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Abstract: Consider a balanced one way layout without a normality assump-
tion. That is, assume each population has an unknown translation parameter
and has a continuous distribution. We wish to test the Ck

2 pairwise differ-
ences in translation parameters assuming there are k populations.We propose
a multiple testing method based on ranks that is analogous to the method
developed for testing pairwise contrasts among means by Cohen, Sackrowitz
and Chen (2010) [3] (CSC). This latter method has an intuitive and important
practical property not shared by most multiple testing methods. Namely, for
each individual pairwise hypothesis relevant acceptance sections are intervals.
Furthermore, the CSC method is shown to do well in terms of power compared
to competitive methods. In the nonparametric setting the analogous procedure
has the desirable interval property and also stacks up well in a comparative
simulation study.
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1. Introduction

Nonparametric multiple testing is discussed in [4]. In [2], Campbell and Skillings
study multiple rank tests for pairwise comparisons in a balanced one way layout
without a normality assumption. They consider single step and stepwise procedures,
noting that the latter have better power. Among the stepwise procedures are those
that rerank at different steps as well as those that do not rerank. One is also offered
a choice of joint ranking or separate ranking by pairs. A simulation study of power
is partial to an ad hoc procedure.

In this paper we propose a nonparametric rank test analoque of a method devel-
oped in [3] for testing pairwise comparisons in a one way layout assuming normality.
The multiple testing method is called PADD+. In a normal model PADD+ yields
admissible tests for individual hypotheses and has an important monotonicity prop-
erty for individual tests. Namely, for certain fixed variables, the acceptance sections
for testing an individual hypothesis are intervals (and not a collection of disjoint

∗Research supported by NSF grant 0894547 and NSA grant H-98230-10-1-0211
AMS 2000 subject classifications: Primary 62H15, 62G10
Keywords and phrases: ad hoc procedure, interval property, joint ranks, separate ranks, screen-

ing step, stepwise procedure

57

http://www.imstat.org/publications/imscollections.htm
http://www.imstat.org
http://dx.doi.org/10.1214/11-IMSCOLL804


58 A. Cohen and H. Sackrowitz

sets). Furthermore simulations indicate that the method leads to tests that are
more powerful than usual conventional step-up or step-down methods. The latter
are also shown to be inadmissible.

For the nonparametric model we show that the analogue of PADD+ has a desir-
able and intuitive monotonicity property that the ad hoc procedure does not have.
Namely, convex acceptance sections. In terms of power, studied by simulation, this
analoque of PADD+ is comparable to the performance of the ad hoc procedure.

In the next section we formally state the model. We then describe the ad hoc
procedure and the rank-based version of PADD+, called RPADD+. An example
illustrates the two procedures. In Section 3 we show that the ad hoc procedure
does not have an important monotonicity property while RPADD+ has the prop-
erty. Section 4 offers a simulation study comparing the power of the two different
procedures.

2. Model and procedures

We describe the model in [2]. Let

Yij = θi + εij , i = 1, . . . , k, j = 1, . . . , n,

where the θi’s are unknown and the εij ’s are independent, indentically distributed,
continuous random variables. Hypotheses of interest are

Hij : θi = θj vs. Kij : θi �= θj

for every i �= j and i, j = 1, . . . , k. Two different sets of rank statistics are defined
as follows:

Joint Rank Range: For any p treatments (p ≤ k), relabeled from 1 to p, obser-
vations are jointly ranked and the ith treatment sum of ranks, Ri is calculated
for i = 1, . . . , p.

Separate Rank: Separately rank all the observations from only the ith and jth

treatments. Let Rij denote the sum of the ranks for treatment i in this sep-
arate ranking with treatment j.

In [2] Campbell and Skillings recommend the following ad hoc procedure labeled
NAH.

Step 0: Order the treatments from smallest to largest according to the rank sums
in the joint ranking. That is, let R1, . . . , Rk be the rank sums and let R(1) ≥
R(2) ≥ . . . ≥ R(k) be the ordered rank sums.

Step 1: Conclude that treatments (1) and (k) differ if R(1) − R(k) exceeds rak,k,
the upper ak cutoff of the rank range for k treatments. Then continue to Step
2. If treatments (1) and (k) are not declared different then stop and report
no differences.

Step 2: Declare treatments (1) and (k − 1) different if in the joint rankings of
treatments (1), . . . , (k − 1) the difference in the rank sums of treatment (1)
and treatment (k − 1) exceeds rak−1,k−1. Also declare treatments (2) and (k)
different if in the joint rankings of treatments (2),. . . ,(k) the difference in
the rank sums of treatment (2) and treatment (k) exceeds rak−1,k−1. Then
continue to Step 3. If neither pair differ, stop.

Step (k − p + 1): For p = k−2, . . . , 2 continue to test treatment subsets of the form
(i), (i + 1), . . . , (i + p − 1). For each subset S the observations are reranked
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and the difference in rank sums for treatments i + p − 1 and i is compared to
rap,p. The procedure terminates by early stopping or with reported differences
after step (k − 1).

Typically critical values are chosen so that Type I error rates are estimated to
be less than or equal to α.

Next we describe the analogue of PADD+ called RPADD+. We begin by mim-
icking the definitions in [3]. Let S = {1, . . . , k}. For any subset of integers A ⊂ S
let N(A) = the number of points in A. Let RA =

∑
i∈A Ri/N(A). Next define, for

each sample point y = (y11, . . . , y1n, . . . , yk1, . . . , ykn) and for all A ⊂ B ⊆ S with
A �= φ �= B \ A,

(2.1) Dy(A; B) = (RA − RB\A)/σA,B

where

(2.2) σ2
A,B = ω(1/N(A) + 1/N(B \ A))/12

and
ω = n(kn)(kn + 1).

Note (2.2) is an approximation derived using [4], p. 245. Let

(2.3) D∗
y(B) = max

A⊂B
Dy(A; B).

Further let Vy(B) denote the A set for which the maximum is attained. At
the first stage and first step of RPADD+ all non-empty 2 set partitions of S are
considered. Since the sum of the ranks R(i) are ordered it is not necessary to look at
every 2 set partition to find the maximum. Dy(A; S) is computed for all non-empty
A ⊂ S. Letting Ck(S) denote a constant at stage 1, step 1, and letting D1 = D∗

y(S),
if D1 ≤ Ck(S), stop and accept all null hypotheses. If D1 > Ck(S), then partition
S into Vy(S) and S \ Vy(S) and continue to step 2.

At each successive stage, until the procedure stops, one of the sets in the cur-
rent partition will be split into two sets as follows: Suppose that after stage m,
S has been partitioned into B1, . . . , Bm+1 and we continue. Let C {B1, . . . , Bm+1}
be a constant determined by the partition {B1, . . . , Bm+1} . Compute Dm+1 =
max1≤j≤m+1 D∗

y(Bj). Next break Bj into Vy(Bj) and Bj \ Vy(Bj). Continue to
stage m+1.

Thus we see that as we enter stage m the partition consists of m sets. Denote
these by Bm,1(x), . . . , Bm,m(x). If Dm ≤ C{Bm,1(x), . . . , Bm,m(x)}, stop and then
{Bm,1(x), . . . , Bm,m(x)} is the final partition. If Dm > C{Bm,1(x), . . . , Bm,m(x)}
we continue and the partition will become finer. If {Bm,1(x), . . . , Bm,m(x)} is the
final partition then Hii′ is accepted provided i and i′ are in the same set of the
partition. Otherwise Hii′ is rejected.

There is considerable flexibility in the choice of critical values C{Bm,1, . . . ,
Bm,m}. One way to choose them is to simply allow them to depend on the stage
m. Another way to choose them is to let them depend on the number of indices in
the largest set of the partition. Still another way is to let them depend on the total
number of pairwise comparisons to be made by adding up the pairwise comparisons
in each set of the partition.
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Note that for an arbitrary set of indices, say B = {i1, . . . , iq }, with R(i1) ≥
R(i2) ≥ · · · ≥ R(iq) the relevant (q-1) statistics from (2.1) are

(2.4) Tiq(R) = {
i∑

j=1

R(ij)/i−
q∑

j=i+1

R(ij)/(q − i)}/ω{1/i + 1/(q − i)},

for i = 1, 2, . . . , q − 1. RPADD+ involves a final screening stage. Two constants
CL ≤ CU are specified. Then Hii′ will be rejected if and only if the indices i and i′

lie in different sets of the final partition, Bm,1(x), . . . , Bm,m(x) and |Ri − Ri′ | > CL

or i and i′ lie in the same set of the final partition and |Ri − Ri′ | > CU .
We conclude this section with an example illustrating NAH and RPADD+.

Example 2.1. The data is taken from [5], page 525. Four brands of golf balls
were tested. Distances of drives using Iron Byron, the USGA’s robotic golfer, were
observed for 10 balls of each brand. The rank sums were as follows: Brands C, B,
A and D yielded 352, 250, 118 and 100 respectively. With k = 4, n = 10, NAH
first considers R(1) − R(4) and rejects if this difference exceeds ra4,4. From (2.2)
we have that

√
ω = 36.97. Choosing a4 = .05 and using tables of the studentized

range with degrees of freedom set equal to ∞ we find the studentized range critical
value is 3.63. Since 352 − 100 > (3.63)(36.97) we reject H(1)(4). Next we consider
H(1)(3) and H(2)(4). For H(1)(3) and H(2)(4) the critical value is 3.31 and since 352
- 118 and 250 - 100 both exceed (3.31)(36.97) we also reject H(1)(3) and H(2)(4).
Finally consider H(1)(2), H(2)(3) and H(3)(4) with critical value 2.77. Only H(2)(3) is
rejected. Thus NAH leads to rejecting H(1)(4), H(2)(4), H(1)(3) and H(2)(3).

Next we apply RPADD+ to the same data set. We choose critical values C1 =
2.56, C2 = 2.19, C3 = 1.84, CL = 2.47 based on the simulation study of Section 4. At
step 1 we consider the maximum of three statistics in (2.4), namely (352 - 156)/42.69
= 4.59, (240 - 100)/42.69 = 3.28 and (301 - 109)/36.97 = 5.19. This leads to rejec-
tion of H(1)(4), H(2)(4), H(1)(3) and H(2)(3). At step 2 we examine H(1)(2) and H(3)(4).

Here we calculate (352−250)/(36.97
√

2) = 1.95 < 2.19 and (118−100)/(36.97
√

2) =
.34 < 2.19. Hence H(1)(2) and H(3)(4) are accepted. Finally at the screening stage we
examine (352 − 118)/(36.97

√
2) = 4.48 > 2.47 as is (352 − 100)/(36.97

√
2) = 4.82,

(250 − 118)/(36.97
√

2) = 2.525 and (250 − 100)/(36.97
√

2) = 2.87. Hence the screen
stage does not switch any reject to an accept.

3. Interval property

A desirable property for a testing procedure to have is the interval property for
each individual test. Without loss of generality we focus on H12 : θ1 − θ2 = 0 versus
K12 : θ1 − θ2 �= 0.

Definition 3.1. Let R = (R1, . . . , Rk)′ be the vector of rank sums at stage 1, step
1 of the process. Let R∗ = (R1 + Δ1, R2 − Δ1, R3, . . . , Rk)′ for Δ1 > 0 and let
R∗ ∗ = (R1 + Δ2, R2 − Δ2, R3, . . . , Rk)′ for Δ2 > Δ1. Assume that the individual
test φ12 for H12 accepts at R and rejects at R∗. Then φ12 has the interval property
if and only if φ12 rejects at R∗ ∗.

We now give an example demonstrating that NAH does not have the interval
property.

Example 3.1. Let k = 3, n = 6, ra3,3 = 17 and ra2,2 = 12. That is, each sample
point, y is an 18 × 1 vector consisting of 6 observations from each of 3 populations.
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Table 1

NAH rankings at steps 1 and 2 for the first sample point.

step 1 step 2
population 1 2 3 1 2

4 3 1 2 1
5 6 2 3 4

individual 11 10 7 6 5
ranks 12 13 8 7 8

15 14 9 10 9
16 17 18 11 12

Total 63 63 45 39 39

Table 2

NAH rankings at steps 1 and 2 for the second sample point.

step 1 step 2
population 1 2 3 1 2

4 3 1 2 1
5 6 2 3 4

individual 12 10 7 7 5
ranks 15 11 8 10 6

16 13 9 11 8
17 14 18 12 9

Total 69 57 45 45 33

Table 3

NAH rankings at steps 1 and 2 for the third sample point.

step 1 step 2
population 1 2 3 1 2

4 1 2 3 1
6 3 5 4 2

individual 12 10 7 7 5
ranks 15 11 8 9 6

16 13 9 10 8
17 18 14 11 12

Total 70 56 45 44 34

We will exhibit, for each of three sample points, the 18 individual ranks used at
step 1 as well as the 12 (reranked) ranks that NAH would use at step 2. The three
sets of ranks appear in Tables 1–3.

Thus, when the first sample point R is observed, NAH will reject H13 at step 1
but H12 will be accepted based on step 2. At the second sample point R∗, NAH will
reject H13 at step 1 and will reject H12 at step 2. At the third sample point R∗ ∗,
NAH will reject H13 at step 1 but will accept H12 at step 2 since 44 − 34 = 10 < 12.

The next lemma shows that RPADD, without the screen stage, has the interval
property.

Lemma 3.1. The individual test φ12(R) induced by RPADD has the interval prop-
erty.

Proof. Define the k × 1 vector g = (1, −1, 0, . . . , 0). Note from (2.4) that T1q(R +
Δg), Δ > 0, is an increasing function of Δ while Tiq(R + Δg) = Tiq(R) for all Δ
and i = 2, . . . , q − 1. Assume Ψ12(R) accepts H12 but, for some Δ1 > 0, Ψ12(R∗) =
Ψ12(R + Δ1g) rejects H12. This means that at R the procedure stopped before
there was any value of q for which T1q was the maximum statistic that exceeded
the relevant critical value. Furthermore, there exists a q∗ such that T1q∗ was the
maximum statistic that did exceed the appropriate critical value. Since T1q is an
increasing function of Δ, it follows that T1q(R∗ ∗) = T1q(R + Δ2g) exceeds its
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appropriate critical value for some q ≤ q∗ which implies Ψ12(R∗ ∗) also rejects.

We conclude this section with

Theorem 3.1. RPADD+ has the interval property for testing H12.

Proof. Note that (R1 − R2) < (R∗
1 − R∗

2) < (R∗ ∗
1 − R∗ ∗

2 ). We can now follow the
same steps as in the proof of Theorem 4.2 of [3] with one exception. Here we need
to use Lemma 3.1 above for Case 3 of that reference to complete the proof.

4. Simulation results

In this section we present the results of a simulation study comparing RPADD+
with the study for NAH presented in [2]. In that paper they reported the results
of a large simulation study for a variety of k, n values and using the exponential,
uniform, normal and double exponential distributions. They presented the results
from the uniform as they were said to comparable for all distributions. We did
simulations using the RPADD+ procedure for the uniform distribution using the
choices of k, n and the parameter points of [2]. We report, in Tables 4 and 5, results
only for k = 4, n = 10 and k = 6, n = 10 as they are representative of the overall
power behavior.

The RPADD+ critical values were fine tuned using simulation to control Type
I errors at rates comparable to those in [2]. Our initial PADD stage critical values
were suggested by [1] for another model but work well here. For k = 4 these critical
values were multiplied by 1.025 while for k = 6 the multiplier was 1.108. The
screening cutoffs were again determined through simulation. Upper screening was
not used.

For k = 4, n = 10 the constants were C1 = 2.56, C2 = 2.19, C3 = 1.84, CL = 2.47.
For k = 6, n = 10 they were C1 = 2.94, C2 = 2.58, C3 = 2.31, C4 = 2.05, C5 =
1.73, CL = 3.24. All simulations are based on 5000 iterations.

Table 4

Size and power comparison of NAH and RPADD+ for k = 4, n = 10.

Treatment size or power
Pair

Procedure
k n means (ij, j) NAH RPADD+

4 10 (0, 0, 0, 0) FWER .044 .049
(1,2) .011 .022

(0, 1, 1, 2) FWER .020 .053
(1,2) .346 .438
(1,4) .928 .908

(0, 2/3, 4/3, 2) (1,2) .160 .190
(1,3) .610 .717
(1,4) .930 .941

(0, 0, 0, 2) FWER .046 .046
(1,2) .021 .021
(1,4) .941 .971

(0, 0, 2, 2) FWER .051 .006
(1,2) .028 .003
(1,4) .944 .984
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Table 5

Size and power comparison of NAH and RPADD+ for k = 6, n = 10.

Treatment size or power
Pair

Procedure
k n means (i, j ) NAH RPADD+

6 10 (0, 0, 0, 0, 0, 0) FWER .037 .049
(1,2) .003 .008

(0, .4, .8, 1.2, 1.6, 0) (1,2) .031 .074
(1,3) .124 .125
(1,4) .341 .412
(1,5) .642 .750
(1,6) .885 .932

(0, 0, 0, 0, 0, 2) FWER .048 .052
(1,2) .007 .007
(1,4) .884 .899

(0, 0, 1, 1, 2, 2) FWER .034 .013
(1,2) .013 .002
(1,3) .204 .216
(1,6) .877 .937

(0, 0, 0, 2, 2, 2) FWER .032 .006
(1,2) .008 .001
(1,6) .891 .912

FWER in the table is the strong familywise error rate = the probability of at
least one Type I error. This depends on the entire parameter point as well as the
number of null hypotheses that are true. In [2] it is labeled EERI.

Since both NAH and RPADD+ are translation invariant we take the populations
to be uniform with width one and mean θi. That is, population i is uniform on
(θi − 0.5, θi + 0.5) In the tables the means are in expressed in standard units so
each must be multiplied by .289.
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