fawn yearling adult fawn yearling adult

1994 24.5 42.2 45.8 21.8 38.1 42.3
1995 25.1 41.8 47.3 19.2 34.7 36.1
1996 27.6 38.8 46.9 24.5 35.7 40.8
1997 26.4 38.5 43.7 24.4 37.1 40.0
1998 26.9 42.2 46.6 24.6 39.4 40.5
1999 29.7 42.5 49.7 27.9 39.9 42.8
2000 30.6 45.7 46.2 26.9 36.9 37.5
2001 25.2 35.8 47.5 20.9 30.4 35.2
2002 28.9 45.7 56.8 25.9 38.9 43.8
2003 – – – – – –
2004 23.8 42.6 45.2 23.4 36.2 41.0
2005 25.9 40.9 48.9 25.7 36.0 37.1
2006 35.2 48.7 52.8 28.9 41.8 47.2
2007 28.8 44.4 45.2 25.0 34.9 35.2
2008 25.7 42.2 37.2 23.5 33.3 39.3

observed covariate was j, the year in which the animal was observed. The latter
variable assumed an integer value between 1 and 15 (there were 15 years in the
study). Since the response variable was a count variable, we posited a generalized
linear model with a Poisson likelihood and logarithmic link function to account for
heterogeneity of the Poisson parameter (e.g. see [5, 6, 10, 17]). In order to see if
there was a trend in the number of embryos per age class over the study period,
the link function was modeled as linear function of study year.

Six candidate models were identified and fitted to the embryo data. The candi-
date models were:

(4.1)
yijk ∼ Pois (λij) ; ln (λij) = β0i + β1ij

βli ∼ N
(
θl, τ

2
l

)
; θl ∼ N

(
0, 1 × 106

)
; τl ∼ Unif (0, 100) ; l = 0, 1

(4.2)
yijk ∼ Pois (λij) ; ln (λij) = β0i + β1ij

βli ∼ N
(
0, τ2

l

)
; τl ∼ Unif (0, 100) ; l = 0, 1

(4.3)
yijk ∼ Pois (λij) ; ln (λij) = β0i + β1ij

βli ∼ N
(
0, 1 × 106

)
; l = 0, 1

(4.4)
yijk ∼ Pois (λj) ; ln (λj) = β0 + β1j

βl ∼ N
(
0, τ2

l

)
; τl ∼ Unif (0, 100) ; l = 0, 1

(4.5) yijk ∼ Pois (λi) ; ln (λi) ∼ N
(
0, τ2

)

τ ∼ Unif (0, 100)

(4.6) yijk ∼ Pois (λ) ; ln (λ) ∼ N
(
0, τ2

)

τ ∼ Unif (0, 100)

Models 4.1, 4.2, and 4.3 include age-class effects (different intercepts and slopes
for each age-class) and a time trend. These models differ in the structure of their
prior distributions. Model 4.4 includes a time trend, but no age-class effects. Model
4.5 includes age-class effects, but no time trend, and Model 4.6 does not include
age-class effects or a time trend.



Bayesian analysis of deer 251

Model 4.1 is a full hierarchical model. In this model the βli’s were assigned
normal priors, and the means and variances of those priors were in turn assigned
vague hyperpriors. In Model 4.2, the priors for the βli’s were normal, with mean 0
and unspecified variances. The latter parameters were assigned vague hyperpriors.
Hence in model 4.1, the βli’s were shrunk toward a common mean (θl), implying that
intercept and slope for each age class were realizations from common underlying
distributions (one for β0 and one for β1). Under model 4.2, the βli’s were all shrunk
towards 0. In model 4.3, the β’s were assigned vague priors and no hyperpriors were
specified. Hence under model 4.3, no shrinkage across age classes occurred. The
prior specifications for Models 4.4, 4.5, and 4.6 were derived from the specification
of model 4.2.

The hyperpriors for the prior standard deviation (τ or τl, depending on the
model) were assigned vague priors. Experimentation with different specifications
indicated that the upper bound (100) had no appreciable effect on the results.

All the models were fitted to the reproduction data (678 observations) with
WinBUGS, ver. 1.4.3 [8]. Trial runs confirmed that all the models converged to
their posterior distributions in fewer than 70,000 iterations. Each model was run
for 100,000 iterations, and DIC [13] was computed for each model using iterations
90,001–100,000. We also examined a pseudo-r2 measure for each model, in order
to get a sense of how well the models fitted the data. For the latter statistic, we
divided the sum of squared residuals by the usual corrected total sum of squares
on each iteration. The average of this ratio over the final 10,000 iterations was then
computed.

4.2. Weight model

We hypothesized that the weight of harvested animals varied linearly over time,
and that the time trend varied by sex and age class. This was formalized with the
following model:

(4.7) wisjk = β0is + β1isj + eisjk, eisjk ∼ N
(
0, σ2

)
,

where wisjk was the weight (kg) of deer k in age class i and sex s, and year j.One
again, the latter assumed an integer value between 1 and 15. Age classes were coded
as 1= fawn, 2 = yearling and 3 = adult, and sex was coded as 1= male and 2 =
female. Hence the index k assumed the values 1, 2, . . . , nisj , where nisj was the
number of deer observed in age class i and sex s at year j.

To complete the model, we required prior distributions for β0is and β1is, the
model coefficients for age class i and sex s. We were more comfortable specifying
priors for the weight model and proceeded as follows: β0is represents the mean
1993 weight for a deer in age class i, of sex s. We postulated that the expected 1993
weight of fawns was certainly between 0 and 46 kg, with a mean of roughly 23 kg.
Since the range of a normal distribution is roughly 6 standard deviations in length,
we found τ011 and τ012 = 43/6 = 7.2. To be conservative, we increased these to
τ011 = τ012 = 10, where τ011 and τ012 are the prior standard deviations of β011 and
β012, respectively. Hence τ2

011 and τ2
012 = 100. Thus the prior distributions for β011

and β012 were:
β011 ∼ N(23, 100) , β012 ∼ N(23, 100) .

We applied the same reasoning to the mean 1993 weights for yearlings and adults,
postulating mean 1993 weights of 34 and 45 kg, respectively, and the same variances
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as were used for the fawn weights. This led to the following prior distributions:

β021 ∼ N (34, 100) , β022 ∼ N (34, 100) ,
β031 ∼ N (45, 100) , β032 ∼ N (45, 100) .

We also imposed the constraints β031 ≥ β021 ≥ β011andβ032 ≥ β022 ≥ β012, i.e., in
1993, for each sex, adults weighed more than yearlings, and yearlings weighed more
than fawns.

Under model (4.7), the slopes β1is represent annual rate of change in mean weight
for age class i and sex s. We postulated that the largest value we would expect for
a slope would be 1.5, and the lowest would be -1.5. Accordingly, we let (-1.5, 1.5)
be the range for the slopes, which led to standard deviations of 0.5 and variances
of 0.25. Hence we specified the following prior distributions for the slopes:

β1is ∼ N (0, 0.25) , i = 1, 2, 3; s = 1, 2.

We investigated a number of other, noninformative prior specifications for β0is and
β1is, including adding another level to the model hierarchy. In each case, the model
estimates were nearly identical to the ones resulting from the specification detailed
above.

In order to determine whether age class and sex effect were necessary, we also
fitted models without these effects:
No sex effects:

(4.8) wisjk = β0i + β1ij + eisjk, eisjk ∼ N
(
0, σ2

)
,

β01 ∼ N(23, 100) , β02 ∼ N(34, 100) , β03 ∼ N (45, 100) , β1i ∼ N (0, 0.25) .

No age class effects:

(4.9) wisjk = β0s + β1sj + eisjk, eisjk ∼ N
(
0, σ2

)
,

β0s ∼ N(34, 100) , β1s ∼ N (0, 0.25) .

We assumed the vague prior σ2 ∼ IG(0.001, 0.001) for each weight model. As in the
reproduction model, model adequacy was evaluated using DIC. Initial runs revealed
that the models converged very quickly (<10,000 iterations). Hence each model was
run for 50,000 iterations, and DIC was computed from the final 10,000 iterations.
We also computed a pseudo-r2 for each model.

5. Results

5.1. Reproduction rate model

The DIC values for models 1–6 were 1548.21, 1549.29, 1547.59, 1839.63, 1552.54,
and 1839.84, respectively. The pseudo-r2 values were 0.596, 0.588, 0.600, 0.011,
0.574, and 0.002, respectively. Hence models 1–3 (and possibly 5) were the best,
but there was no clear support for any particular model. Since model 3 had the
fewest parameters (as well as the lowest DIC), we chose model 3 as the appropriate
model for the reproduction data. Hence our analysis indicated that both age-class
and yearly trend effects were important. The pseudo-r2 value indicates that the
model fit reasonably well, accounting for 60% of the variation in embryos observed
in harvested females.
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Table 4

Means and lower (2.5%) and upper (97.5%) bounds for 95% credibility intervals from marginal
posterior distributions, for parameters in reproduction model.

parameter mean 2.5 percentile 97.5 percentile
β01 −2.033 −2.647 −1.469
β02 0.345 0.119 0.568
β03 0.541 0.397 0.681
β11 0.096 0.033 0.159
β12 0.015 −0.013 0.043
β13 0.011 −0.009 0.011
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Fig 1. Marginal posterior distributions for parameters in reproduction rate model

Model 3 was run for an additional 10,000 iterations and then the means and
approximate 95% credibility intervals were computed for each parameter from the
joint posterior sample using the final 10,000 iterations. If there was significant time
trend, we would expect the 95% credibility intervals for β11, β12, and β13 to exclude
zero. Examination of the credible intervals (Table 4) and the smoothed kernel den-
sity estimates of the marginal posteriors for the parameters (Figure 1) showed that
the 95% credibility interval for β11 (slope for fawns) did not include zero, whereas
the intervals for β12 and β13 (slopes for yearlings and adults, respectively) did. This
indicated that reproduction rate did change over time (increase) for fawns, but not
for yearlings or adults.

5.2. Weight model

The DIC values were 6697.65, 6918.09, and 7955.77, for models 7, 8, and 9, re-
spectively. The pseudo-r2 values were 0.704, 0.630, and 0.038, respectively. Clearly
model 7 was best supported by the data and both age-class and sex effects were
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Table 5

Means and lower (2.5%) and upper (97.5%) bounds for 95% credibility intervals from marginal
posterior distributions, for parameters in weight model.

parameter mean 2.5 percentile 97.5 percentile
β011 26.29 25.52 27.82
β012 23.90 22.48 25.30
β021 40.15 38.43 41.85
β022 37.78 36.35 39.22
β031 46.17 43.69 48.63
β032 41.25 39.55 42.89
β111 0.0752 −0.0689 0.2207
β112 0.1288 −0.0514 0.3103
β121 0.3304 0.1506 0.5120
β122 −0.1186 −0.3075 0.0709
β131 0.1912 −0.1064 0.4908
β132 −0.1880 −0.4158 0.0392
σ2 27.15 24.93 29.55

important. Again, the pseudo-r2 value indicates that the model fit reasonably well,
accounting for 70% of the variation in deer weights. This model was run for an
additional 50,000 iterations and then the means and approximate 95% credibility
intervals were computed for each parameter from the joint posterior sample us-
ing the final 50,000 iterations. In addition, the marginal posterior distributions for
each parameter were computed. The 95% credible intervals for the model parame-
ters (Table 5) and the smoothed kernel density estimates of the marginal posteriors
(Figure 2) revealed that the only slope corresponding to a 95% credible interval
that did not include zero was β121, the slope for yearling males. Hence there was
a significant trend (increase) in weight for yearling males, whereas there were no
significant trends for any other sex-age class combination during the study period.

6. Discussion

In 1994, the year of the first hunt, the average weights of deer indicated that the
herd was in standard or above standard physical condition. With the exception of
yearling male weights, the physical condition (the weights of deer by gender and
age) did not change significantly in the fifteen years since the first hunting program.
The reproductive rates of yearling and older does at Watchung Reservation did
not increase as the number of deer in the Reservation decreased. However the
reproductive rate of fawns increased.

Compensatory reproduction, an increase in the reproductive rate as the condi-
tion of wildlife improves, is frequently cited as a reason not to conduct a hunting
program. Some hunting opponents suggest that hunting should never be allowed
because as the condition of the herd improves, the reproductive rates will increase,
and the deer population will grow. In the case of Watchung Reservation, the deer
were initially in good physical condition. Reducing the number of deer in the Reser-
vation did not reduce competition for a limited food source, as evidenced by the
fact that the physical condition of the deer (the weight) did not improve. Repro-
ductive rates of the yearling and adult deer did not increase with a reduction of
the deer population. However, the reproductive rate of the female fawns increased
from 0% in the first years of the deer reduction program to over 30% in years 12
through 15 of the hunt, resulting in a significant linear annual trend. [11] and [16]
found an increase in productivity as the physical condition of the deer improved,
and [15] found deer fertility rates to be influenced by population density or physical
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Fig 2. Marginal posterior distributions for parameters in weight model

condition in urban areas. Our results differ somewhat from these findings because
the physical condition of the deer at Watchung Reservation remained unchanged
for five of the six age class-sex combinations studied, and the reproductive rates of
two of the three age classes examined did not change over time.
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