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A nonparametric Bayesian method for

estimating a response function

Scott Brown1 and Glen Meeden2
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Abstract: Consider the problem of estimating a response function which de-
pends upon a non-stochastic independent variable under our control. The data
are independent Bernoulli random variables where the probabilities of success
are given by the response function at the chosen values of the independent
variable. Here we present a nonparametric Bayesian method for estimating
the response function. The only prior information assumed is that the response
function can be well approximated by a mixture of step functions.
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1. Introduction

We are interested in the problem where a response variable has a Bernoulli distri-
bution and where the unknown probability of success depends on the level of some
factor. Usually the link function, which gives the relationship between levels of
the factor and the corresponding probabilities, is not known. A common approach
to such problems is logistic regression where a convenient mathematical form is
assumed to describe this relationship. A recent nonparametric approach using ker-
nel estimation to estimate the link function is discussed in Signorini and Jones
(2004). Various Bayesian nonparametric approaches to the problem can be found
in Mallick and Gelfand (1994), Newton et al. (1996) and Wood and Kohn (1998).
A more truly nonparametric Bayesian approach is presented in the work of Coram
and Lalley (2006) and the consistency of their Bayes estimator is demonstrated.
Here we will suggest another nonparametric Bayesian approach to this problem.
It is based only on the assumption that the relationship is given by a continuous
function which can be well approximated by a mixture of step functions. Although
similar in spirit to the estimator of Coram and Lalley (2006) our estimator has
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a stepwise Bayes justification which we will use to show its admissibility. Brown
(1981) showed that the family of stepwise Bayes procedures forms a complete class
for this problem.

In section 2 we introduce some notation and describe our estimator. In section 3
we briefly review the stepwise Bayes argument for proving the admissibility of the
maximum likelihood estimator for the probability of success in the Binomial model.
In section 4 we show how this stepwise Bayes argument can be extended to prove
the admissibility of our estimator. In section 5 we compare our estimator to some
others and section 6 contains some concluding remarks.

2. Notation for the problem and our estimator described

Let x be the dependent variable whose range is D, and which for convenience
we assume is the unit interval. Given a value of x let Yx be a Bernoulli random
variable where θ(x) denotes the probability that Yx is equal to one. The data of our
experiment are (X, Y ) where X = (x1, . . . , xn) and Y = (Yx1 , . . . , Yxn) for some
positive integer n. We assume that the xj ’s are fixed and under our control and are
increasing in j. We assume that the Yxj ’s are independent.

Let θ : [0, 1] → [0, 1] denote the response function. The function θ represents the
probability of success of a Bernoulli experiment at each predictor value x ∈ [0, 1]. θ
is the unknown parameter and we wish to estimate its values at some finite subset
of points of [0.1]. We will assume that θ belongs to some subset of the set of all
piecewise linear and continuous functions from the unit interval into itself. This
reflects our basic assumption that θ is more or less smooth. We will give the exact
definition of this set in just a bit.

Let �γ = (i1, . . . , ik) denote a set of positive integers where 1 < i1 < i2 < · · · <
ik < n. Then �γ can be used to define a partition of X given by

γ = (γ1, γ2, . . . , γk+1) = ({x1, . . . , xi1 },

{xi1+1, . . . , xi2 }, . . . , {xik+1, . . . , xn}).

If we set i0 = 0, ik+1 = n then n�γ(j) = ij −ij−1, is the number of elements belonging
to the jth element of the partition. We let Y�γ(j) be the subset of Y which belongs
to the jth element of the partition. We can also use the members of the partition
to define k + 1 disjoint subintervals of the unit interval in the natural way.

Let m and k be positive integers. We assume that n is such that X can be
partitioned into k+1 subsets each containing at least m members in more than one
way. Typically, k will usually be quite small compared to m and m will be small
compared to n. The values of m and k are fixed and are selected by the statistician.
Given m and k, let

Γ(m, k) = {�γ : i1 ≥ m, ik ≤ n − m and ij − ij−1 ≥ m for j = 2, . . . , k}

denote the class of all such partitions.
Given such a partition consider the situation where θ(x) is constant over each

subinterval of the partition and linearly interpolates in the gaps between the xij

and xij+1 for j = 1, . . . , k. More formally we let

(θ�γ(1), . . . , θ�γ(k + 1))
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denote these constant probabilities and use them to define a possible parameter
value for θ. That is

θ�γ(x) = θ�γ(1) for x ∈ [0, xi1 ]
= θ�γ(j) for x ∈ [xij−1+1, xij ] and j = 2, . . . , k

= θ�γ(k + 1) for x ∈ [xik
, 1]

=
x − xij

xij+1 − xij

θ�γ(j + 1) +
xij+1 − x

xij+1 − xij

θ�γ(j)

for x ∈ (xij , xij+1) and j = 1, . . . , k.

If we assume that �γ as an unknown parameter as well then the parameter space
for our problem is

Θ(m.k) = {(�γ, θ�γ) : �γ ∈ Γ(m, k) and 0 ≤ θ�γ(j) ≤ 1 for j = 1, . . . , k + 1}.

A natural way to define a prior distribution on (�γ, θ�γ) is the following

p(�γ, θ�γ) = p(�γ) p(θ�γ | �γ)

= p(�γ)
k+1∏
j=1

p(θ�γ(j) | �γ).

Here we are assuming that the priors for the θ�γ(j)’s are independent.
Then the joint probability distribution of the data and the parameters can be

expressed as

p(�γ, θ�γ , y) = p(�γ)
k+1∏
j=1

p(θ�γ(j) | �γ) p(y�γ(j) | �γ, θ�γ)

= p(�γ)
k+1∏
j=1

(
p(y�γ(j) | �γ)p(θ�γ(j) | �γ, y�γ(j))

)
.

A standard calculation yields

(2.1) p(�γ, , θ�γ | y) = p(�γ | y)
k+1∏
j=1

p(θ�γ(j) | �γ, y�γ(j)),

where

(2.2) p(�γ | y) = p(�γ)
k+1∏
j=1

p(y�γ(j) | �γ)/
∑
�γ′

p(�γ′)
k+1∏
j=1

p(y�γ(j) | �γ′).

Fix t at one of the xij values and consider estimating θ(t). For a given partition
�γ, let θ�γ(jt) denote the constant probability on the subinterval which contains t and
y�γ(jt) denote the corresponding y values. If we put the uniform prior over Γ(m, k),
the space of possible partitions, then we have from equations (2.1) and (2.2) that

(2.3)
∑
�γ

∏k+1
j=1 p(y�γ(j) | �γ)

∑
�γ′

∏k+1
j=1 p(y�γ(j) | �γ′)

E(θ�γ(jt) | �γ, y�γ(jt))
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is the Bayes estimate of θ(t) under squared error loss. We see that for a given
partition, �γ, the Bayes estimator of θ�γ(jt) is just its posterior expectation given
y�γ(jt). Then one uses the marginal probabilities of data under each partition to
average over all possible partitions to get the final estimate. We can now indicate
how our noninformative Bayesian procedure will work.

Given the data y and a partition �γ, let s�γ(j) be the total number of y’s equal
to 1 on the jth interval. Given �γ, a natural estimate of θ�γ(j) is just s�γ(j)/n�γ(j).
That is on each subinterval we use the maximum likelihood estimator (mle) to
estimate θ�γ(j). It remains to decide how the p(y�γ(j) | �γ)’s should be handled.
Although for the binomial problem the the mle is not a Bayes estimator it does
have a stepwise Bayesian justification. We will see that this fact will allow us to
compute the p(y�γ(j) | �γ)’s in a sensible manner. Although the resulting procedure
is not Bayes, it is stepwise Bayes and its admissibility will follow from this fact. In
the next section we will briefly review the stepwise Bayes argument for proving the
admissibility of the mle in the Binomial setup since it is crucial for what follows.

3. Admissibility for the binomial problem

We let W denote a binomial(n, θ) random variable with θ ∈ [0, 1]. We wish to prove
the admissibility of the mle, W/n, as an estimate of θ under squared error loss.

For an α > 0 let π denote the Beta(α, α) prior distribution for θ. The resulting
Bayes estimator is δπ(w) = (w + α)/(n + 2α) and is admissible and approaches
the mle as α approaches 0. This suggest that the mle might be Bayes against the
improper prior 1/(θ(1 − θ)). This is wrong because under this “prior” E(θ|w) is
undefined when w = 0 and w = n. The stepwise Bayes argument gets around this
problem by showing that the mle becomes Bayes in two steps or stages.

In the first step we consider the prior π1 which puts mass 1/2 at θ = 0 and θ = 1.
Under π1 the marginal probability function is given by

p(w; 1, n) = 1/2 for w = 0, n

= 0 for w = 1, 2, . . . , n − 1
(3.1)

Under this prior the only possible w values are 0 and n and the corresponding
posterior expectations of θ are 0 and 1. Any estimator which behaves in this way
is Bayes against π1. Many estimators have this property including the mle but not
all of them will be admissible because they may behave badly at other values of w.
To identify admissible ones we need to proceed to the second step or stage.

Here we consider the restricted problem where the sample space just consists
of the values {1, 2, . . . , n − 1}. For this restricted problem the probability function
is just the renormalized binomial likelihood function. This likelihood function, the
second stage prior we need and the corresponding marginal probability function are

p(w | θ) =

(
n
w

)
θw(1 − θ)n−w

1 − θn − (1 − θ)n
for w = 1, . . . , n − 1,

p2(θ) = cn
1 − θn − (1 − θ)n

θ(1 − θ)
for θ ∈ (0, 1),

p(w; 2, n) = cn
Γ(w)Γ(n − w)

Γ(n)
for w = 1, 2, . . . , n − 1,

(3.2)

where cn is the constant that makes π2 integrate to one. It is easy to check that
under the resulting posterior, the posterior expectation of θ is just the mle for all
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the values in the sample space of the restrict problem. This shows the the mle is
the unique stepwise Bayes estimator against these two priors and hence is admis-
sible. For more details see Ghosh and Meeden (1997). We note in passing that the
stepwise Bayes method for proving admissibility was introduced in Johnson (1971).

Since for our problem, as described in the previous section, for a given partition
�γ, we just have a collection of binomial problems we will be able to adapt the above
admissibility argument to our more complicated situation. This will be done in the
next section.

4. Admissibility for our problem

Consider the procedure which for a given y and given �γ estimates θ�γ(j) by s�γ(j)/n�γ(j)
and uses the probability model given in equation 3.1 to compute the factors in∏k+1

j=1 p(y�γ(j) | �γ′) whose y�γ(j) are either all 0’s or all 1’s and uses the probability
model in (3.2) to compute the remaining factors. Finally, one must use (2.3) to
average over all partitions to get the estimate. In other words we are letting the
data select which probability model we want to use on each subinterval for each
partition. Clearly this cannot be a Bayes procedure but we will now demonstrate
that it is unique stepwise Bayes. Before we formally define our estimator we need
some additional notation.

For r = k + 1, k, . . . , 1, 0 let

Θ(m, k)(r) = {(�γ, θ�γ) : where exactly r of the θ�γ(j)’s equal 0 or 1}.

For r > 0 members of this set must produce data y which contains at least m
consecutive members which are either all 0’s or all 1’s. Formally, we denote such
a subsequence as a run. When defining the estimator we need not consider all
possible runs. Let ib and ie be the beginning and ending indices of a run. Remember
ie − ib > m − 1. We say that a run is permissible if ib = 1 or if ib > m and
ie ≤ n − m or if ib = n. For a given y, let r(y) be the maximum number of
permissible runs that can be formed simultaneously in y. Note the possible values
for r(y) are 0, 1, . . . , k + 1.

To help clarify this notion consider the special case where n = 20, k = 2 and
m = 4. If y consists of 3 1’s followed by 4 0’s followed by 13 1’s then r(y) = 1 since
the only permissible runs are those that start at i2 = 9, 10, . . . , 17.

Next we define

Γ(y; m, k) = {�γ : �γ ∈ Γ(m, k) and r(y) is the number of
permissible runs in the partition defined by �γ}.

This set can vary from a single member to all of Γ(m, k). Given a �γ ∈ Γ(y; m, k),
we let

Λ(y,�γ) = {γj : γj is not a run}.

Note this is the empty set when r(y) = k + 1.
We now write

p(y | �γ) = (1/2)m(y)
∏

j∈Λ(y,�γ)

cn�γ(j)
Γ(s�γ(j))Γ(n�γ(j) − s�γ(j))

Γ(n�γ(j))
,

where when Λ(y,�γ) is empty the product is set to 1. If for fixed �γ ∈ Γ(y; m, k) we use
the probability model in equation 3.2 for the γj ∈ Λ(y,�γ) and the probability model
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in equation 3.1 for the γj /∈ Λ(y,�γ) then the above is the conditional probability of
y given �γ.

If we put the uniform prior distribution over the set Γ(y; m, k) then we can
formally express our stepwise Bayes estimator as

(4.1) δsb(y) =
∑

�γ∈Γ(y;m,k)

p(y | �γ)∑
�γ′ ∈Γ(y;m,k) p(y | �γ′)

θ̂�γ(jt),

where θ̂�γ(jt) = s�γ(jt)/n�γ(jt) is the proportion of 1’s in the member of the partition
which contains t.

We will now prove the admissibility of δsb in the special case when k = 2. Once
this is understood the more general argument should be clear.

In the first stage of the proof we only put equal mass on the points belonging to
the set Θ(m, 2)(3). In this case the only y’s we can see are those are those consisting
of 3 runs, each at least as long as m.

For example, suppose we observe a run of 1’s followed by a run of 0’s followed
by another run of 1’s. There can only be one member of Θ(m, 2)(3) which produces
such a y so our model assigns a posterior probability of 1 to this point.

Another possibility is a run of at least 2m 1’s followed by a run of at least m
0’s. If the run of 1’s is longer than 2m than there can be more than one member of
Θ(m, 2)(3) which is consistent with the data. But each of them will give the same
estimate of θ(t).

Another possibility is that y is either all 0’s or all 1’s. Again Θ(m, 2)(3) contains
more than one member which is consistent with the data, but all lead to the same
estimate.

For the second stage of the argument we consider Θ(m, 2)(2). Now the argument
must proceed in several steps. The first step considers the subset Θ(m, 2)(2; 1, 2)
where θ�γ(1) and θ�γ(2) are the two that are either 0 or 1. The next step assumes
that the first and third are either 0 or 1 while the last step assumes that the last
two are either 0 or 1. (Actually, these three steps can be taken in any order. On
Θ(m, 2)(2; 1, 2) our prior distribution for �γ is the uniform distribution and given �γ
the priors for the θ�γ(j)’s are independent. For the first two we use the prior from the
probability model in (3.1) and for the last the prior in equation (3.2). We only need
consider data points which can be generated from these parameter points which
were not taken care of at the first stage.

One possibility is data that begins with a run of v1 ≥ m 1’s followed by a run of
v2 ≥ m 0’s where v1+v2 < n. If v2 = m or if v1+v2 = n−m then the only members
of Θ(m, 2)(2) which could produce this data are (�γ, θ�γ) = ((v1, v2), (1, 0, θ�γ(3)))
where 0 < θ�γ(3) < 1. For all other values of v1 ≥ m and v2 ≥ m there will be more
than one choice for �γ which could produce the data. To get the estimate one needs
to average over all possible partitions.

Data which ends begins and ends in a run or ends in two runs is handled in the
same manner. It is important to note that there exist data which has two runs but
cannot arise in this stage.

For example consider the data which begins with m − 1 0’s followed by m 1’s
and ends with n − 2m − 1 0’s. There is no member of Θ(m, 2)(2) which gives
positive probability to these data because each member of �γ must contain at least
m successive units.

For the third stage of the argument we consider Θ(m, 2)(1). As in the second
stage we need to consider three possible steps depending on which θ�γ(j) is either
0 or 1. Here we only have to consider data which contains one possible run. Just
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as in the previous stages for some data there will only be one possible choice for
�γ while in other case there can be many. For each possible �γ we will be using the
probability models in equations (3.1) and (3.2) as needed.

In the fourth and final stage we consider Θ(m, 2)(0) where none of the θ�γ(j)’s
equal 0 or 1. Again we will use the uniform distribution over �γ but we take inde-
pendent versions of the prior from the probability model in equation 3.1 for the
θ�γ(j)’s.

This completes the proof in the special case when k = 2. The proof for the
general case just has k + 2 stages. At each stage we keep reducing the the number
of θ�γ(j)’s which equal 0 or 1 by 1 until we reach the final stage where all the θ�γ(j)’s
are strictly between 0 and 1.

Theorem 4.1. Given (X, Y ) let m, k be positive integers such that X can be
partitioned into k +1 subsets each containing at least m members in more than one
way. Let 0 < t1 < t2 < · · · < tr < 1 be fixed. Then under the sum of squared error
loss the unique stepwise Bayes estimators of (θ(t1), θ(t2), . . . , θ(tr)) are admissible.

Proof. In the proof given above when r = 1 we assumed that t1 was equal to one
of the xi’s. This was done only for notational convenience. If t1 is not equal to one
of the xi’s then for some partitions �γ we will have t1 ∈ γj for some j while for
other partitions it will fall into one of the gaps. In either case for any partition
�γ it is uniquely defined and hence its average over all possible partitions is also
uniquely defined and the result follows. Note the general case when r > 1 follows
directly.

It is not surprising that the stepwise Bayes technique can be used to prove admis-
sibility in a nonparametric setting. Using this method the admissibility of several
common nonparametric estimators was demonstrated in Meeden et al. (1985).

As we noted earlier values for m and k must be chosen by the statistician. In
many applications where we do not expect to see long runs, the value for m does
not matter much as long as it is big enough. It is true however that choosing a
small value for m will generally result in a rougher estimate. Selecting a good value
for k can be a more sensitive issue. We will say more about this in the next section.

For many problems we would not expect to see many long runs. This means in
practice most samples would belong to those considered in the last couple of stages
of the proof. The situations described in the earlier stages would rarely come into
play.

5. Some examples

Thus far, we have discussed the construction and theoretical properties of the esti-
mator δsb. For a concrete example, we consider a dataset drawn from a trial con-
ducted by Acorn Cardiovascular (St. Paul, Minn.) investigating the performance of
a therapy for congestive heart failure. Subjects in this trial were assigned randomly
to optimal medical therapy or to implant of an investigational device, with 148
patients randomized to the device arm of the trial.

Among demographic data collected during the trial were a measure of heart size
called left ventricular end diastolic dimension (LVEDD), measured to the nearest
millimeter; a subset of these patients were then designated for further investigation
based upon the ratio of their baseline LVEDD to body surface area (BSA), the
latter measured in square meters. Membership in the subset of interest was declared
for subjects with LVEDD/BSA between 30 and 40 mm/m2; this constitutes the
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Fig 1. For the LVEDD data the solid line is the plot of the stepwise Bayes estimator and the
dotted line is the plot of the kernel estimator.

response variable in our dataset, with subjects in the subset coded as a response of
1 and others as 0.

We make the following observations about the dataset at hand. A continuous
parameter function is to be anticipated, with the probability of membership initially
increasing, leveling off and then decreasing again as LVEDD increases. Since a
typical BSA is around 2 mm/m2, a sharp rise in the proportion of members might
be expected around an LVEDD of 60 mm and a decrease around 80 mm. We can
then consider the problem of estimating the probability of being a member of the
subset conditional upon baseline LVEDD.

Results using both the stepwise Bayes estimator δsb and kernel estimation (for
which we take the so-called triangular kernel function) are displayed in Figure 1,
using k = 2 and m = 10 for δsb and a bandwidth b of 0.2 for the kernel method.
Note that δsb captures a sudden rise in the probability of subset membership around
an LVEDD of 60 mm, as anticipated, and a gentler decrease around an LVEDD
of 80 mm. Comparatively, the kernel method fails to spot the sharp rise, and the
decrease is observed but more gently. Note also that the kernel estimator is highly
sensitive to a small number of data points on the high end of the LVEDD domain,
while δsb is flat over that same region due to the selection of m as 10. Although not
plotted here δsb for m = 10 and k = 3 yields a very similar picture. If for the kernel
estimator one decreases the bandwidth b to 0.1 or 0.05 the resulting estimators
become very jagged and unrealistic and do not capture the up tick found by δsb.
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Table 1

MRMSE for θ, n and k for the stepwise Bayes method

n = 50 n = 100 n = 200
k = 1 0.108 0.089 0.076

θ1 k = 2 0.125 0.087 0.068
k = 3 0.148 0.094 0.070

k = 1 0.119 0.088 0.064
θ2 k = 2 0.135 0.095 0.071

k = 3 0.160 0.108 0.079

Table 2

MRMSE for θ, n and b for the kernel method

n = 50 n = 100 n = 200
b = 0.2 0.126 0.089 0.062
b = 0.3 0.103 0.075 0.055

θ1 b = 0.4 0.092 0.068 0.053
b = 0.5 0.087 0.070 0.054
b = 0.6 0.088 0.074 0.060

b = 0.2 0.134 0.108 0.090
b = 0.3 0.128 0.110 0.099

θ2 b = 0.4 0.132 0.116 0.109
b = 0.5 0.136 0.127 0.121
b = 0.6 0.147 0.141 0.136

For a different sort of example, we compare the error performance of the stepwise
Bayes method to kernel estimation for selected hypothesized true parameter func-
tions θ : [0, 1] → [0, 1] and various sample sizes, focusing on the mean error rates of
each method alongside the impact of the kernel bandwidth b and the parameter k
in the stepwise Bayes estimator.

Therefore, for a given dataset y we define the root-mean-squared error (RMSE)
of δsb in the usual way. We then define the mean RMSE (MRMSE) of δsb as the
mean of the various RMSE values for all possible realized vectors y, weighted by the
probability function of y given a true parameter function θ. Analogous definitions
are made for the kernel estimator, allowing us to assess the typical error of each
method.

That is, given a particular true θ, we can compare kernel estimation to δsb for
various values of b and k. Table 1 gives values of MRMSE for δsb for two possible
θ. θ1 is linear over [0, 1] and ranges from 0.25 at x = 0 to 0.75 at x = 1. θ2 takes
the constant value of 0.25 from x = 0 to x = 0.49, the constant value of 0.75 from
x = 0.51 to x = 1 and linear interpolates between x = 0.49 and x = 0.51

We apply three different sample sizes n (50, 100 and 200) and k equal to 1, 2
and 3 for δsb in Table 1, while Table 2 provides corresponding values for the kernel
estimator with the same three sizes of n and various bandwidths b. For δsb we took
m = 12 when n = 50, m = 18 when n = 100, and m = 24 when n = 200. (Note
that although MRMSE can theoretically be computed directly since for a given
problem the set of possible vectors y is finite, we use simulation to accomplish this
for practical reasons.)

Naturally, MRMSE decreases as n increases for both methods; under kernel
estimation, a larger n tends to correspond to a smaller optimal b, while for the
stepwise Bayes technique the optimal k increases with n. For the linear parameter
function θ1, kernel estimation tends to outperform the stepwise Bayes estimator,
but the reverse is true for the spiky θ2.
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This is consistent with the heuristic concepts behind both methods: kernel esti-
mation uses a fixed portion of the available data for averaging, while δsb essentially
seeks to identify points of change in θ : D → [0, 1] and to average over such points.
Hence, one would expect the stepwise Bayes method to be more successful when
dealing with parameter functions such as θ2; this is precisely what is observed in
this example.

6. Final remarks

Here we have considered an objective, nonparametric Bayesian method for estima-
tion a binary regression function. The only prior information assumed is that the
response function can be well approximated by a mixture of step functions. The
method depends on specifying two parameters m and k. The first is less impor-
tant and gives a lower bound for the minimum length of the intervals defining an
approximating step function. The second is the number of different values an ap-
proximating step function can take on. A good choice for it depends on the sample
size and the smoothness of the regression function being estimated. But in the ex-
amples we considered our method seems to be more robust against this choice than
kernel estimators are for the choice of band width. The method should work well
for problems where the response function changes rapidly over some small interval
of values for the independent variable.
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