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Abstract: We consider estimation problem of a normal quantile μ + ησ. For
the scale invariant squared error loss and unrestricted values of the population
mean and standard deviation μ and σ, [13] established the inadmissibility of
the MRE estimator for η �= 0. In this paper, we explore: (i) the impact of the
loss with the study of scale invariant absolute value loss, and (ii) situations
where there is a parameter space restriction of a lower bounded mean μ. We
establish

(i) the inadmissibility of the MRE estimator of μ + ησ; η �= 0; under scale
invariant absolute value loss;

(ii) the inadmissibility of the Generalized Bayes estimator of μ + ησ; η >
0; under scale invariant squared error loss, associated with the prior mea-
sure 1(0,∞)(μ)1(0,∞)(σ) which represents the truncation of the usual non-
informative prior measure onto the restricted parameter space.

Both of these results are obtained through a conditional risk analysis and
may be viewed as extensions of [13]. Finally, we provide further applications
to two-sample problems under the presence of the additional information of
ordered means.
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1. Introduction

Bill Strawderman has contributed in deep and original ways to statistical decision
theory, Bayesian analysis and their applications. He has shared with enthusiasm
his sharp intuition and vast knowledge in statistics with many of the contributors
of this volume, us included. The statistical community has benefited greatly from
his contributions through his own research, his influence on others and his untiring
devotion and service to the cause of the profession for over 40 years. We are pleased
to join in this celebration in honor of Professor Strawderman.

Many practical situations and fields of study such as reliability, life testing, mor-
tality data, insurance, economics, and education, require efficient statistical meth-
ods for drawing inference upon percentiles or quantiles. In this regard, [1] survey
various interval estimation methods, while many papers have been dedicated to
practical aspects of such problems, as described for instance in [4]. Consider a
random sample from a normal population with unknown mean μ and standard de-
viation σ, and the problem of estimating a quantile μ + ησ, with η known. A very
interesting decision-theoretic result due to Zidek [13], which was expanded upon
by Rukhin [11], is the inadmissibility of the benchmark minimum risk equivariant
(MRE) and minimax estimator δ0 of μ + ησ, for η �= 0, under scale and location
invariant squared error loss ( δ−μ−ησ

σ )2. This finding also represents a particular
instance of an inadmissible Generalized Bayes estimator (η �= 0), since δ0 is indeed
Bayes with respect to the non-informative prior measure

(1.1) π(μ, σ) =
1
σ

1(− ∞,∞)(μ) 1(0,∞)(σ) .

These findings contrasts with the case η = 0, that is the admissibility of the MRE
estimator (i.e., the sample mean) for estimating the mean of a normal population, as
well as the admissibility of the Bayes estimator for a known variance with respect
the flat prior 1(0,∞)(μ) ([3]). Observe as well that the admissibility of the MRE
estimator for η = 0 holds for many symmetric losses, such as absolute value loss.

It is of intrinsic interest to revisit Zidek’s result in [13], with the thought of (i)
assessing the impact of the loss function and thus potentially gaining a more general
understanding if similar results are found to be true, and (ii) investigating whether
the inadmissibility result persists for other generalized Bayes estimators, such as
for priors which incorporate parametric restrictions on (μ, σ). We will focus in (i)
on scale invariant absolute value loss, which possesses attractive features of its own,
and which has been recently considered for MRE estimators under various models
in [5]. For (ii), we investigate the case of a lower bounded mean. Key findings of
this paper include:

(a) the inadmissibility for η �= 0 of the MRE (or Bayes with respect to the prior
in (1.1)) estimator under scaled absolute value L1 error loss | δ−μ−ησ

σ |;
(b) the inadmissibility for η > 0 under scale invariant squared error L2 loss of the

generalized Bayes estimator δπ0 with respect to the prior,

(1.2) π0(μ, σ) =
1
σ

1(0,∞)(μ) 1(0,∞)(σ) ,
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which represents the truncation of the prior π in (1.1) onto the restricted parameter
space. We expand further on the estimation context relative to (b) at the beginning
of Section 4.

As in [12] or [13], the inadmissibility results stem actually from more general
complete class results, and are based on the study of scale invariant estimators
and a risk analysis conditional on the maximal invariant (Section 2). Various other
technical results and arguments with L1 loss and analytical properties of the Bayes
estimator δπ0 , are required (e.g., Lemma 2). The treatment is unified in (a) with
[13]’s result for L2 loss (Section 3), while our findings in (b) are cast amongst
a scarcity of work concerning the estimation of quantiles under a parametric re-
striction (Section 4). Finally in Section 5, we expand upon further implications
for two-sample problems with additional information on the means, by making use
of a variant of the so-called “rotation” technique introduced in the late 60’s by
Blumenthal, Cohen and Sackrowitz.

2. Preliminaries and conditional risk analysis

Our results are derived for the canonical form:

(2.1) X ∼ N(μ, σ2), S2 ∼ Gamma(
n − 1

2
, 2σ2), n ≥ 2,

(X, S2) independent. The objective is to estimate the quantile μ + ησ (η �= 0) with
scale invariant loss

(2.2) ρ (
δ − μ − ησ

σ
) ,

ρ being nonnegative, absolutely continuous, convex, ρ(0) = 0.

Remark 1. Results derived for the canonical form in (2.1) apply for independent
observable X1, . . . , Xn ∼ N(θ, σ2), with sample mean X̄, and for estimating a
quantile θ + βσ by δ′ under the loss ρ∗( δ′ −θ−βσ

σ ). This is achieved by setting X =√
n X̄, S2 =

∑n
i=1(Xi − X̄)2, μ =

√
n θ, η =

√
n β, δ =

√
n δ′, and ρ(z) = ρ∗(z/

√
n).

Remark 2. If the parameter space is unrestricted (i.e., μ ∈ �, σ > 0), we may
assume without loss of generality that η > 0. Indeed in the model:

X ′ ∼ N(μ′, σ2), S2 ∼ Gamma(
n − 1

2
, 2σ2),

(X ′, S2) independent, the loss ρ0(
δ′(X′,S)−μ′ −ησ

σ ) with η < 0 matches the loss
ρ( δ(X,S)−μ−ησ

σ ) for the canonical form in (2.1) with X = −X ′, μ = −μ′, η =
−η′, δ = −δ′, and ρ(z) = ρ0(−z) for all z ∈ �. However, for positive η and positiv-
ity constraint μ ≥ 0, the equivalent problem for negative η is as above but with a
negativity constraint μ′ ≤ 0.

Following [13], our conditional risk analysis proceeds as follows. In (2.1), set
Y = X

S , V = S
σ , and λ = μ

σ . Next, consider the class of scale invariant estimators of
the form δψ(X, S) = Sψ(Y ), to which the MRE estimator belongs as δmre(X, S) =
S(Y + cρ,nη) (see (3.2) for a representation of cρ,n). Then, decompose the risk of
δψ,

(2.3) R((μ, σ), δψ) = E[ρ(
S ψ(Y ) − μ − ησ

σ
)] = E[r(λ, ψ(Y ))],
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with

(2.4) r(λ, ψ(y)) = E[ρ(V ψ(y) − λ − η) |Y = y],

being the conditional risk of δψ (given Y = y) and depending on the parameters
(μ, σ) only through their ratio λ. Hence, dominance or complete class results are
available by comparisons of the conditional risks r(λ, ψ(y)) only.

Lemma 1. (a) For fixed λ, there exists an optimal choice ψ∗
λ(y) which minimizes

in ψ(y) the conditional risk in (2.4), and it is found from

(2.5) E[ ρ′(W ψ∗
λ(y) − λ − η) ] = 0 ,

with the distribution of W depending on λ and y, with density proportional to

(2.6) wn e
−( 1+y2

2 ) (w− λy

1+y2 )2 1(0,∞)(w) .

(b) For fixed λ, δψ1 dominates δψ2 (δψ1 �= δψ2) if for all y ∈ �: δψ2(y) ≥ δψ1(y) ≥
δψ∗

λ
(y) or δψ2(y) ≤ δψ1(y) ≤ δψ∗

λ
(y), with strict inequality between ψ1(y) and

ψ2(y) on a set of positive Lebesgue measure.

Proof. (a) First, observe that r(λ, ψ(y)) is convex in ψ(y) since ρ is convex. There-
fore,

(2.7) E[ V ρ′(V ψ∗
λ(y) − λ − η) |Y = y] = 0 .

The conditional density fV |Y =y is obtained as in (2.6) with n replaced by n − 1.
Finally, defining W as a random variable with density proportional to wfV |Y =y(w)
in (2.7), leads to (2.5) and (2.6).
(b) This is a consequence of part (a) and convexity of r(λ, ψ(y)) as a function of
ψ(y).

As a function of λ, ψ∗
λ(y) may be bounded, and this leads to complete class

results as implied by part (b) of the previous lemma. Indeed, in the cases under
study here, ψ∗

λ(y) will be shown to be upper bounded (e.g., Theorems 1 and 2),
and the inadmissibility results will concern estimators δψ with large ψ.

Corollary 1. Suppose there exists an upper envelope ψ̄(y) on a region D for ψ∗
λ(y)

such, that for all y ∈ D, ψ̄(y) ≥ ψ∗
λ(y) for all (μ, σ) ∈ Θ. Let δψ be a scale invariant

estimator and let C be a subset of D such that the Lebesgue measure of C is positive,
where C = {y ∈ D : ψ(y) > ψ̄(y)}. Then δψ is inadmissible for estimating μ + ησ,
being dominated by δψ′ with ψ′(y) = ψ̄(y) IC(y) + ψ(y) IC′ (y), y ∈ �.

Proof. Follows from part (b) of Lemma 1 with ψ2 ≡ ψ and ψ1 ≡ ψ′, since we have
for y ∈ C : δψ(y) > δψ′ (y) = δψ̄(y) ≥ δψ∗

λ
(y) for all (μ, σ) ∈ Θ.

Remark 3. In applying Corollary 1 with continuous ψ and ψ̄, it suffices to deter-
mine a singleton y0 such that ψ(y0) > ψ̄(y0), in which case C can be taken as a
small neighborhood of y0.

We next collect some useful properties of the distribution of W, as defined in
(2.6).

Lemma 2. Let a = λy√
1+y2

and c(λ, y, n) = 1√
1+y2

(a
2 +

√
a2

4 + n). Then

(a) E(W ) is a strictly increasing function of n;
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(b) c(λ, y, n) < E(W ) < c(λ, y, n + 1);
(c) Median(W ) ≥ c(λ, y, n).

Proof. See Appendix.

Remark 4. It is easy to verify that the density of W is unimodal with the mode
at c(λ, y, n). Consequently, the above inequalities may also be interpreted as mean-
mode-median inequalities. The inequality E(W ) > c(λ, y, n) is due to [13].

3. Inadmissibility of the MRE estimator under absolute value invariant
error loss

We now turn to a useful representation of the MRE estimator under location-scale
changes for the scale invariant absolute value error loss.

Lemma 3. (a) For the model (2.1), the MRE estimator of μ+ησ (η �= 0) under
the loss | d−μ−ησ

σ | is given by δmre(X, S) = X +c1,nηS, where c1,n is uniquely
defined by the equation

(3.1) E0,1[S{1 − 2Φ(η(1 − c1,nS)}] = 0 ,

and Φ is the standard normal cdf.
(b) For all η > 0, n ≥ 2, c1,n > 1√

n
.

Proof. (a) It is well understood that equivariant estimators here are of the form
X + cηS and have constant risk for losses as in (2.2) (e.g., [11]). It follows that the
optimal choice of c minimizes E0,1[ρ(X + cηS − η)] in c, and is uniquely given by

(3.2) E0,1[Sρ ′(X + cηS − η)] = 0 ,

when ρ is convex. For ρ(z) = |z| in (2.2), (3.1) becomes E0,1[SE0,1[ sgn(X + cηS −
η)|S ] ] = 0, which yields (3.1) given the independence of X and S.
(b) Since Φ(·) is an increasing function and η > 0, we have from (3.1), that

c1,n >
1√
n

⇔ E0,1[
S√
n

{1 − 2Φ(η(1 − S√
n

)}] < 0

⇔
∫ ∞

0

un−1 {1 − 2Φ(η(1 − u))} e− nu2
2 du < 0

⇔ h(η) > 1/2 for all η > 0.

Here h(η) = E[Φ(η(1−U))], and U has density proportional to un−1e− nu2
2 1(0,∞)(u) .

We next show that h(·) is strictly increasing on (0, ∞), which will suffice since
h(0) = 1/2. A direct computation yields

h
′
(η) ∝

∫ ∞

0

(1 − u) e− η2(1−u)2

2 un−1 e− nu2
2 du,

so that h
′
(η) > 0 if and only if

(3.3)

∫ ∞
0

un e
−(n+η2)

2 (u− η2

n+η2 )2
du

∫ ∞
0

un−1 e
−(n+η2)

2 (u− η2

n+η2 )2
du

< 1 .

Finally, a re-parametrization of (2.6) and part (b) of Lemma 2 show that the ratio
in (3.3) is bounded above by c( η2√

n+η2−1
,
√

n + η2 − 1, n) = 1, which establishes

the result.
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Theorem 1. In model (2.1) to estimate the quantile μ + ησ (η > 0) under the
loss | d−μ−ησ

σ |, the estimator δmre is inadmissible. It is dominated by δψ′ (X, S) =
ψ′(X

S )S with ψ′(y) = {y + min( 1
y + η2y

4n , c1,nη)}1(0,∞)(y) + {y + c1,nη} 1(− ∞,0](y).

Proof. We apply Corollary 1 with ψ(y) = y + c1,n η, D = (0, ∞), and ψ̄(y) =
(y + 1

y + η2y
4n ) 1(0,∞)(y), in which case C = { y > 0 : ψ(y) > ψ̄(y)} = { y : |y −

2nc1,n

η | < 2n
η

√
c2
1,n − 1

n } �= ∅ by part (b) of Lemma 3. It remains to establish that

sup(μ,σ)∈Θ{ ψ∗
λ(y) } ≤ ψ̄(y) for all y > 0. From Lemmas 1 and 2, for all y > 0:

(3.4) ψ∗
λ(y) =

λ + η

Median(W )
≤ λ + η

c(λ, y, n)
.

Now write 1
c(λ,y,n) = y√

1+y2
(

y+ 1
y

n ) (
√

a2

4 + n − a
2 ), with a = λy√

1+y2
(as in Lemma

2). Setting b = ηy√
1+y2

and a0(b) = 1
2b (4n − b2), we obtain (following [13]) for all

y > 0

sup
(μ,σ)∈Θ

ψ∗
λ(y) ≤ sup

λ∈�

λ + η

c(λ, y, n)

= sup
λ≥ −η

λ + η

c(λ, y, n)

=
1
n

(y +
1
y
) sup

a≥ −b
{(a + b) (

√
a2

4
+ n − a

2
)}

=
1
n

(y +
1
y
){(a0(b) + b) (

√
a2
0(b)
4

+ n − a0(b)
2

)}

= ψ̄(y) .

Much of our motivation for Theorem 1 rests not only with the technical challenges
and required intermediate results, but also with the common features with [13]’s
result for the squared error invariant loss. We point out that the MRE estimator
under the squared error invariant loss (d−μ−ησ

σ )2, which may be obtained from
(3.2), is given by

(3.5) X + c2,nηS, c2,n =
E0,1(S)
E0,1(S2)

=
Γ(n

2 )√
2 Γ(n+1

2 )
.

Furthermore, one can verify that c2,nc2,n+1 = 1
n , that c2,n decreases in n, so that

1√
n

< c2,n < 1√
n−1

for all n ≥ 2. Consequently, the given lower bounds for c1,n

and c2,n coincide even though c1,n depends on η and c2,n does not. As established
by [13], Theorem 1 holds if we replace the L1 loss by the L2 loss and c1,n by c2,n.
Hence, our proof for L1 loss parallels that of the L2 loss.

4. Estimating a quantile in presence of a lower bounded mean

4.1. Inadmissibility of a generalized Bayes estimator

Consider our quantile estimation problem as defined in (2.1) and (2.2), with a lower
bound constraint on μ, without loss of generality μ ≥ 0. We establish the inadmissi-
bility under the scale invariant squared error loss of the generalized Bayes estimator
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δπ0 of μ+ησ with η > 0, where the prior measure is π0(μ, σ) = 1
σ 1(0,∞)(μ) 1(0,∞)(σ).

As the truncation of the non-informative prior π(μ, σ) = 1
σ 1(− ∞,∞)(μ) 1(0,∞)(σ),

this choice is interesting. On one hand, the Bayes estimator δπ coincides with δmre
and is thus inadmissible under both losses L1 and L2 following the results of Section
3 and those of [13]. On the other hand, truncations such as π0 have been studied
before. For instance, [3] considered estimating a non negative normal mean μ with
a known variance under the loss (d − μ)2, for which the Bayes estimator is both
minimax and admissible. Further more general minimax results for location models
and location invariant losses were obtained by [2] and [9], among others. Bayesian
HPD credible intervals based on such truncations of non-informative priors have
satisfactory frequentist coverage properties (e.g., [8]).

The next lemma, whose proof is relegated to the Appendix, pertains to the Bayes
estimator δπ0 .

Lemma 4. Let βρ(w, z) = E[V
∫ V w

− ∞ ρ′(u − η + V (z − w))φ(u)du ] for z, w ∈ �,
where φ stands for the standard normal pdf and V = S/σ in (2.1).

(a) For model (2.1) and loss (2.2), the Bayes estimator δπ0 is scale invariant,
δπ0(X, S) = Sψπ0(

X
S ), with βρ(y, ψπ0(y)) = 0 for all y ∈ �;

(b) For the scale invariant squared error loss, δπ0 may be expressed as in part (a)
with

(4.1) ψπ0(y) = y +
An(y) + ηc2,n+1Bn(y)

Bn+1(y)
,

where An(y) = 1
n (1 + y2)− n

2 , Bn(y) =
∫ y

− ∞(1 + x2)−( n+1
2 )dx; y ∈ �, n ≥ 2;

and c2,n+1 = Γ( n+1
2 )√

2Γ( n+2
2 )

.

(c) Furthermore, 2 c2,n+1Bn(y) ≥ (c2,n + c2,n+1) Bn+1(y) for all n ≥ 2, y > 0.

We now establish the inadmissibility of the Bayes estimator δπ0 by making use
of the above properties and Corollary 1.

Theorem 2. To estimate the quantile μ+ησ (η > 0) under the constraint μ ≥ 0 and
the loss (d−μ−ησ)2

σ2 in model (2.1), the Bayes estimator δπ0 from Lemma 4 is inad-
missible and dominated by δψ′ ′ (X, S) = ψ

′ ′
(X

S )S, with ψ
′ ′
(y) = ψπ0(y) I(− ∞,0](y)+

min(ψπ0(y), ψ̄(y)) I(0,∞)(y), with ψ̄(y) = y + 1
y + η2y

4n ; y > 0.

Proof. Since supμ≥0,σ>0 ψ∗
λ(y) ≤ ψ̄(y) for all y > 0 (i.e., [13]), we can follow Corol-

lary 1 and Remark 3, where it suffices to show that the set {y > 0 : ψπ0(y) > ψ̄(y)}
has positive Lebesgue measure, or that there exists a positive y0 such that ψπ0(y0) >

ψ̄(y0). By putting y0 = 2nc2,n

η , ψ̄(y0) = y0 + y−1
0 + η2y0/4n = y0 + η

2 (c2,n + c2,n+1),
since nc2,nc2,n+1 = 1. Hence, we obtain from (4.1),

ψπ0(y0) − ψ̄(y0) =
[
y0 +

An(y0) + ηc2,n+1Bn(y0)
Bn+1(y0)

]
−

[
y0 +

η

2
(c2,n + c2,n+1)

]

=
1

Bn+1(y0)
[An(y0) + ηc2,n+1Bn(y0)

− η

2
(c2,n + c2,n+1) Bn+1(y0)

]
> 0 ,

by virtue of part (c) of Lemma 4 and since An(·) and Bn+1(·) are positive valued
functions.
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Remark 5. The inadmissibility of the estimators δπ0 (Theorem 2) and δmre ([13]),
are obtained as an application of Corollary 1 by showing the estimators expand “too
much”. Since δπ0 is Bayes with respect to π0, one might anticipate that δπ0 expands
further on δmre, which would provide an easy route to establishing Theorem 2.
However, this is not necessarily the case. Indeed, for the scale invariant squared
error loss, it follows from (4.1) and (3.5) that sgn(ψπ0(y) − ψmre(y)) = sgn(h(y)),
with h(y) = An(y) + ηc2,n+1Bn(y) − ηc2,nBn+1(y), and

A′
n(y) = −yB′

n+1(y) = − y√
1 + y2

B′
n(y).

We infer that

h′(y) =
√

1 + y2 B′
n+1(y){ηc2,n+1 − ηc2,n√

1 + y2
− y√

1 + y2
}.

Finally, for η > 1
c2,n+1

, we see that h′(y) is positive for large enough y. Indeed
B′

n+1(·) is positive and limy→∞ {ηc2,n+1 − ηc2,n√
1+y2

− y√
1+y2

} = ηc2,n+1 −1 > 0, which

implies that ψπ0(y) < ψmre(y) for large y given that limy→∞ h(y) = 0. However, it
can be verified that ψπ0(y) ≥ ψmre(y) for all y ∈ � whenever η ≤ 1

c2,n+1
.

4.2. Further remarks and numerical evaluations

When μ ≥ 0, a minimum risk equivariant estimator δmre(X, S) = X + ηcρS of
μ + ησ is clearly inefficient. It is improved upon by truncating onto [0, ∞) for any
loss (2.2) since μ + ησ ≥ 0, and Pμ,σ(δmre(X, S) < 0) > 0 for all μ ≥ 0, σ > 0.
However, as shown recently by [7], δmre remains minimax even if μ ≥ 0, as its
constant risk equals the minimax risk for general ρ in (2.2) subject to risk finiteness.
Therefore such minimum risk equivariant estimators remain useful benchmarks, and
determination of dominating estimators, which remains to be studied, must produce
minimax estimators. Another motivation for the search of efficient estimators in
the presence of a lower bound on the mean resides in applications for two sample
problems presented in the next section.

We do not know if δπ0 is a minimax estimator under scale invariant squared
error loss ρ, despite being inadmissible itself for η > 0, except for η = 0 where
[6] obtained a class of dominating (minimax) estimators which includes δπ0 . The
plausible conjecture of minimaxity is supported by some numerical evidence, part
of which is illustrated in Figure 1. Figure 1 represents the risk functions of the δmre,
the generalized Bayes estimator δπ0 and Lemma 2’s estimator δψ′ ′ for n = 10, η = 1,
as a function of λ = μ

σ ≥ 0. With other choices of n, η > 0, leading to similar results,
one sees the important gains in risk provided by δπ0 in comparison to δmre, and the
minuscule gains in risk for δψ′ ′ as opposed to δπ0 .

5. Estimation of quantiles in the presence of additional information on
the means

We describe here a correspondence between: (i) a two-sample problem with ad-
ditional information present on the ordering of the means, and (ii) the quantile
estimation settings of Section 4 with a lower bounded mean. We show that any
dominance or admissibility result under the squared error loss in (ii) translates
into a companion result in (i) and vice-versa.
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Fig 1. Risks as functions of λ = μ/σ, n = 10, η = 1.0.

Start with a canonical form as in (2.1) for independent X1 and S2
1 :

X1 ∼ N(μ1, σ
2), S2

1 ∼ Gamma(
n − 1

2
, 2σ2), n ≥ 2,

with the objective of estimating μ1 + ησ, η > 0, under the loss (d−μ1−ησ
σ )2, and

where we already know that δmre is an inadmissible estimator. Suppose now that
a second, independently generated, sample is available with independent

X2 ∼ N(μ2, σ
2), S2

2 ∼ Gamma(
m − 1

2
, 2σ2), m ≥ 2,

and suppose further that the means μ1 and μ2 are ordered in such a way that

(5.1) μ1 ≥ μ2 (additional information).

Clearly, given the homogeneity of the variances, more degrees of freedom are
available and X1 + ηc2,m+n

√
S2

1 + S2
2 seems preferable to X1 + c2,nS1. Indeed, the

former dominates the latter as the risk of δmre in model (2.1), given by 1 + η2(1 −
(Γ( n

2 ))2

Γ( n−1
2 ) Γ( n+1

2 )
), decreases in n.

One can also use a version of the so-called rotation technique, introduced by
Blumenthal, Cohen, Sackrowitz in the late 60’s, revisited by van Eeden and Zidek
in a series of more recent papers, and further described by [10] (see references there).
The key feature of the technique is a decomposition of the problem in (i) into two
separate and additive subproblems, one of which corresponds to the problem in
(ii). To pursue, set

Y1 =
X1 − X2

2
, Y2 =

X1 + X2

2
, W =

S2
1 + S2

2

2
,

θ1 =
μ1 − μ2

2
, θ2 =

μ1 + μ2

2
, and τ =

σ√
2
.

Observe that Y1, Y2, and W are independent with Y1 ∼ N(θ1, τ
2), Y2 ∼ N(θ2, τ

2),
and W ∼ Gamma(n+m−2

2 , 2τ2).
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Lemma 5. Consider the above data (Y1, Y2, W ) for estimating the quantile μ1 +ησ
when μ1 ≥ μ2, under the loss (d−μ1−ησ

σ )2. The risk of an estimator of the form
δφ(Y1, Y2, W ) = Y2 + φ(Y1, W ) is given by

R((μ1, μ2, σ), δφ) =
1
σ2

{τ2 + E[(φ(Y1, W ) − θ1 −
√

2 η τ)2]}.

Also δφ1(Y1, Y2, W ) dominates δφ2(Y1, Y2, W ) if and only if φ1(Y1, W ) dominates
φ2(Y1, W ) as an estimator of the quantile θ1 + η∗τ , with η∗ =

√
2 η under the

constraint θ1 ≥ 0, based on the data (Y1, W ) as in (2.1).

Proof. The dominance result is a direct consequence of the representation of the
risk of δφ. To obtain R((μ1, μ2, σ), δφ), note that

σ2R((μ1, μ2, σ), δφ) = E[(Y2 + φ(Y1, W ) − μ1 − ησ)2]

= E[{(Y2 − θ2)2 + (φ(Y1, W ) − θ1 − η
√

2 τ)}2]

= τ2 + E[(φ(Y1, W ) − θ1 − η
√

2 τ)2],

given the independence of Y2 and (Y1, W ), and since E(Y2 − θ2) = 0 and E[Y2 −
θ2)2] = τ2.

Example 1. The MRE estimator of μ1 + ησ is given by X1 + ηc2,m+n

√
2W =

δφmre(Y1, Y2, W ) with φmre(Y1, W ) = Y1 + c2,m+nη∗ √
W . Any dominating esti-

mator φ1(Y, W ) of φmre(Y1, W ) for estimating the quantile θ1 + η∗τ , such as its
truncation max(0, φmre(Y1, W )) for η ≥ 0, leads to a corresponding dominating
estimator δφ1(Y1, Y2, W ), such as Y2 + max(0, φmre(Y1, W )) for η ≥ 0. Similarly,
the estimator Y2 + δπ0(Y1, W ), where δπ0 is the Bayes estimator of the quantile of
order η∗, is inadmissible for η > 0 and can be improved upon by making use of
Lemma 5 and dominating estimators of δπ0 .

Example 2. The above decomposition also applies for the case of the median (or
mean) with η = 0. In this case X1 is the MRE estimator of μ1 (under the scale
invariant squared error loss), and is admissible in absence of the second sample.
With the additional information μ1 ≥ μ2, X1 is inadmissible. By virtue of [6]’s
finding the class of dominating estimators includes Y2 + δπ0(Y1, W ), where δπ0 is
given in (4.1).

6. Appendix

Proof of Lemma 2

(a) The result is immediate since the family of densities in (2.6), with parameter
n, possesses monotone likelihood ratio in W .
(b) Set Z =

√
1 + y2 W , so that Z has density proportional to zne− z2

2 +az 1(0,∞)(z).

Now write En(Z) = In+1(a)/In(a), with In(a) =
∫ ∞
0

zne− z2
2 +azdz, and integrate

by parts to obtain the recurrence,

In(a) =
1

n + 1
In+2(a) − a

n + 1
In+1(a),

or, for all n ≥ 0

(6.1) En+1(Z) =
n + 1
En(Z)

+ a .
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Applying twice the result in (a) yields the inequalities: E 2
n (Z)−aEn(Z)−(n+1) < 0,

and E 2
n+1(Z) − aEn+1(Z) − (n + 1) > 0. Finally, since En(Z) > a/2,

a

2
+

√
a2

4
+ n < En(Z) <

a

2
+

√
a2

4
+ (n + 1) ,

which is equivalent to, and establishes part (b).

(c) As in Remark 4, the density fZ of Z has the mode at M = a
2 +

√
a2

4 + n. We
seek to establish that Median(Z) ≥ M , which holds if for all z ∈ [0, M ]

(6.2) r(z) =
fZ(M − z)
fZ(M + z)

≤ 1.

Setting T (z) = log r(z) = n log M −z
M+z + 2(M − a)z, it is easy to verify that T (·) is

concave on (0, m) with T (0) = 0, and T ′(0+) = −2n
M +2(M − a) = 0. Thus T (z) ≤ 0

for all z ∈ [0, m), which is equivalent to (6.2). �

Proof of Lemma 4

Proof. (a) Under the prior π0 and the loss ρ(d−μ−ησ
σ ), δπ0(x, s) minimizes in δ for

all (x, s) the posterior expected loss,

E[ρ(
δ − μ − ησ

σ
)|(X, S) = (x, s)] =

∫ ∞

0

∫ ∞

0

ρ(
δ − μ − ησ

σ
)
1
σ

φ(
x − μ

σ
)
1
σ

h(
s

σ
)
dudσ

σ
.

Here h is the density of V . With the change of variables (μ, σ) → (u = x−μ
σ , v = s

σ ),
the above becomes proportional to

(6.3)
∫ ∞

0

∫ v x
s

− ∞
ρ(v(

δ − x

s
) + u − η) φ(u) h(v) du dv .

Observe that 1
s (δ(x, s) − x) depends on (x, s) only through y = x

s , so that δπ0

is indeed scale invariant. The result follows by differentiation of (6.3) in δ and
convexity of ρ.
(b) Solving βρ(y, ψπ0(y)) = 0 for ρ(y) = y2 yields

ψπ0(y) = y +
E[V φ(V y)] + ηE[V Φ(V y)]

E[V 2Φ(V y)]
,

since
∫ t

− ∞ uφ(u)du = −φ(t) for all t ∈ �. The result follows by making use of
identities for the terms E[V φ(V y)] and E[V kΦ(V y)], given and proven below in
Lemma 6, as well as the definitions of An(·), Bn(·), and c2,n+1.
(c) First, we have Bn(y) = Bn(0) +

∫ y

0
(1 + x2)−( n+1

2 ) dx ≥ Bn(0) +
∫ y

0
(1 +

x2)−( n+2
2 ) dx, with Bn(0) =

∫ 0

− ∞(1+x2)−( n+1
2 ) dx =

√
π
2 c2,n. From this, we obtain

(6.4) Bn(y) − Bn+1(y) ≥ Bn(0) − Bn+1(0) =
√

π

2
(c2,n − c2,n+1) .

As well, notice that Bn+1(y) increases in y for y > 0, and

(6.5) Bn+1(y) ≤
∫ ∞

− ∞
(1 + x2)−( n+2

2 ) dx = 2
√

π

2
c2,n+1.

Finally, from (6.4) and (6.5), we obtain for all n ≥ 2, y > 0: 2 c2,n+1(Bn(y) −
Bn+1(y)) ≥ (c2,n − c2,n+1) Bn+1(y) yielding the result.
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Lemma 6. Let φ and Φ represent the pdf and cdf (resp.) of a standard normal
distribution and let V 2 ∼ Gamma(n−1

2 , 2); n ≥ 2. For all k ≥ 0, t ∈ �,

(a) E[V kφ(V t)] = 2
k−1
2 Γ( n+k−1

2 )
√

π Γ( n−1
2 )

(1 + t2)−( n+k−1
2 ) ;

(b) E[V kΦ(V t)] = Γ( n+k
2 ) 2

k
2

√
π Γ( n−1

2 )

∫ t

− ∞ (1 + x2)−( n+k
2 ) dx, for all k ≥ 0 .

Proof. The part (a) follows directly with the identity
∫ ∞

0

vα e−(v2/2β) dv = Γ(
α + 1

2
) 2

α−1
2 β

α+1
2 ; α ≥ 0, β > 0.

For the part (b), observe that ∂
∂tE[V kΦ(V t)] = E[V k+1φ(V t)], which implies that

E[V kΦ(V t)] =
∫ t

− ∞ E[V k+1φ(V x)] dx + c . Since E(V kΦ(V t)) → 0 as t → −∞, we
obtain c = 0 and the stated result.

Acknowledgments
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[7] Marchand, É., and Strawderman, W. E. (2010). A unified min-
imax result for restricted parameter spaces. Bernoulli, To appear.
DOI:10.3150/10-BEJ336.
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