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Abstract: Using a Bayesian model with a class of hierarchically specified
scale-mixture-of-normals priors as motivation, we consider a generalization of
the grouped LASSO in which an additional penalty is placed on the penalty
parameter of the L2 norm. We show that the resulting MAP estimator obtained
by jointly minimizing the corresponding objective function in both the mean
and penalty parameter is a thresholding estimator that generalizes (i) the
grouped lasso estimator of Yuan and Lin (2006) and (ii) the univariate minimax
concave penalization procedure of Zhang (2010) to the setting of a vector of
parameters. An exact formula for the risk and a corresponding SURE formula
are obtained for the proposed class of estimators.

A new universal threshold is proposed under appropriate sparsity assump-
tions; in combination with the proposed class of estimators, we subsequently
obtain a new and interesting motivation for the class of positive part esti-
mators. In particular, we establish that the original positive part estimator
corresponds to a suboptimal choice of this thresholding parameter. Numerical
comparisons between the proposed class of estimators and the positive part
estimator show that the former can achieve further, significant reductions in
risk near the origin.
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1. Introduction

Let X ∼ Np(θ, Ip) and suppose it is desired to estimate the unknown vector θ ∈ R
p.

The standard estimator of θ is δ0(X) = X, in the sense that it is the maximum
likelihood estimator, the uniformly minimum variance unbiased estimator, and the
least squares estimator. Under a wide variety of loss functions, δ0(X) is also the
minimum risk equivariant estimator, a minimax estimator, and it is admissible for
p = 1 or 2. However, [38] showed that X is also inadmissible if p ≥ 3 for the squared
error loss L(θ, δ) = ‖δ(X) − θ‖2

2. This result was remarkable at the time and has
since led to a vast number of developments in multiparameter estimation, a field
that Bill Strawderman has deeply influenced and in which he continues to expand
the research frontier. An important aspect of this so-called “Stein-phenomenon” is
that it illustrates the inherent difference in the problems of simultaneously estimat-
ing θ versus a single component, say θi. Indeed, for each i = 1 . . . p, δ0i(X) = Xi is
an admissible estimator of θi whatever the value of p.

The risk of the MLE δ0(X) is p. [27] showed that

δc
JS(X) =

(
1 − c

‖X‖2
2

)
X(1.1)

dominates δ0(X) when p ≥ 3 provided that 0 < c < 2(p − 2); moreover, they
demonstrated that the risk of δJS(X) ≡ δp−2

JS (X) equals 2 at θ = 0 for all p ≥
3, indicating the substantial gains in risk near the origin for large p. However,
δc
JS(X) is known to be inadmissible since it can be dominated by Stein’s positive

part estimator [1, 2]. James-Stein estimators are such that, when ‖X‖2
2 < c, the

multiplier of X becomes negative and, furthermore, lim‖X‖2→0 ‖δc
JS(X)‖2 = ∞.

It follows that, for any K > 0, there exists η > 0 such that ‖X‖2 < η implies
‖δc

JS(X)‖2 > K. Hence an observation that would lead to almost certain acceptance
of H0 : θ = 0 can give rise to an estimate very far from zero. Furthermore, δc

JS(X)
is not coordinatewise-monotone in X in the sense that a larger value of X in a
particular coordinate may lead to a smaller estimate of the mean of that coordinate.
Such behavior is clearly undesirable.

One possible remedy is to modify the James-Stein estimator and use the positive-
part of its multiplier, namely

(1.2) δc
JS+(X) =

(
1 − c

‖X‖2
2

)
+

X

where (t)+ = max(t, 0). This is a particular example of a Baranchik-type estimator
[1, 2]. Results of [10] imply the positive-part version is itself inadmissible, although
this result was assumed to be true much earlier. Results due to [8] and [11] imply
that it is impossible to find an estimator that simultaneously dominates the positive-
part estimator and whose unbiased estimator of risk is uniformly smaller (i.e., in
X) than that of the positive-part estimator. In practical terms, this shows that
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improving upon the positive-part estimator is difficult and the usual tools of the
trade for constructing improved estimators fail. In a landmark paper, [36] introduce
an explicit class of estimators that dominate (1.2).

In this article, we develop a competing class of competitors to (1.2). The moti-
vation for this work stems from that of [42], who proves that (1.2) also arises as the
maximum aposteriori estimator (MAP) under a certain class of hierarchically speci-
fied but improper prior distributions that, in qualitative terms, behaves similarly to
the class of proper hierarchical prior distributions introduced by [40] in his seminal
work on proper Bayes minimax estimation of θ. The results of [42] are reviewed in
Section 2; there, we first briefly review some key results from decision theory on
Bayes minimax estimators. We also introduce some new hierarchical prior speci-
fications that lead to marginal priors on θ that are equivalent to those obtained
using the scale mixtures of multivariate normal distributions respectively consid-
ered in [40] and [42]. In Section 3, we then connect this work to current research
on penalized likelihood estimation, establishing in particular relationships between
the popular lasso and grouped lasso estimators and MAP estimation under these
new hierarchical prior specifications. In Section 4, we exploit these connections and
the ideas of [42] to motivate a new class of penalized likelihood estimators that can
be interpreted as MAP estimators under specific marginalizations of these prior
specifications. Formulas for the theoretical and empirical risk of these estimators
are derived in Section 5, and include numerical studies of performance. We close
this article in Section 6 with a discussion.

2. Estimation with hierarchical prior specifications

2.1. Minimax estimators derived from Bayes principles

The classical Stein estimate and its positive part modification can be motivated
in a number of ways, perhaps most commonly as empirical Bayes estimates (i.e.,
posterior means) under a normal hierarchical model in which θ ∼ Np(0, ψIp) and
ψ, viewed as a hyperparameter, is estimated [e.g. 17, 9, 22]. [10] proved that any
admissible estimator of the mean must be generalized Bayes, that is, minimizes the
posterior expected squared error loss under a possibly improper prior. It is well
known that neither (1.1) nor (1.2) are admissible estimators [e.g. 10]; however, like
the MLE δ0(X), both estimators are minimax [e.g. 2]. [40, 41], addressing an earlier
conjecture due to Stein on the existence of proper Bayes minimax estimators for θ,
proves that such estimators only exist for p ≥ 5.

The class of proper Bayes minimax estimators constructed in [40] relies on the use
of a hierarchically specified class of proper prior distributions πS(θ, κ). In particular,
πS(θ, κ) is specified according to

θ|κ ∼ Np(0, g(κ)Ip), πS(κ) = (1 − a)κ−a 11[0<κ<1],(2.1)

where g(κ) = (1 − κ)/κ and the constant a satisfies 0 ≤ a < 1 (i.e., πS(κ) is a
Beta(1 − a, 1) probability distribution); see [3, 4] for related generalizations and [5]
and [6] for further work on hierarchically specified priors in normal models. Suppose
a = 1/2; then, with ψ = g(κ) > 0 in (2.1), we obtain the equivalent specification

θ|ψ ∼ Np(0, ψIp), πS(ψ) =
1
2

(
1

1 + ψ

) 3
2

11[ψ>0].(2.2)
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Two interesting alternative formulations of (2.2), given below for the case p = 1
and generalized later for arbitrary p, are provided in Theorem 2.1 below. In what
follows, and hereafter, we let Gamma(τ, ξ) denote for τ, ξ > 0 a random variable
with probability density function

g(x|τ, ξ) =
ξτ

Γ(τ)
xτ −1e−xξ 11[x>0]

and Exp(ξ) correspond to the choice τ = 1 (i.e., an exponential random variable in
its rate parameterization).

Theorem 2.1. For p = 1, the marginal prior distribution on θ induced by (2.2) is
equivalent to that obtained under the specification

θ|ψ, λ ∼ N(0, ψ), ψ|λ ∼ Exp
(

λ2

2

)
, λ|� ∼ HN(�−1),(2.3)

where � = 1 and HN(ζ) denotes for ζ > 0 the half-normal density

f(x|ζ) =
√

2
πζ

exp
{

− x2

2ζ

}
11[x>0].

The marginal prior distribution on θ induced by (2.2) is also equivalent to that
obtained under the alternative specification

θ|λ ∼ DoubExp(λ), λ|� ∼ HN(�−1),(2.4)

where � = 1 and DoubExp(λ) denotes a random variable with the double exponential
probability density function

f(y|λ) =
λ

2
e−λ|y| 11[y∈R].

Proof. Following [24, 25], define

θ|ψ, ω ∼ N(0, ψ), ψ|ω ∼ Exp(ω), ω|δ, � ∼ Gamma(1/2, �).(2.5)

as a hierarchically specified prior distribution for θ, ψ and ω. The resulting marginal
prior distribution for θ, obtained by integrating out ψ and ω, is exactly the quasi-
Cauchy distribution of [28, 29]; see [24, 25] for details. [13] show that this distri-
bution also coincides with the marginal prior distribution for θ induced by taking
a = 1/2 in (2.1). The transformation λ =

√
2ω in (2.5) leads directly to (2.3) upon

setting � = 1; (2.4) is then obtained by integrating out ψ in (2.3).

2.2. The positive part estimator as a MAP estimator

In a very interesting paper, [42] proves that the minimax estimator (1.2) is also
the maximum aposteriori (MAP) estimator under a certain class of hierarchically
specified improper prior distributions, say πT (θ, κ) = π(θ|κ)πT (κ). For the specific
choice c = p − 2 in (1.2), Takada’s prior reduces to

θ|κ ∼ Np(0, g(κ)Ip), πT (κ) ∝ (1 − κ)p/2κ−1 11[0<κ<1].(2.6)

The prior (2.6) evidently behaves similarly to Strawderman’s proper prior (2.1)
(i.e., for a = 1/2) and the improper generalizations of this prior considered in [3, 4]
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and [20], particularly so as κ → 0. Notably, the numerator (1 − κ)p/2 in πT (κ)
explicitly offsets the contribution of (1 − κ)−p/2 arising from the determinant of the
variance matrix g(κ)Ip in the conditional prior specification θ|κ. Under the mono-
tone decreasing variable transformation ψ = g(κ) > 0, (2.6) implies an alternative
representation that is analogous to (2.2):

θ|ψ ∼ Np(0, ψIp), πT (ψ) ∝ ψ
p
2

(
1

1 + ψ

) p
2 +1

11[ψ>0].(2.7)

We observe that the proper prior πS(ψ) in (2.2) and improper prior πT (ψ) (2.7)
nearly coincide when p = 1; in particular, multiplying the former by ψ1/2 yields
the latter. In view of the fact that (2.2) and (2.3) lead to the same marginal prior
on θ when p = 1, one is led to question whether a deeper connection between
these two prior specifications might exist. Supposing p ≥ 1, consider the following
straightforward generalization of (2.3):

θ|ψ, λ ∼ Np(0, ψIp), ψ|λ ∼ Gamma
(

p + 1
2

,
λ2

2

)
, λ|� ∼ HN(�−1).(2.8)

Integrating λ out of the higher level prior specification

ψ|λ ∼ Gamma
(

p + 1
2

,
λ2

2

)
, λ|� ∼ HN(�−1),

the resulting marginal (proper) prior for ψ reduces to

π(ψ|�) ∝ ψ−1/2ψp/2

(
1

1 + ψ
�

) p
2 +1

11[ψ>0].(2.9)

For � = 1 and any p ≥ 1, the proper prior (2.9) is observed to be equal to the
improper prior πT (ψ) in (2.7), multiplied by ψ−1/2, and reduces Strawderman’s
prior (2.2) when p = 1.

3. Penalized likelihood and hierarchical prior specifications

Expressed in modern terms, [42] proves that the positive part estimator (1.2) is
the solution to a certain penalized likelihood estimation problem in which the
penalty (or regularization) term is determined by the prior (2.6). Penalized like-
lihood estimation, and more generally problems of regularized estimation, have
become very important conceptual paradigms in both statistics and machine learn-
ing. Such methods suggest principled estimation and model selection procedures for
a variety of high-dimensional problems. Regularization by squared Euclidean norms
has been thoroughly studied. In recent years, regularization through the use of other
norms has generated considerable interest; a particularly prevalent example is �1
norm regularization, that is, the so-called “lasso” problem [43]. Problems involving
regularization (and penalization) using norms other than the squared Euclidean
norm typically cannot be solved using simple linear algebra; tools for solving both
convex and also non-convex optimization minimization problems are needed.

In recent years, the statistical literature on penalized likelihood estimators has
exploded, in part due to success in constructing procedures for regression problems
in which one can simultaneously select variables and estimate their effects. The
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class of penalty functions leading to procedures with good asymptotic frequentist
properties have singularities at the origin; important examples of separable penal-
ties include the lasso [43], smoothly clipped absolute deviation [SCAD; 18], and
minimax concave [MCP; 48] penalties. In fact, most such penalties utilized in the
literature behave similarly to the lasso penalty near the origin, differing more in
their respective behaviors away from the origin, where control of estimation bias
for those parameters not estimated to be zero becomes the driving concern. In a
regression context, the main purpose of using a singular, separable penalty is to
permit one to estimate regression coefficients as being either nonzero or exactly
equal to zero, thereby permitting simultaneity in both estimation and variable se-
lection. Generalizations of the lasso penalty have recently been proposed to deal
with correlated groupings of parameters, such as those that might arise in prob-
lems with features that can be sensibly ordered [e.g., fused lasso; 44] or separated
into distinct subgroups [e.g., grouped lasso; 46]. In such problems, the use of these
penalties serves a related purpose. For example, in the case of the grouped lasso,
the goal is still to permit the possibility of simultaneous selection and estimation;
however, unlike the standard lasso penalty, the process of selection occurs at the
group level (i.e., all coefficients in a group are estimated as zero, or none are).

The lasso was initially formulated as a least squares estimation problem subject
to a �1 constraint on the parameter vector. The more well-known penalized likeli-
hood formulation arises from a Lagrange multiplier formulation of this constrained
optimization problem. Since the underlying objective function is separable in the
parameters, the underlying estimation problem is evidently directly related to the
now-classical problem of estimating a bounded normal mean. From a decision the-
oretic point of view, if X ∼ N(θ, 1) for |θ| ≤ λ then the projection of the usual
estimator dominates the unrestricted MLE but cannot be minimax for quadratic
loss because it is not a Bayes estimator. [14] showed that the unique minimax es-
timator of θ is the Bayes estimator corresponding to a two point prior on {−λ, λ}
for λ sufficiently small. [14] further showed that the uniform boundary Bayes es-
timator, λ tanh(λx), is the unique minimax estimator if λ < λ0 ≈ 1.0567. They
also considered three-point priors supported on {−λ, 0, λ} and obtained sufficient
conditions for such a prior to be least favorable. [30] considered the multivariate
extension, X ∼ Np(θ, Ip) with ‖θ‖2 ≤ λ and showed that the Bayes estimator with
respect to a boundary uniform prior dominates the MLE whenever λ ≤ √

p under
squared error loss.

It has long been recognized that the class of penalized likelihood estimators also
has a Bayesian interpretation. For example, in the canonical version of the “lasso”
problem, minimizing

1
2

‖X − θ‖2
2 + λ‖θ‖1, | |θ| |1 =

p∑
i=1

|θi|(3.1)

with respect to θ is easily seen to be equivalent to computing the MAP estimator of
θ under a model specification in which X ∼ Np(θ, Ip) and θ has a prior distribution

satisfying θi
iid∼ DoubExp(λ). It is easily shown that the solution to (3.1) is θ̂i(X) =

sign(Xi)(|Xi| − λ)+, i = 1 . . . p. The critical hyperparameter λ, though regarded as
fixed for the purposes of estimating θ, is typically estimated in some adhoc manner
(e.g., cross validation), resulting in an estimator with an empirical Bayes flavor.

In the machine learning literature, the double exponential density has been
widely used as a sparsity-inducing prior in various contexts [e.g., 32, 19, 37]. As
suggested in (2.3) and (2.4), a DoubExp(λ) distribution has a hierarchical repre-
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sentation, being obtained by treating λ as fixed and then integrating out ψ in (2.3).
[19] directly exploits this representation in deriving an EM algorithm for computing
the MAP estimator in a regression version of (3.1). [19] also introduces a variation
on this scheme in which the exponential prior distribution on ψ in (2.3) is replaced
by a version of Jeffrey’s prior. A related model in this class is known as the Rel-
evance Vector Machine [7, 45], where the marginal prior on θ is constructed from
a product of independent Student t−distributions. In hierarchical form, this corre-
sponds to a prior constructed from independent normal priors with distinct scale
parameters, each having a gamma density; compare (2.8).

As suggested in Theorem 2.1 and elsewhere, the double exponential prior inher-
ent in the lasso minimization problem (3.1) has broad connections to estimation
under hierarchical prior specifications that lead to scale mixtures of normal distri-
butions. As pointed out above, the conditional prior distribution of θ|λ obtained by
integrating out ψ in (2.3) is exactly DoubExp(λ). More generally, the conditional
distribution for θ|λ under the hierarchical prior specification (2.8) is a special case
of the class of multivariate exponential power distributions [cf. 23, Thm. 2.1]; in
particular, we obtain

π(θ|λ) ∝ λp exp {−λ‖θ‖2} ,(3.2)

a direct generalization of the double exponential distribution that arises when p = 1.
Treating λ as fixed hyperparameter, computation of the resulting MAP estimator
under the previous model specification X ∼ Np(θ, Ip) reduces to determining the
value of θ that minimizes

1
2

‖X − θ‖2
2 + λ‖θ‖2.(3.3)

The resulting estimator is easily shown to be

δGL(X) =
(

1 − λ

‖X‖2

)
+

X,(3.4)

an estimator that coincides with the solution to the canonical version of the grouped
lasso problem involving a single group of parameters [46] and equals θ̂(X) =
sign(X)(|X| − λ)+ for the case where p = 1. Interestingly, (3.4) is also similar
in form to, but distinct from, (1.2), a relationship that will be discussed in greater
depth below.

In summary, the lasso and (canonical) grouped lasso estimators can be viewed
as MAP estimators under the prior specification (3.2), where λ is treated as known.
As summarized earlier in Section 2.2, [42] also proves that the positive part esti-
mator (1.2) is the MAP estimator under a hierarchically specified prior that, for
c = p − 2, is given by (2.6) or, equivalently, (2.7). Evidently, these two classes of es-
timation problems are at least loosely related through the connections between the
prior specifications (2.7), (2.8) and (3.2) described earlier. However, an interesting
and noteworthy distinction is that the positive part estimator arises as the MAP
estimator when the corresponding posterior is maximized jointly in both θ and κ.
The positive part estimator also has excellent risk properties that, over time, have
proved to be challenging to dominate. In the prior formulation (2.9), hence (2.7),
the influence of the prior on λ in (2.8) is arguably implicitly captured through the
marginal prior on ψ. In (3.2), it is instead the influence of ψ that is being implic-
itly captured through consideration of the conditional prior θ|λ implied by (2.8),
with λ regarded as a known hyperparameter. Instead of treating λ as fixed, and in
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the spirit of [42], one may consider the possibility of generalizing the class of lasso
and grouped lasso estimators by maximizing the posterior distribution in both θ
and λ under a joint prior distribution given by (3.2) and a suitable class of prior
distributions on λ. We expand on this idea in Section 4 using prior distributions
motivated by the hierarchical structure (2.8). For simplicity, we continue to focus
on the canonical (i.e., single group) version of the grouped lasso estimation prob-
lem; extensions to the more practical setting of multiple groups of parameters are
possible and shall be considered elsewhere.

4. The WS estimator

Consider the problem of estimating θ in the canonical setting X ∼ Np(θ, Ip). In
view of the fact that (2.8) leads to (3.2) upon integrating out ψ, our starting point
is the (possibly improper) generalized class of joint prior distributions π(θ, λ|α, β),
which we define in the following hierarchical fashion:

π(θ|λ, α, β) ∝ λp exp { −λ‖θ‖2} , π(λ|α, β) ∝ λ−p exp{−α(λ − β)2},(4.1)

where α, β > 0 are hyperparameters. Equivalently,

π(θ, λ|α, β) ∝ exp { −λ‖θ‖2} exp{−α(λ − β)2}.(4.2)

The prior on λ is evidently an improper modification of that given in (2.8), in which
a location parameter β is introduced and a multiplicative λ−p is included in order to
offset the contribution λp in (3.2). This construction mimics the idea underlying the
prior used by [42] to motivate (1.2) as a MAP estimator; in addition, as will soon
be evident, this choice also turns out to be very convenient from a computational
point view.

Remark 4.1. In comparison with (2.9), the (improper) prior on ψ that is induced
by replacing π(λ|�) in (2.8) with π(λ|α, β = 0) in (4.1) is given by

π(ψ|α) ∝ ψ−1/2ψp/2

(
1

1 + ψ
α

)
11[ψ>0].

Interestingly, this prior places increasingly higher weight on larger values of ψ; in
contrast, the prior (2.7) is unimodal, achieving its maximum value at ψ = (p−1)/3.

Considering (4.2) as motivation for defining a new class of hierarchical penalty
functions, we propose to compute the MAP estimator for (θ, λ) through minimizing
the objective function

G(θ, λ) =
1
2

‖X − θ‖2
2 + λ‖θ‖2 + α(λ − β)2(4.3)

jointly in θ ∈ R
p and λ > 0, where α > 1/2 and β > 0 are fixed. The resulting esti-

mator for θ, hereafter referred to as the Whole vector Shrinkage (WS) estimator,
takes the closed form

δ(α,β)(X) = wα,β(‖X‖2)X,(4.4)

where

wα,β(s) =

⎧⎪⎪⎨⎪⎪⎩
0 s ≤ β

να

(
1 − β

s

)
β < s ≤ 2αβ

1 s > 2αβ
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for να = 2α/(2α − 1). Equivalently, we may write

wα,β(s) =

⎧⎨⎩να

(
1 − β

s

)
+

s ≤ 2αβ

1 s > 2αβ
,

demonstrating that (4.4) has the flavor of a range-modified positive part estimator.
We now state this result as a theorem and provide its proof.

Theorem 4.2. Let p ≥ 1, α > 1/2 and β > 0. Then, (4.3) is strictly convex for
(θ, λ) ∈ R

p × R+; moreover, this function has a unique minimum at θ = δ(α,β)(X)
and λ = λ(α, β,X), where

λ(α, β,X) = β − ‖δ(α,β)(X)‖2

2α
.(4.5)

Proof. Throughout, we suppose that X �= 0, as this occurs with zero probability.
For bookkeeping purposes, we also work with the following equivalently rescaled
version of (4.3):

G0(θ, λ0) = ‖X − θ‖2
2 + λ0‖θ‖2 + α0(λ0 − β0)2,

where λ0 = 2λ, β0 = 2β, and α0 = α/2. The objective function G0(θ, λ0) is clearly
continuous and bounded below for (θ, λ0) ∈ R

p × R+. We shall now establish
the strict convexity of G0(θ, λ0) on this same set under the restrictions α0 > 1/4
and β0 > 0. Convexity is not only desirable from the perspective of minimization;
it also ensures that the solution is continuous with respect to the regularization
parameter. We may write G0(θ, λ0) as ‖X‖2

2+‖θ‖2
2 −2〈X, θ〉+λ0‖θ‖2+α0(λ0 −β0)2,

where 〈X, θ〉 denotes the inner product. Since −2〈X, θ〉 is convex, the convexity of
G0(θ, λ0) is then determined by the convexity of

F (θ, λ0) = ‖θ‖2
2 + λ0‖θ‖2 + α0(λ0 − β0)2

for θ ∈ R
p and λ0 ∈ R+ when α0 > 1/4 and β0 ∈ R+.

Letting z = (θ′, λ0)′, observe that F (θ, λ0) = g(h1(z), h2(z)), where h1(z) =
‖A1z‖2 = ‖θ‖2 for the p × (p + 1) matrix A1 = (Ip 0), h2(z) = A2 z = λ0 for the
1 × (p + 1) vector A2 = (0′, 1)′ and

g(a, b) =
1
2

(a b)
(

2 1
1 2α0

) (
a
b

)
+ α0(β2

0 − 2bβ0), (a, b) ∈ R
2
+.

The function g(a, b) is strictly convex for (a, b) ∈ R
2
+ when α0 > 1/4. For such α0,

it is therefore monotonically increasing in each coordinate. The functions hi(z), i =
1, 2 are each convex for z ∈ R

p × R+. Consequently, F (θ, λ0) is strictly convex for
(θ, λ0) ∈ R

p × R+, proving that G0(θ, λ0) is strictly convex there.
An important consequence of these results is that G0(θ, λ0) has a unique solution

provided that α0 > 1/4. To deduce the form of this solution, we must find (θ∗, λ∗
0)

such that 0 ∈ ∂G0(θ∗, λ∗
0), where ∂G0 denotes the subdifferential of G0(θ, λ0). We

prove below that the solution exists in closed form and equals that specified in the
statement of the theorem.

Since G0(θ, λ0) is differentiable in λ0, we find that

λ∗
0 = max

{
β0 − ‖θ∗ ‖2

2α0
, 0

}
(4.6)
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regardless of θ∗. The solution θ∗ (i.e., as a function of X) can now be determined
by considering the possible values of ‖θ∗ ‖2.

Suppose first that ‖θ∗ ‖2 = 0; then, θ∗ = 0 and, from (4.6), λ∗
0 = β0 > 0. For

θ∗ = 0 to be the unique solution, G0(θ, λ0) further implies G0(0, β0) < G0(θ, β0)
for all θ �= 0; equivalently, for θ∗ = 0, X must satisfy

‖X‖2
2 < ‖X − θ‖2

2 + β0‖θ‖2

for all θ �= 0. Since

‖X − θ‖2
2 + β0‖θ‖2 = ‖X‖2

2 − 2〈θ,X〉 + ‖θ‖2
2 + β0‖θ‖2,

this follows if
‖θ‖2

2 + β0‖θ‖2 > 2〈θ,X〉.
By Cauchy-Schwarz,

| 〈θ,X〉| ≤ ‖θ‖2‖X‖2,

where equality holds if θ = X. Thus, we require

‖θ‖2
2 + β0‖θ‖2 > 2‖θ‖2‖X‖2,

leading to the inequality
‖θ‖2 + β0 > 2‖X‖2.

Since this must be satisfied for all θ �= 0, it follows that θ∗ = 0 is the solution when
‖X‖2 ≤ β0/2.

Now, assume that θ∗ �= 0 and hence that ‖X‖2 > β0/2. Suppose first that 0 <
‖θ∗ ‖2 ≤ 2α0β0. Using the definition of the subdifferential, it follows immediately
that θ∗ must satisfy

X =
(

1 +
β0

2‖θ∗ ‖2
− 1

4α0

)
θ∗.(4.7)

By (4.7),

‖X‖2 =
(

1 +
β0

2‖θ∗ ‖2
− 1

4α0

)
‖θ∗ ‖2 =

4α0 − 1
4α0

‖θ∗ ‖2 +
β0

2
;

upon rearranging terms, we find

‖θ∗ ‖2 =
4α0

4α0 − 1

(
‖X‖2 − β0

2

)
,

where ‖θ∗ ‖2 > 0 due to the fact that ‖X‖2 > β0/2. Substituting this expression
for ‖θ∗ ‖2 in (4.7) and solving for θ∗ yields

θ∗ =
4α0

4α0 − 1

(
‖X‖2 − β0/2

‖X‖2

)
+

X,

where it is noted that this reduces to X for ‖θ∗ ‖2 = 2α0β0. Finally, assume ‖θ‖2 >
2α0β0. Then, from (4.6), we must have λ∗ = 0, implying that θ∗ solves ‖X − θ‖2 +
α0β0, that is, θ∗ = X.

Combining the cases outlined above, and using the facts that λ0 = 2λ, β0 = 2β,
and α0 = α/2, it follows that θ∗ = δ(α,β)(X) in (4.4) and λ∗ given in (4.5) uniquely
minimize (4.3).
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Remark 4.3. The optimization of (4.3) for α = 0 may at first glance appear
to correspond to the minimization problem (3.1), in which λ is considered a fixed
constant and optimization takes place over θ only. However, recalling that (4.3) is
optimized jointly in (θ, λ), the correct correspondence is in fact obtained by letting
α → ∞. For example, with p = 1, it is easy to see that (4.4) reduces to the familiar
soft-thresholding estimator sign(X)(|X| − β)+ as α → ∞, with β replacing λ as the
penalty parameter. This is perfectly sensible when viewed from a Bayesian perspec-
tive: as α → ∞, the prior probability mass on λ becomes increasingly concentrated
at λ = β.

Some interesting special cases of the estimator (4.4) arise when considering spe-
cific values of α, β and p. For example, letting α → ∞, we obtain (for β > 0)

δ(β)(X) =
(

1 − β

‖X‖2

)
+

X;(4.8)

upon setting β = λ, we evidently recover (3.4); subsequently setting λ =
√

p − 2,
one then obtains an obvious modification of (1.2) for the case where c = p − 2:

δ∗
PP (X) =

(
1 −

√
p − 2

‖X‖2

)
+

X.(4.9)

Further specifications of α and β will be considered in later sections. In the special
case p = 1, the estimator (4.4) reduces to

δM (X) =

⎧⎪⎨⎪⎩
0 if |X| ≤ β

2α
2α−1 (X − sign(X)β) if β < |X| ≤ 2αβ

X if |X| > 2αβ

.(4.10)

As shown in [35], (4.10) is also the solution to the penalized minimization problem

1
2
(X − θ)2 + ρ(θ; α, β),

where β > 0, α > 1/2 and

ρ(t; α, β) = β

∫ |t|

0

(1 − z

2αβ
)+dz, t ∈ R.

This optimization problem is the univariate equivalent of the penalized likelihood
estimation problem considered in [47, 48], who refers to ρ(t; α, β) as the minimax
concave penalty (MCP). It follows that (4.10) is equivalent to the univariate MCP
thresholding operator; consequently, (4.4) may be regarded as a generalization of
this operator for thresholding a vector of parameters. [47, 48] shows that the lasso,
SCAD and MCP belong to a family of quadratic spline penalties with certain spar-
sity and continuity properties. MCP turns out to be the simplest penalty that results
in an estimator that is nearly unbiased, sparse and continuous. As demonstrated
above, MCP also has an interesting Bayesian motivation under a hierarchical mod-
eling strategy. Simulation evidence for the advantages of MCP over other penalties
can be found in [47, 48] and [31]. [35] undertakes a more detailed study of the con-
nections between MCP and the hierarchically penalized estimator for the case of
p = 1, as well as compares this estimator to several others through consideration
of frequentist and Bayes risks.
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In addition to the various special cases outlined above, one may also consider an
elastic-net-type extension of (4.3) [cf. 49]. In particular, consider minimizing the
extended objective function

1
2

‖X − θ‖2 + λ1‖θ‖2 + λ2‖θ‖2
2 + α(λ1 − β)2(4.11)

jointly in θ ∈ R
p and λ1, λ2 ∈ R+ for β > 0 and α > 1/(2[1 + 2λ2]). The resulting

estimator takes the closed form

δ(α,β,λ2)(X) = (1 + 2λ2)−1δ(α(1+2λ2),β)(X),

where δ(α,β)(·) is defined in (4.4). The proposed estimator can be considered as a
hierarchical extension of that proposed in [49], who generalize the lasso procedure
using a linear combination of �1 and �2 penalties.

5. Exact and unbiased estimators of the risks of the positive part and
WS estimators

In Section 5.1, we utilize the techniques of [2] and [40] to derive expressions for the
risk of the WS estimator (4.4) and also the positive part estimator in the case where
X ∼ Np(θ, Ip); some associated numerical results and comparisons are provided
in Section 5.2, where the impact of α is also explored. Following [39], we then
develop an unbiased estimator of risk in Section 5.3, that is, a SURE formula [cf.
16]. Methods for selecting β, including a universal threshold criterion and a SURE-
based criterion, are proposed in Sections 5.4.1 and 5.4.2. Finally, in Section 5.5,
we compare the theoretical risk of the positive part estimator (1.2) (c = p − 2) to
the risks (theoretical or simulated, as appropriate) of various versions of the WS
estimator (4.4).

5.1. Exact risks

A formula for the risk of (1.2) with c > 0 can be obtained in a manner analogous
to [2] and [40]; in particular, one can show that

E
[

‖δc
JS+(X) − θ‖2

2

]
= p + exp

{
− 1

2
‖θ‖2

2

} ∞∑
k=0

‖θ‖2k
2

2kk!
Jp(k, c),(5.1)

where Yk ∼ χ2
p+2k and

Jp(k, c) = E

[
Ykq2(Yk) − 4kq(Yk) − p + 2k

]
for q(s) = (1 − c/s)+. Using the facts that

Jp(k, c) = (−p + 2k)P {Yk ≤ c} + E[Yk 11[Yk>c]]

+ (c2 + 4kc)E[Y −1
k 11[Yk>c]]

− (p + 2(c + k))E[Yk 11[Yk>c]]

and

E[Y r
k I{a ≤ Yk ≤ b}] =

Γ
(

p+2(r+k)
2

)
Γ

(
p+2k

2

) 2rP {a ≤ χ2
p+2(r+k) ≤ b}(5.2)
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for 0 ≤ a < b and any r such that p + 2(r + k) is a positive integer, some easy
calculations show

Jp(k, c) = (2k − p)P {χ2
p+2k ≤ c} − (p + 2(c + k))P {χ2

p+2k > c}

+ (p + 2k)P {χ2
p+2k+2 > c} +

c2 + 4kc

p + 2k − 2
P {χ2

p+2k−2 > c}.

[34] provides an alternative, finite series representation for the risk of this estimator
in the case of unknown variance.

A formula for the risk of (4.4), assuming α > 1/2 and β > 0 can be derived
similarly to (5.1); in particular, straightforward calculations yield

E
[

‖δ(α,β)(X) − θ‖2
2

]
= p + exp

{
− 1

2
‖θ‖2

2

} ∞∑
k=0

‖θ‖2k
2

2kk!
Hp(k, α, β),(5.3)

where Yk ∼ χ2
p+2k and

Hp(k, α, β) = E

[
Ykw2

α,β(Yk) − 4kwα,β(Yk) − p + 2k

]
.

As in (5.1), the resulting risk formula involves an infinite series of weighted chi-
square probabilities, now depending on α and β, that one may simplify using (5.2)
and the fact that

H(k, α, β) = (−p + 2k)P
{
Yk ≤ β2

}
+ E

[
(Yk − (p + 2k)) 11[Yk>4α2β2]

]
+

(
ν2

αβ2 − p + 2k(1 − 2να)
)
P

{
β2 < Yk ≤ 4α2β2

}
+ E

[(
ν2

αYk − 2ν2
αβ Y

1/2
k + 4kναβ Y

−1/2
k

)
11[β2<Yk ≤4α2β2]

]
.

In both cases, the risk may be accurately computed numerically using a truncated
series approximation, at least for moderate values of ‖θ‖2.

5.2. Some numerical insights

The risk formulas in the previous section are very similar in form but difficult to
compare directly, even when done term-by-term. In Figures 1 and 2, we therefore
provide plots of the risk (5.1) and the partially optimized risk

R(α, ‖θ‖2) = min
β≥0

E
[

‖δ(α,β)(X) − θ‖2
2

]
in an effort to better understand (i) the role and impact of α and (ii) how, for α = ∞,
the optimized version of (4.8) (equivalently, (3.4)) compares to (1.2) (c = p − 2)
in terms of risk. It is important to note that the optimal solution β(α) depends
not only on α but also on ‖θ‖2; hence, these plots are not intended to depict the
performance of a computable, data-based estimator of θ. Nevertheless, the results
do lead to some useful and interesting insights, as discussed below.

We consider α = 1, 2, 4, 6, 10, ∞, ‖θ‖2 ∈ [0, 10] and p ∈ {3, 5, 7, 9}. In the context
of the hierarchical prior specification (4.1), increasing the value of α corresponds
to using an increasingly informative prior on λ, concentrating increasing amounts
of mass near λ = β. For each p and ‖θ‖2, R(α, ‖θ‖2) is observed to decrease as
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Fig 1. Plots of β−optimized risk for selected values of α (p = 3 and p = 5). Solid dark line
corresponds to α = ∞, solid red line corresponds to (1.2) with c = p − 2.
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Fig 2. Plots of β−optimized risk for selected values of α (p = 9 and p = 13). Solid dark line
corresponds to α = ∞, solid red line corresponds to (1.2) with c = p − 2.
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α increases, with the largest changes occurring between α = 1 and α = 4 and
the impact of α on risk becoming increasingly smaller as α continues to increase.
Interestingly, a precipitous drop in the optimized risk also occurs as one moves away
from the origin, followed by a gradual rise to p.

Plots of β(α) by ‖θ‖2 (not shown) also demonstrate some interesting patterns.
For example, for a given value of p, there exists a sharp peak in the values of β(α)
for values of ‖θ‖2 near zero; in addition, the magnitude and location of this peak are
approximately independent of α, consistent with the behavior of the optimized risk
in Figures 1 and 2. We further observe that β(α) decays as ‖θ‖2 increases away from
the value corresponding to the peak value of β(α). For α = ∞, this decay occurs
in a monotone fashion as ‖θ‖2 increases; such behavior is not unexpected, since
increasing values of ‖θ‖2 should generate increasingly large values of ‖X‖2, thereby
decreasing the necessity for thresholding X. However, for α < ∞, there exists a
finite ‖θ‖2 such that the optimal β eventually reverses its decline and starts to
increase slowly. In view of (4.4), such behavior does not appear to be numerical
artifact but instead a consequence of fixing α. In particular, the eventual increase
in β(α) likely reflects the need to expand the region of shrinkage in (4.4) in order
to continue to effectively manage the bias-variance tradeoff.

In general, the risk plots also suggest that it may be possible to achieve a sub-
stantial improvement on the positive part estimator (1.2) (c = p − 2), at least for
smaller values of ‖θ‖2, through optimization of β. While α → ∞ appears to offer
an optimal choice from the perspective of risk minimization, relatively small gains
in risk are also observed beyond α = 4, particularly as ‖θ‖2 and/ or p increases.
Of course, the degree of improvement observed in Figures 1 and 2 must be treated
with skepticism because the value of β used (i.e., β(α)) depends directly on ‖θ‖2. In
Section 5.5, we therefore evaluate the risk-based performance of (4.4) using α = 4
and α = ∞ and several possible choices of β, including a data-based method in
which β is selected by minimizing an unbiased estimate of the risk (5.3) derived in
Section 5.3 below.

Remark 5.1. The consideration of a fixed, finite α is consistent with [47, 48],
who explores the performance of the MCP penalty in this case and demonstrates
improved variable selection performance in comparison to the lasso (α = ∞) and
SCAD penalty functions. The use of a data-based criterion for selecting α is also
possible and worthy of consideration. However, the results thus far suggest that
larger, fixed choices of α may result in estimators with similar risk profiles. As
a result, the use of a purely risk-based criterion for selecting α may not be very
informative. Further investigation into the role and importance of α is worthwhile
and may dictate better choices of criterion functions for selecting this parameter.

5.3. Unbiased estimators of risk

In general, when estimating θ by some estimator δ(X) under a given loss function
L(θ, δ(X)), classical decision theory advocates that such a decision rule should be
used if it has suitable properties with respect to the frequentist risk R(θ, δ) =
E[L(θ, δ(X))]. However, having observed X, instances arise in practice in which
δ(X) is to be accompanied by an assessment of its loss L(θ, δ(X)). This loss function,
which depends on θ, is not an observable quantity since θ is unknown. A common
approach to this assessment is to consider the estimation of L(θ, δ(X)) (equivalently,
the corresponding risk function) by a so-called “loss estimator” Λ0(X) that depends
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only on X. There is now a sizable literature dealing with loss estimation; [21] provide
a recent review.

In a classic article, [39] developed an unbiased estimator of the risk under the
quadratic loss | |δ(X) −θ| |22 for (nearly) arbitrary estimators of the form δ(X) = X+
g(X). In particular, under certain differentiability conditions that will be recalled
below, he shows that

Λ0(X) = p + 2 divg(X) + | |g(X)| |22
satisfies Eθ[Λ0(X)] = E[| |δ(X) − θ| |22] ≡ R(θ, δ), where the expectation is taken
under θ and divg(X) stands for the divergence of g(X). The resulting unbiased
estimator of the risk, called the Stein’s Unbiased Risk Estimate (SURE), was used
primarily for the purpose of constructing estimates that improve on the MLE X in
the case where p ≥ 3 (i.e., to devise sufficient conditions such that R(θ, δ) ≤ p).

[16] demonstrated the importance and utility of SURE as a tool for threshold
selection in the context of function estimation using wavelets, opening the door to a
much wider range of possible applications. A formula for the SURE associated with
(1.2) can be found in Cai and Zhou [12, Eqn. 5]. In this subsection, we shall derive an
explicit expression of this SURE for the estimator δ(α,β)(X) in (4.4). In a subsequent
section, we shall make use of this SURE expression to select the hyperparameter β
for a given value of α. Recalling (4.4) and writing δ(α,β)(X) = X + g(X), we have

g(X) =

⎧⎪⎨⎪⎩
−X ‖X‖2 ≤ β

1
2α−1X − 2αβ

2α−1
X

‖X‖2
β < ‖X‖2 ≤ 2αβ

0 ‖X‖2 > 2αβ.

The function g(·) is a weakly differentiable function from R
p → R; that is, one

can show that there exist p functions h1(·), . . . , hp(·) that are locally integrable on
R

p such that∫
Rp

g(x)
∂ϕ

∂xi
(x) dx = −

∫
Rp

hi(x) ϕ(x) dx, i = 1, . . . , p

for any infinitely differentiable function ϕ on R
p with compact support. The func-

tions hi(·) are defined to be the i-th partial weak derivatives of g(·). Using Stein’s
identity [39], we have,

SURE(δ(α,β)(X)) = p + 2 divg(X) + | |g(X)| |22.(5.4)

A straightforward calculation shows

| |g(X)| |2 =
p∑

i=1

[
−Xi 11[‖X‖2≤β] +

(
Xi

2α − 1
− 2αβ

2α − 1
Xi

‖X‖2

)
11[β<‖X‖2≤2αβ]

]2

= ‖X‖2
2

[
− 11[‖X‖2≤β] +

(
1

2α − 1
− 2αβ

2α − 1
1

‖X‖2

)
11[β<‖X‖2≤2αβ]

]2

= ‖X‖2
2

[
11[‖X‖2≤β] +

(‖X‖2 − 2αβ)2

(2α − 1)2‖X‖2
2

11[β<‖X‖2≤2αβ]

]
.(5.5)

In addition, for z ∈ R
p, one can show that div(z/‖z‖2) = (p − 1)/‖z‖2; therefore,

divg(X) = −p 11[‖X‖2≤β] +
(

p

2α − 1
− 2αβ

2α − 1
(p − 1)

‖X‖2

)
11[β<‖X‖2≤2αβ]

= −p 11[‖X‖2≤β] +
p‖X‖2 − 2αβ(p − 1)

‖X‖2(2α − 1)
11[β<‖X‖2≤2αβ].(5.6)
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Substituting (5.5) and (5.6) into the SURE formula (5.4) and collecting terms,
it follows that

SURE(δ(α,β)(X)) = p + (‖X‖2
2 − 2p) 11[‖X‖2≤β] + Vp(α, β, ‖X‖2)(5.7)

where

Vp(α, β, ‖X‖2) =
[

2p

2α − 1
+

(‖X‖2 − 2αβ)2

(2α − 1)2
− 4αβ(p − 1)

(2α − 1)‖X‖2

]
11[β<‖X‖2≤2αβ].

For α = ∞, (5.7) is identical, except that we replace Vp(α, β, ‖X‖2) with its limit

Vp(∞, β, ‖X‖2) =
[
β2 − 2β(p − 1)

‖X‖2

]
11[β<‖X‖2].

5.4. Tuning parameter selection

5.4.1. A “universal threshold” criterion

Suppose θ = 0. Then, one may ask whether it is possible to select β in such a way
that ensures that P (δ(α,β)(X) = 0) ≈ 1. Such an idea underlies the development
of the “universal threshold” originally developed for use in wavelet thresholding
applications [15, 16]. In the present case, and assuming ‖θ‖2 = 0,

P
(
δ(α,β)(X) = 0

)
= P (‖X‖2 ≤ β) = 1 − P

(
‖X‖2

2 > β2
)
,

where ‖X‖2
2 ∼ χ2

p. An asymptotic approach to this problem is to determine a
threshold ωp such that ωp = β2

p and

P
(
χ2

p > ωp

)
→ 0

as p → ∞. Notably, the choice ωp = p (equivalently, βp =
√

p) does not work since
one can easily prove directly that

lim
p→∞

P
(
χ2

p > p
)

=
1
2
.

For any x > 0, recall that

P
(
χ2

p > x
)

=
Γ

(
p
2 , x

2

)
Γ

(
p
2

) ,

where Γ(v, z) =
∫ ∞

z
sv−1e−sds. Using inequalities devised in [33] for the incomplete

gamma function, the following bounds are easily obtained:(ωp

2

) p
2 −1

e−ωp/2

Γ
(

p
2

) < P
(
χ2

p > ωp

)
< b

(ωp

2

) p
2 −1

e−ωp/2

Γ
(

p
2

)
for p > 2, b > 1 and ωp > b(p−2)/(b−1). Recalling that ωp = p gives P

(
χ2

p > ωp

)
→

1/2, consider ωp = hp for h > 1. Substituting this choice into the lower and upper
bounds given above, it is easily shown that both converge to zero. It follows that
P

(
χ2

p > ωp

)
→ 0 as p → ∞ if one takes ωp = hp and we can select h > 1 and b > 1
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such that hp > b(p − 2)/(b − 1). When p > 2, these conditions are satisfied for any
h > 1 provided that b ≥ h/(h − 1).

The above arguments establish that the smallest threshold ωp leading to a unit
probability of thresholding for θ = 0 as p → ∞ satisfies ωp = hp (equivalently,
βp =

√
hp) for h > 1. An interesting choice of h is simply να = 2α/(2α − 1) for any

finite α > 1/2.
In addition to being an interesting result in its own right, the above calculations

lead to a new and fascinating justification for the class of positive part estimators
(1.2). Consider, in particular, estimating β using

(5.8) β̂(X) =
hp

‖X‖2
,

for some fixed h > 0. Observe that

P
(
δ(α,β̂(X))(X) = 0

)
= P

(
‖X‖2 ≤ β̂(X)

)
= 1 − P

(
‖X‖2

2 > hp
)
;

provided h > 1, we see from earlier calculations that this probability also converges
to one as p → ∞ when θ = 0. Notice, however, that

δ(α,β̂(X))(X) = w
α,β̂(X)

(‖X‖2)X,(5.9)

where

w
α,β̂(X)

(‖X‖2) =

⎧⎪⎪⎨⎪⎪⎩
0 ‖X‖2

2 ≤ hp

να

(
1 − hp

‖X‖2
2

)
hp < ‖X‖2

2 ≤ 2αhp

1 ‖X‖2
2 > 2αhp

for να defined as before. For α = ∞, this estimator reduces to (4.8) with β = β̂(X);
equivalently, we obtain (1.2) for c = hp. In other words, for certain choices of c,
(1.2) can be interpreted as the solution to (3.2) with λ = β̂(X), an “optimal”
choice of thresholding parameter under sparsity of the mean vector. Interestingly,
the estimator (1.2) for c = p − 2 corresponds to selecting h = 1 − 2p−1 < 1 in (5.9),
an estimator that is arguably suboptimal in the sense just described.

5.4.2. SURE-based selection

Fixing α and considering (5.7) as a function of β leads to an empirical procedure
for selecting β, in particular taken to be a minimizer of (5.7). Evidently, (5.7) is
a discontinuous function of β for α < ∞; moreover, a unique minimizer typically
does not exist. In the spirit of [16], we therefore propose to select the smallest value
of β minimizing (5.7) for β ∈ [0,

√
hp], where the upper bound corresponds to the

threshold calculation of Section 5.4.1. Numerically, the optimal β, say β̂SURE(α),
is then easily determined, at least approximately, upon evaluating (5.7) over a fine
grid spanning this interval.

5.5. Simulation results

In this section, we consider the risk-based performance of (4.4) for the specific
choices α = 4 and α = ∞. We further considered several choices for β, including

• β =
√

hp for h = 8/7 (universal threshold, Section 5.4.1, using h = ν4)
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• β =
√

p − 2 (i.e., estimator (4.9))
• β = (5.8) (i.e., estimator (5.9))
• β = β̂SURE(α) (Section 5.4.2)

For each α, theoretical risk calculations are done for the first two choices of β,
whereas simulated risks are obtained for the latter two selections. We note that the
risk of (5.9) for α = ∞ can also be computed using (5.1). We include for comparison
the theoretical risk for the standard form of the positive part estimator (1.2) (i.e.,
c = p − 2).

In general, Figures 3–6 suggest that the estimators using β = (5.8) and β =
β̂SURE(α) perform similarly for α = 4 and α = ∞, particularly for ‖θ‖2 ≤ 4. For
larger ‖θ‖2, β = β̂SURE(α) tends to result in somewhat lower risk. For both α = 4
and α = ∞, the selection β =

√
hp also tends to yield the smallest risk for ‖θ‖2 < 2,

seemingly consistent with its derivation; however, its performance soon degrades,
thresholding X more often than necessary. The effect of selecting α < ∞ is perhaps
most clearly seen for the selection β =

√
p − 2, where the risk remains under control

for larger values of ‖θ‖2 when compared to setting α = ∞.
Of significant interest here is the performance of all such estimators relative to

(1.2) for c = p − 2. All choices of β lead to substantial reductions in risk for small
values of ‖θ‖2, and those utilizing a data-based choice of β (i.e., β = (5.8) and
β = β̂SURE(α)) also perform similarly to (1.2) for large values of ‖θ‖2. However, an
apparent difficulty remains in beating (1.2) for moderate values of ‖θ‖2. While the
exact reasons for this difficulty are unknown, we conjecture that this may well be a
consequence of the fact that (1.2) and (1.1) are (nearly) equivalent for values of ‖θ‖2

sufficiently far from the origin and that the choice c = p − 2 in (1.1) corresponds to
the estimator having the smallest risk among all estimators of the form (1.1) [e.g.
26].

6. Discussion

Motivated by [40] and [42], and through consideration of hierarchical prior con-
structions derived from scale mixtures of normal distribution, we have attempted
to point out and exploit interesting connections between the (arguably) original
version of the large p - small n problem that permeates much of Bill Strawderman’s
work and today’s ever-growing literature on solving such problems from the per-
spective of penalized likelihood. We have also demonstrated, in particular, that it
is possible to significantly improve on the venerable positive part estimator using
a class of estimators derived from (4.4). The theoretical risk plots in Figures 1 and
2 suggest that an (unrealistically) accurate choice of β can produce an estimator
that beats the positive part estimator over a wide range of θ; the simulated risks in
Figures 3–6 demonstrate that significant gains remain possible using a data-based
choice of β, at least for θ closer to the origin, and with increasingly little penalty
as p grows.

Further work in the general area of hierarchical prior design and methods of
hyperparameter selection in the context of penalized likelihood problems seems
warranted. As one example: in deriving (4.4), the form of the prior, while loosely
similar to that considered in (2.8), was specifically selected to make closed form
computations feasible. The fact that this conveniently chosen hierarchical prior
leads to the MCP thresholding function of [47, 48] in the case where p = 1 is
both fascinating and unexpected; that the MCP thresholding function has also
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Fig 3. Risk plots for α = 4 (p = 3 and p = 5). The risks for β = (5.8) and β = β̂SURE(α) are
simulated using 2500 randomly generated datasets for each ‖θ‖2; all others are computed using
the theoretical risk formulas from Section 5.1.
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Fig 4. Risk plots for α = 4 (p = 7 and p = 9). The risks for β = (5.8) and β = β̂SURE(α) are
simulated using 2500 randomly generated datasets for each ‖θ‖2; all others are computed using
the theoretical risk formulas from Section 5.1.
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Fig 5. Risk plots for α = ∞ (p = 3 and p = 5). The risks for β = (5.8) and β = β̂SURE(α) are
simulated using 2500 randomly generated datasets for each ‖θ‖2; all others are computed using
the theoretical risk formulas from Section 5.1.
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the theoretical risk formulas from Section 5.1.
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proved to be a very effective alternative in comparison with both the lasso and
SCAD penalties in the regression context suggests, at the very least, a continued
potential for numerous fruitful avenues of further investigation. As one specific
example: the direct generalization of (4.4) to the more practical setting of multiple
groups of parameters has already generated some new and interesting estimators
with properties that we intend to investigate and report elsewhere.
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