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Abstract: This paper considers estimation of the predictive density for a
normal linear model with unknown variance under α-divergence loss for −1 ≤
α ≤ 1. We first give a general canonical form for the problem, and then give
general expressions for the generalized Bayes solution under the above loss
for each α. For a particular class of hierarchical generalized priors studied
in Maruyama and Strawderman (2005, 2006) for the problems of estimating
the mean vector and the variance respectively, we give the generalized Bayes
predictive density. Additionally, we show that, for a subclass of these priors,
the resulting estimator dominates the generalized Bayes estimator with respect
to the right invariant prior, i.e., the best (fully) equivariant minimax estimator
when α = 1.
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1. Introduction

We begin with the standard normal linear regression model setup

(1.1) y ∼ Nn(Xβ, σ2In),

1Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha,
Kashiwa-shi Chiba, 277-8568, Japan, e-mail: maruyama@csis.u-tokyo.ac.jp

2Department of Statistics and Biostatistics, Rutgers University, 501 Hill Center, Busch Cam-
pus, 110 Frelinghuysen Road Piscataway, NJ 08854-8019, USA, e-mail: straw@stat.rutgers.edu

AMS 2000 subject classifications: Primary 62C20, 62J07; secondary 62F15
Keywords and phrases: shrinkage prior, Bayesian predictive density, alpha-divergence, Stein

effect

42

http://www.imstat.org/publications/imscollections.htm
http://www.imstat.org
http://dx.doi.org/10.1214/11-IMSCOLL803
mailto:maruyama@csis.u-tokyo.ac.jp
mailto:straw@stat.rutgers.edu


Bayesian predictive densities for linear regression models under α-divergence loss 43

where y is an n × 1 vector of observations, X is an n × k matrix of k potential
predictors where n > k and rank X = k, and β is a k × 1 vector of unknown regres-
sion coefficients, and σ2 is unknown variance. Based on observing y, we consider
the problem of giving the predictive density p(ỹ|β, σ2) of a future m × 1 vector ỹ
where

(1.2) ỹ ∼ Nm(X̃β, σ2Im).

Here X̃ is a fixed m × k design matrix of the same k predictors in X, and the rank
of X̃ is assumed to be min(m, k). We also assume that y and ỹ are conditionally
independent given β and σ2. Note that in most earlier papers on such prediction
problems, σ2 is assumed known, mainly because this typically makes the problem
less difficult. However, the assumption of unknown variance is more realistic, and
we treat this more difficult case in this paper. In the following we denote by ψ all
the unknown parameters {β, σ2}.

For each value of y, a predictive estimate p̂(ỹ; y) of p(ỹ|ψ) is often evaluated by
the Kullback-Leibler (KL) divergence

(1.3) DKL {p̂(ỹ; y), p(ỹ|ψ)} =
∫

p(ỹ|ψ) log
p(ỹ|ψ)
p̂(ỹ; y)

dỹ,

which is called the KL divergence loss from p(ỹ|ψ) to p̂(ỹ; y). The overall quality of
the procedure p̂(ỹ; y) for each ψ is then conveniently summarized by the KL risk

(1.4) RKL(p̂(ỹ; y), ψ) =
∫

DKL {p̂(ỹ; y), p(ỹ|ψ)} p(y|ψ)dy,

where p(y|ψ) is the density of y in (1.1). [1] showed that the Bayesian solution
with respect to the prior π(ψ) under DKL loss given by (1.3) is what is called the
Bayesian predictive density

(1.5) p̂π(ỹ; y) =
∫

p(ỹ|ψ)p(y|ψ)π(ψ)dψ∫
p(y|ψ)π(ψ)dψ

=
∫

p(ỹ|ψ)π(ψ|y)dψ,

where

π(ψ|y) =
p(y|ψ)π(ψ)∫
p(y|ψ)π(ψ)dψ

.

For the prediction problems in general, many studies suggest the use of the Bayesian
predictive density rather than plug-in densities of the form p(ỹ|ψ̂(y)), where ψ̂ is
an estimated value of ψ. In our setup of the problem, [12] showed that the Bayesian
predictive density with respect to the right invariant prior is best equivariant and
minimax. Although the Bayesian predictive density with respect to the right in-
variant prior is a good default procedure, it has been shown to be inadmissible in
some cases. Specifically, when σ2 is assumed to be known and

m ≥ k ≥ 3, n = mN,

X = 1N ⊗ X̃ = (X̃ ′, . . . , X̃ ′)′,
(AS1)

where N is an positive integer, 1N is an N × 1 vector each component of which
is one, and ⊗ is the Kronecker product, [11] showed that the shrinkage Bayesian
predictive density with respect to the harmonic prior

(1.6) πS,0(ψ) = π(β) = {β′X̃ ′X̃β}1−k/2
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dominates the best invariant Bayesian predictive density with respect to

(1.7) πI,0(ψ) = π(β) = 1.

[9] extended [11] result to general shrinkage priors including [17] prior. As pointed
out in the above, we will assume that the variance σ2 is unknown in this paper.
The first decision-theoretic result in the unknown variance case was derived by [10].
He showed that, under the same assumption of [11] given by (AS1), the Bayesian
predictive density with respect to the shrinkage prior

(1.8) πS,1(ψ) = π(β, σ2) = {β′X̃ ′X̃β}1−k/2{σ2} −2

dominates the best invariant predictive density which is the Bayesian predictive
density with respect to the right invariant prior

(1.9) πI,1(ψ) = π(β, σ2) = {σ2} −1.

From a more general viewpoint, the KL-loss given by (1.3) is in the class of
α-divergence introduced by [6] and defined by

(1.10) Dα{p̂(ỹ; y), p(ỹ|ψ)} =
∫

fα

(
p̂(ỹ; y)
p(ỹ|ψ)

)
p(ỹ|ψ)dỹ,

where

fα(z) =

⎧⎪⎨
⎪⎩

4
1−α2 (1 − z(1+α)/2) |α| < 1
z log z α = 1
− log z α = −1.

Clearly the KL-loss given by (1.3) corresponds to D−1. [5] showed that a generalized
Bayesian predictive density under Dα loss is

(1.11) p̂π,α(ỹ; y) ∝
{[∫

p(1−α)/2(ỹ|ψ)π(ψ|y)dψ
]2/(1−α)

α �= 1
exp{

∫
log p(ỹ|ψ)π(ψ|y)dψ} α = 1.

Hence the Bayesian predictive density of the form (1.5) may not perform well under
α-divergence with α �= −1. As [3] pointed out in the estimation problem, decision-
theoretic properties often seem to depend on the general structure of the problem
(the general type of problem (location, scale), and the dimension of the parameter
space) and on the prior in a Bayesian-setup, but not on the loss function. In fact, we
will show, under (AS1) and D1 loss, the predictive density with respect to the same
shrinkage prior given by (1.8) improves on the best invariant predictive density with
respect to (1.9) (See Section 4). From this viewpoint, we are generally interested
in how robust the Stein effect already established under Dα loss for a specific α is.
For example, we can find some concrete problems as follows.

Problem 1 Under the assumption (AS1) and Dα loss for −1 < α < 1, does the
predictive density with respect to the same shrinkage prior given by (1.8)
improve on the best invariant predictive density with respect to (1.9)?

Problem 2-1 Under D1 loss, even if k = 1, 2, the best invariant predictive density
remains inadmissible because an improved non-Bayesian predictive density is
easily found. (See Section 4.) Can we determine improved Bayesian predictive
densities for this case (k = 1, 2)?
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Problem 2-2 Under k = 1, 2 and Dα loss with −1 ≤ α < 1, does the best invari-
ant predictive density keep inadmissibility? If so, which Bayesian predictive
density improve the best invariant predictive density?

In this paper, a main focus is on Problem 2-1 and 2-2. For Problem 2-1, we will give
an exact solution. We could not completely solve Problem 2-2 in this paper, but by
a natural extension of the shrinkage prior considered for Problem 2-1 (D1 loss), we
provide a class of predictive densities which will hopefully lead to the solution. In
addition, Problem 1 remains open.

The organization of this paper is as follows. We treat not only simple design
matrices like (AS1) but also general ones as in the beginning of this section. In
order to make structure clearer, Section 2 gives its canonical form. In Section 3,
we consider a natural extension of a hierarchical prior which was originally pro-
posed in [17] and [14] for the problem of estimating β. Using it, we will construct
a Bayesian predictive density under Dα loss for −1 ≤ α < 1 and α = 1. In Sec-
tion 4, we show that a subclass of the Bayesian predictive densities proposed in
Section 3 is minimax under D1 loss even if k is small. Section 5 gives concluding
remarks.

2. A canonical form

In the section, we reduce the problem to a canonical form. To simplify expressions
it is helpful to rotate the problem via the following transformation. First we note
that for the observation y, sufficient statistics are

β̂U = (X ′X)−1X ′y ∼ Nk(β, σ2(X ′X)−1),

S = ‖(I − X(X ′X)−1X ′)y‖2 ∼ σ2χ2
n−k,

where β̂U and S are independent.

Case I: When m ≥ k, let M be a nonsingular k × k matrix which simultaneously
diagonalizes matrices X ′X and X̃ ′X̃,

M ′(X ′X)−1M = diag(d1, . . . , dk), MM ′ = X̃ ′X̃,

where d1 ≥ · · · ≥ dk. Let V = M ′β̂U and θ = M ′β.

Case II: When m < k, there exists an (k − m) × k matrix X̃∗ such that (X̃ ′, X̃ ′
∗)′

is a k × k non-singular matrix and also X̃(X ′X)−1X̃ ′
∗ is an m × (k − m) zero

matrix. Further there exists an m × m orthogonal matrix P which diagonalizes
σ2X̃(X ′X)−1X̃ ′, the covariance matrix of X̃β̂U , i.e.,

P ′X̃(X ′X)−1X̃ ′P = diag(d1, . . . , dm),

where d1 ≥ · · · ≥ dm. There also exists a (k − m) × (k − m) matrix P∗ such that

P ′
∗X̃∗(X ′X)−1X̃ ′

∗P∗ = Ik−l.

Put (
V
V∗

)
=

(
P ′ 0
0 P ′

∗

)(
X̃

X̃∗

)
β̂U ,

so that V and V∗ are independent and have multivariate normal distributions
Nm(P ′X̃β, σ2D) and Nk−m(P ′

∗X̃∗β, σ2Ik−m) respectively. Let θ = P ′X̃β and μ =
P ′

∗X̃∗β.



46 Y. Maruyama and W.E. Strawderman

In summary, a canonical form of the prediction problem is as follows. We observe

(2.1) V ∼ Nl(θ, η−1D), V∗ ∼ Nk−l(μ, η−1I), ηS ∼ χ2
n−k

where η = σ−2, l = min(k, m), D = diag(d1, . . . , dl) and d1 ≥ · · · ≥ dl. When
m ≥ k, V∗ is null. Then the problem is to give a predictive density of an m-
dimensional future observation

(2.2) Ỹ ∼ Nm(Qθ, η−1Im),

where Q is an m × l matrix, which is given by

Q =

{
P if m < k

X̃(M ′)−1 if m ≥ k,

Q′Q = Il. Notice that, under the assumption (AS1), D becomes N −1Ik, V∗ is 0,
and Q becomes X̃(X̃ ′X̃)−1/2.

The distribution of ỹ in (2.2) is the same as in (1.2), so it is just the ỹ’s that
have been transformed. In the remainder of the paper, we will consider the problem
in its canonical form, (2.1) and (2.2). For brevity we will use the notation p̂(ỹ|y).

3. A class of generalized Bayes predictive densities

In this section, we consider the following class of hierarchical prior densities, π(θ, μ, η),
for the canonical model given by (2.1) and (2.2).

θ|η, λ ∼ Nl

(
0, η−1

(
D−1 + {(1 − α)/2}Il

)−1
(C/λ − Il)

)
,

μ|η, λ ∼ Nk−l

(
0, η−1(γ/λ − 1)Ik−l

)
,

η ∝ ηa, λ ∝ λa(1 − λ)bI(0,1)(λ),

(3.1)

where C = diag(c1, . . . , cl) with ci ≥ 1 for 1 ≤ i ≤ l, b = b(α) = (1 − α)m/4 +
(n − k)/2 − 1 and γ ≥ 1. The integral which appears in the Bayesian predictive
density below is well-defined when a > −k/2−1. An essentially equivalent class was
considered for the problem of estimating θ and σ2 in [14, 15] respectively. When
m ≥ k, the prior on μ is null and we have only to eliminate ‖V∗ ‖2/γ from the
representation of the Bayesian solution in the following theorems 3.1 and 3.2, in
order to have the corresponding result.

3.1. Case i: α ∈ [−1, 1)

Theorem 3.1. The generalized Bayes predictive density under Dα loss with respect
to the prior (3.1) is given by

(3.2) p̂α(ỹ|y) ∝ p̂{U,α}(ỹ|y) × p̌α(ỹ|y),

where

p̂{U,α}(ỹ|y) =
{
(ỹ − Qv)′Σ−1

U (ỹ − Qv) + s
}−m/2−(n−k)/(1−α)

,

p̌α(ỹ|y) =
{

(ỹ − Qθ̂B)′Σ−1
B (ỹ − Qθ̂B) + R +

‖v∗ ‖2

γ
+ s

}− k+2a+2
1−α

,

(3.3)
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and where

ΣU = {2/(1 − α)}I + QDQ′,

θ̂B = (C − I)(C + (1 − α)D/2)−1v,

ΣB = {2/(1 − α)}I + Q(C − I)D(C + {(1 − α)/2}D)−1Q′,

R(v) = v′({(1 − α)/2}D + I)D−1(C + {(1 − α)/2}D)−1v.

(3.4)

Proof. See Appendix.

The first term p̂{U,α}(ỹ|y) is the best invariant predictive density, and is Bayes
with respect to the right invariant prior π(θ, μ, η) = η−1. Up to normalization,
p̂{U,α}(ỹ|y) is multivariate-t with the mean Qv = X̃β̂U . We omit the straightforward
calculation. [12] show that p̂{U,α}(ỹ|y) has a constant minimax risk.

The second term, p̌α, is a pseudo multivariate-t density with mean vector Qθ̂B .
Since ‖θ̂B ‖ ≤ ‖v‖, p̌α induces a shrinkage effect toward the origin. The complexity
of this term is considerably reduced by the choice C = I, in which case θ̂B = 0,
ΣB = {2/(1 − α)}I and R(v) = v′D−1v. However, the covariance matrix of v,
σ2D, is diagonal, not necessarily a multiple of I, so that introduction of C �= I
seems reasonable. Indeed in the context of ridge regression, [4] and [14] have argued
that shrinking unstable components more than stable components is reasonable.
An ascending sequence of ci’s leads to this end. This additional complexity, while
perhaps not pleasing, is nevertheless potentially useful.

3.2. Case ii: α = 1

Theorem 3.2. The generalized Bayes predictive distribution under D1 divergence
with respect to the prior (3.1) is a normal distribution Nm(θ̂ν,C , σ̂2

ν,CIm) where

θ̂ν,C =
(

I − ν

ν + 1 + W
C−1

)
V,

σ̂2
ν,C =

(
1 − ν

ν + 1 + W

)
S

n − k
,

and where W = {V ′C−1D−1V + ‖V∗ ‖2/γ}/S and ν = (k + 2a + 2)/(n − k).

Proof. See Appendix.

It is quite interesting to note that the Bayesian predictive density p̂α(ỹ|y) for
α ∈ [−1, 1) given in Section 3.1 converges to φm(ỹ, Qθ̂ν,C , σ̂2

ν,C) as α → 1 where
φm(·, ξ, τ2) denotes the m-variate normal density with the mean vector ξ and the
covariance matrix τ2Im.

Since the Bayes solution is the plug-in predictive density as shown in Theorem
3.2, we pay attention only to the properties of plug-in predictive densities under
D1 loss. The α-divergence with α = 1, from φm(ỹ, Qθ̂, σ̂2), the predictive normal
density with plug-in estimators θ̂ and σ̂2, to φm(ỹ, Qθ, σ2), the true normal density,
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is given by∫
log

φm(ỹ, Qθ̂, σ̂2)
φm(ỹ, Qθ, σ2)

φm(ỹ, Qθ̂, σ̂2)dỹ

=
∫ {

− m

2
log

σ̂2

σ2
+

‖ỹ − Qθ‖2

2σ2
− ‖ỹ − Qθ̂‖2

2σ̂2

}
φm(ỹ, Qθ̂, σ̂2)dỹ

= − m

2
log

σ̂2

σ2
− m

2
+

∫ {
‖ỹ − Qθ̂ + Qθ̂ − Qθ‖2

2σ2

}
φm(ỹ, Qθ̂, σ̂2)dỹ

=
‖θ̂ − θ‖2

2σ2
+

m

2

{
σ̂2

σ2
− log

σ̂2

σ2
− 1

}

=
1
2

{
L1(θ̂, θ, σ2) + mL2(σ̂2, σ2)

}
.

(3.5)

In (3.5), L1 denotes the scale invariant quadratic loss,

L1(θ̂, θ, σ2) =
(θ̂ − θ)′(θ̂ − θ)

σ2
,

for θ, and L2 denotes Stein’s or entropy loss,

L2(σ̂2, σ2) =
σ̂2

σ2
− log

σ̂2

σ2
− 1,

for σ2. Hence when the prediction problem under α-divergence with α = 1 is con-
sidered from the Bayesian point of view, the Bayesian solution is the normal dis-
tribution with plug-in Bayes estimators and the prediction problem reduces to the
simultaneous estimation problem of θ and σ2 under the sum of losses as in (3.5).

4. Improved minimax predictive densities under D1

In this section, we give analytical results on minimaxity under D1 loss. As pointed
out in the previous section, the prediction problem under D1 loss, reduces to the
simultaneous estimation problem of θ and σ2 under the sum of losses as in (3.5).
Clearly the UMVU estimators of θ and σ2 are θ̂U = V and σ̂2

U = S/(n − k). These
are also generalized Bayes estimators with respect to the the right invariant prior
π(θ, μ, η) = η−1 and are hence minimax. The constant minimax risk is given by
MRθ,σ2 , where

(4.1) MRθ,σ2 =
1
2

{
trD + m

(
log γ − Γ′(γ)

Γ(γ)

)}

and γ = (n − k)/2.
Recall that from observation y, there exist independent sufficient statistics given

by (2.1):
V ∼ Nl(θ, η−1D), V∗ ∼ Nk−l(μ, η−1I), ηS ∼ χ2

n−k,

where η = σ−2, l = min(k, m), D = diag(d1, . . . , dl) and d1 ≥ · · · ≥ dl. When
m ≥ k, V∗ is empty.

In the variance estimation problem of σ2 under L2, [16] showed that S/(n − k)
is dominated by

(4.2) σ̂2
ST = min

(
S

n − k
,
V ′D−1V + S

l + n − k

)
,
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for any combination of {n, k, m} including l = min(k, m) = 1. Hence, in the simul-
taneous estimation problem of θ and σ2, we easily see that {θ̂U , σ̂2

U } is dominated
by {θ̂U , σ̂2

ST } and hence have the following result.

Proposition. The estimator {θ̂U , σ̂2
U } is inadmissible for any combination of {n, k,

m}.

The improved solution, {θ̂U , σ̂2
ST }, is not Bayes. When l ≥ 3 and

(4.3) l − 2 ≤ 2
(
d−1
1

∑l
i=1 di − 2

)
,

we can construct a Bayesian solution using our earlier studies as follows. In the
estimation problem of θ under L1, [14] showed that the generalized Bayes estimator
of θ with respect to the harmonic-type prior

(4.4) πS,1(θ, η) = {θ′D−1θ}1−l/2

improves on the UMVU estimator θ̂U when l ≥ 3 and (4.3) is satisfied. In the
variance estimation problem of σ2 under L2, although [15] did not state so explicitly,
they showed that the generalized Bayes estimator of σ2 with respect to the same
prior (4.4) dominates the UMVU estimator σ̂2

U when l ≥ 3. Hence the prior (4.4)
gives an improved Bayesian solution in the simultaneous estimation problem of θ
and σ2 when l ≥ 3 and (4.3) is satisfied. (Note that under the special assumption
(AS1) introduced in Section 1, D becomes the multiple of identity matrix and hence
(4.3) is automatically satisfied.)

However, in the above construction of the Bayesian solution, two assumptions,
l ≥ 3 and (4.3) are needed. Further even if m < k and V∗ exists, the Bayes procedure
does not depend on V∗. This is not desirable because the statistic V∗ has some
information about η or σ2. In fact, the Stein-type estimator of variance

(4.5) σ̂2
ST ∗ = min

(
S

n − k
,

‖V∗ ‖2 + S

n − l

)
,

as well as {σ̂2
ST } dominates σ̂2

U and hence {θ̂U , σ̂2
ST ∗ } also dominates {θ̂U , σ̂2

U } in
the simultaneous estimation problem.

Now we show that a subclass of the generalized Bayes procedure under D1 given
in Section 3.2 improves on the generalized Bayes procedure with respect to the
right invariant prior. We assume neither l ≥ 3 nor (4.3). Additionally the proposed
procedure does depend on V∗ if it exists.

Theorem 4.1. The generalized Bayes estimators of Theorem 3.2,

θ̂ν,C =
(

I − ν

ν + 1 + W
C−1

)
V

σ̂2
ν,C =

(
1 − ν

ν + 1 + W

)
S

n − k
,

where W = {V ′C−1D−1V + ‖V∗ ‖2/γ}/S, dominate the UMVU estimators (V and
S/(n − k)) under the loss (3.5) if γ ≥ 1 and 0 < ν ≤ min(ν1, ν2, ν3) where

ν1 = 4
∑

(di/ci) − 2 max(di/ci) + m/(n − k)
2 max(di/ci)(n − k + 2) + m

ν2 =
4{

∑
(di/ci) − max(di/ci)} + 2m/(n − k)

(n − k − 2) max(di/ci) + m

ν3 =
4
m

∑ di

ci
.
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Proof. See Appendix.

Clearly ν2 and ν3 are always positive. Now consider ν1. Assume ν1 is negative
for fixed C0. But there exits g0 > 1 such that C = g0C0 makes ν1 positive. Hence
we can choose an increasing sequence of ci’s which guarantees the minimaxity of
(θ̂ν,C , σ̂2

ν,C) and increased shrinkage of unstable components.

Remark 1. We make some comments about domination results under D1 loss for
the case of a known variance, say σ2 = 1. By (2.1) and (3.5), the prediction problem
under D1 loss reduces to the problem of estimating an l-dimensional mean vector θ
under the quadratic loss L1(θ̂, θ) = ‖θ̂−θ‖2 in the case where there exists a sufficient
statistic V ∼ Nl(θ, D). It is well known that the UMVU estimator V is admissible
when l = 1, 2, and inadmissible when l ≥ 3. Minimax admissible estimators for
l ≥ 3 have been proposed by many researchers including [17], [2], [8], and [13]. On
the other hand, for KL (i.e. D−1) loss, [9] used some techniques including the heat
equation and Stein’s identity, and eventually found a new identity which links KL
risk reduction to Stein’s unbiased estimate of risk reduction. Based on this link, they
obtained sufficient minimaxity conditions on the Bayesian predictive density. Hence
we expect that there should exist an analogous relationship between the prediction
problem under Dα loss for |α| < 1, and the problem of estimating the mean vector.
As far as we know, this is still an open problem.

5. Concluding remarks

In this paper we have studied the construction and behavior of generalized Bayes
predictive densities for normal linear models with unknown variance under α-
divergence loss. In particular we have shown that the best equivariant, (Bayes under
the right invariant prior) and minimax predictive density under D1 is inadmissible
in all dimensions and for all residual degrees of freedom. We have found a class
of improved hierarchical generalized Bayes procedures, which gives a solution to
Problem 2-1 of Section 1.

The domination results in this paper are closely related to those in [14, 15] for
the respective problems of estimating the mean vector under the quadratic loss
and the variance under Stein’s loss. In fact a key observation that aids the cur-
rent development is that the Bayes estimator under D1 loss is a plug-in estimator,
specifically a normal density with mean vector and variance closely related to those
of the above papers, and that D1 loss is the sum of a quadratic loss in the mean
and Stein’s loss for the variance.

We expect that an extension of a hierarchical prior given in Section 3.1, for the
prediction problem under Dα loss for −1 ≤ α < 1, can form a basis to solve Problem
2-2 of Section 1. We have been less successful in extending the domination results
to the full class of α-divergence losses.

Appendix A: Appendix section

A.1. Proof of Theorem 3.1

The Bayesian predictive density p̂α(ỹ|y) under Dα divergence for general α ∈ [−1, 1)
is proportional to

(A.1)
[∫∫∫

{p(ỹ|θ, η)}
1−α

2 p(v|θ, η)p(v∗ |μ, η)p(s|η)π(θ, μ, η)dθdμdη

] 2
1−α

,
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and hence the the integral in brackets can be written as

∫∫∫∫
η

m
2

1−α
2 exp

(
− η

2
1 − α

2
‖ỹ − Qθ‖2

)
η

n−k
2 exp

(
− ηs

2

)
× η

l
2 exp

(
− η

2
(v − θ)′D−1(v − θ)

)
η

k−l
2 exp

(
− η

2
‖v∗ − μ‖2

)

× λl/2ηl/2∏
(ci − λ)1/2

exp
(

− η

2
θ′

(
D−1 +

1 − α

2
Il

)
(C/λ − Il)

−1
θ

)

×
(

λη

γ − λ

)(k−l)/2

exp
(

− η

2
λ‖μ‖2

γ − λ

)
ηaλa(1 − λ)bdθdμdηdλ.

(A.2)

To simplify integration with respect to θ, we first re-express those terms involving
θ by completing the square, and neglecting, for now, the factor η(1 − α)/4. Let
D∗ = {(1 − α)/2}D. Then

‖ỹ − Qθ‖2 + (v − θ)′D−1
∗ (v − θ) + θ′(I + D−1

∗ )(C/λ − I)−1θ

= θ′(I + D−1
∗ )(I − C−1λ)−1θ − 2θ′(Q′ỹ + D−1

∗ v) + ‖ỹ‖2 + v′D−1
∗ v

= {θ − (I + D−1
∗ )−1(I − C−1λ)(Q′ỹ + D−1

∗ v)}′ {(I + D−1
∗ )(I − C−1λ)−1}

× {θ − (I + D−1
∗ )−1(I − C−1λ)(Q′ỹ + D−1

∗ v)}

− (Q′ỹ + D−1
∗ v)′ {(I + D−1

∗ )−1(I − C−1λ)}(Q′ỹ + D−1
∗ v) + ‖ỹ‖2 + v′D−1

∗ v.

The “residual term”,

−(Q′ỹ + D−1
∗ v)′ {(I + D−1

∗ )−1(I − C−1λ)}(Q′ỹ + D−1
∗ v) + ‖ỹ‖2 + v′D−1

∗ v,

may be expressed as A + λ{B − A}, where

A = A(ỹ, v, D∗, Q)

= ‖ỹ‖2 + v′D−1
∗ v − (Q′ỹ + D−1

∗ v)′(I + D−1
∗ )−1(Q′ỹ + D−1

∗ v)

= {2/(1 − α)}(ỹ − Qv)′Σ−1
U (ỹ − Qv),

(A.3)

with ΣU given by (3.4) and

B = B(ỹ, v, C, D∗, Q)

= ‖ỹ‖2 + v′D−1
∗ v − (Q′ỹ + D−1

∗ v)′(I + D−1
∗ )−1(I − C−1)(Q′ỹ + D−1

∗ v)

= {2/(1 − α)}
{

(ỹ − Qθ̂B)′Σ−1
B (ỹ − Qθ̂B)

}
+ {2/(1 − α)}

{
v′({(1 − α)/2}D + I)D−1(C + {(1 − α)/2}D)−1v

}
,

(A.4)

where θ̂B and ΣB are given by (3.4). The third equality in (A.3) and (A.4) will be
proved in Lemma 1 below. Similarly we may re-express the terms involving μ as

‖v∗ − μ‖2 +
λ‖μ‖2

γ − λ
=

γ

γ − λ
‖μ (1 − {1 − λ/γ}v∗)‖2 + λ

‖v∗ ‖2

γ
.
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After integration with respect to θ and μ, the integral given by (A.2) is proportional
to ∫∫

η(1−α)m/4+n/2+aλk/2+a(1 − λ)b

exp
(

− η

2

{
1 − α

2
A + s + λ

(
1 − α

2
(B − A) +

‖v∗ ‖2

γ

)})
dηdλ

∝
∫ 1

0

λk/2+a(1 − λ)(1−α)m/4+(n−k)/2−1

{
1 − α

2
A + s + λ

(
1 − α

2
(B − A) +

‖v∗ ‖2

γ

)}−(1−α)m/4−n/2−a−1

dλ.

(A.5)

Note that in an identity given by Maruyama and Strawderman [14, p. 1758],

∫ 1

0

λα(1 − λ)β(1 + wλ)−γdλ

=
1

(w + 1)α+1

∫ 1

0

tα(1 − t)β

{
1 − tw

w + 1

}−α−β+γ−2

dt,

(A.6)

the integral of the right-hand side reduces to the beta function Be(α + 1, β + 1)
when −α − β + γ − 2 = 0. Hence the integral (A.5) is proportional to

(A.7)
(

1 − α

2
A + s

)−(1−α)m/4−(n−k)/2 (1 − α

2
B + s +

‖v∗ ‖2

γ

)−k/2−a−1

.

Since the Bayesian predictive density p̂α(ỹ|y) with respect to the prior π(θ, μ, η) is
a multiple of the integral (A.7) to the 2/(1 − α) power, the theorem follows.

Lemma 1. Let F and D∗ be diagonal matrices and Q′Q = I. Then

G(ỹ, v, F, D∗, Q)

= ‖ỹ‖2 + v′D−1
∗ v − (Q′ỹ + D−1

∗ v)′(I + D−1
∗ )−1F (Q′ỹ + D−1

∗ v),

has the form

{ỹ − QF (I + D∗(I − F ))−1v} ′ {I + QFD∗(I + D∗(I − F ))−1Q′ } −1

× {ỹ − QF (I + D∗(I − F ))−1v}
+ v′(D∗ + 1)(I − F )D−1

∗ (I + D∗(I − F ))−1v.

Proof. The function G(ỹ, v, F, D∗, Q) can be re-expressed as

G = ỹ′(I − Q(I + D−1
∗ )−1FQ′)ỹ − 2ỹ′Q(I + D∗)−1Fv

+ v′D−1
∗ {I − (I + D∗)−1F }v.

Since

(A.8) (I − Q(I + D−1
∗ )−1FQ′)−1 = I + QFD∗(I + D∗(I − F ))−1Q′,

we obtain

{I + QFD∗(I + D∗(I − F ))−1Q′ }Q(I + D∗)−1F = QF (I + D∗(I − F ))−1
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and

F (I + D∗)−1Q′ {I + QFD∗(I + D∗(I − F ))−1Q′ }Q(I + D∗)−1F

= F 2(I + D∗)−1(I + D∗(I − F ))−1.

Hence

G = {ỹ − QF (I + D∗(I − F ))−1v} ′(I + QFD∗(I + D∗(I − F ))−1Q′)−1

× {ỹ − QF (I + D∗(I − F ))−1v}
− v′F 2(I + D∗)−1(I + D∗(I − F ))−1v + v′D−1

∗ {I − (I + D∗)−1F }v.

Since the matrix for the quadratic form of v in the “residual term” can be written
as

D−1
∗ {I − (I + D∗)−1F } − F 2(I + D∗)−1(I + D∗(I − F ))−1

= (D∗ + I)(I − F )D−1
∗ (I + D∗(I − F ))−1,

the lemma follows.

A.2. Proof of Theorem 3.2

The Bayes predictive density p̂α(ỹ|y) under the divergence Dα for α = 1 is propor-
tional to

exp
{∫∫∫

log p(ỹ|θ, η)p(v|θ, η)p(v∗ |μ, η)p(s|η)π(θ, μ, η)dθdμdη

}

∝ exp
{∫ (

−η
‖ỹ − Qθ‖2

2

)
π(θ, μ, η|v, v∗, s)dθdμdη

}

∝ exp

(
− E(η|v, v∗, s)

2

∥∥∥∥ỹ − Q
E[ηθ|v, v∗, s]
E[η|v, v∗, s]

∥∥∥∥
2
)

.

(A.9)

Hence the Bayes solution with respect to the prior density π(θ, μ, σ2) under D1 is
the plug-in normal density

p̂α(ỹ|y) = φm(ỹ, Qθ̂π, σ̂2
π),

where φm(·, Qθ̂π, σ̂2
π) denotes the m-variate normal density with the mean vector

Qθ̂π and the covariance matrix σ̂2
πIm and where θ̂π and σ̂2

π are given by

θ̂π =
E[ηθ|y]
E[η|y]

= v − D∇vm(v, v∗, s)
2{∂/∂s}m(v, v∗, s)

,

σ̂2
π =

1
E[η|y]

= − m(v, v∗, s)
2{∂/∂s}m(v, v∗, s)

,

(A.10)

and where m(v, v∗, s) is the marginal density given by

(A.11) m(v, v∗, s) =
∫∫∫

p(v|θ, η)p(v∗ |μ, η)p(s|η)π(θ, μ, η)dθdμdη.

Now we consider the marginal density of (v, v∗, s) with respect to the prior π(θ, μ, η),
(3.1) with α = 1. Using essentially the same calculations as in Section 3.1, we obtain
the marginal density in the relatively simple form

(A.12) m(v, v∗, s) ∝ s−(n−k)/2(v′C−1D−1v + ‖v∗ ‖2/γ + s)−(k/2+a+1).
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From the expression in (A.10), a straightforward calculation gives the the estimators
of θ and σ2 in the simple form

θ̂ν,C =
(

I − ν

ν + 1 + W
C−1

)
V,

σ̂2
ν,C =

(
1 − ν

ν + 1 + W

)
S

n − k
,

(A.13)

where W = {V ′C−1D−1V + ‖V∗ ‖2/γ}/S, respectively. This completes the proof.

A.3. Proof of Theorem 4.1

[14] showed that, under the L1 loss, the risk function of a general shrinkage estimator

θ̂φ =
(

I − φ(W )
W

C−1

)
V

with suitable φ is given by

E
[
L1(θ̂φ, θ, σ2)

]
= E

[
‖θ̂φ − θ‖2

σ2

]

= E

[
‖V − θ‖2

σ2

]
+ E

[
φ(W )

W

{
ψ(V, V∗, C, D, ν)

(
(n − k + 2)φ(W )

+4
{

1 − Wφ′(W )
φ(W )

(1 + φ(W )
})

− 2
l∑

i=1

di

ci

}]
,

where

ψ(v, v∗, C, D, ν) =
v′C−2v

v′C−1D−1v + ‖v∗ ‖2/γ
.

For φν(w) = νw/(ν + 1 + w), we have

(n − k + 2)φ(w) + 4
{

1 − wφ′(w)
φ(w)

(1 + φ(w)
}

=
{(n − k + 2)ν + 4}w2 + (ν + 1){ν(n − k − 2) + 4}w

(1 + ν + w)2

which is always positive when n − k − 2 ≥ 0. Since ψ is bounded from above by
max1≤i≤l di/ci, the risk function of θ̂ν satisfies

E
[
L1(θ̂ν,C , θ, σ2)

]
≤ MRθ + E

[
ν

1 + ν + W

{
−2

∑ di

ci
+ max

di

ci

{(n − k + 2)ν + 4}W 2

(1 + ν + W )2

+max
di

ci

(ν + 1){ν(n − k − 2) + 4}W

(1 + ν + W )2

}]
,

where MRθ = trD.
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Next we consider the risk function of σ̂2
φ = (1 − φ(W )/W )S/(n − k) where

0 < φ(w)/w < 1, which is given by

E[L2(σ̂2
ν , σ2)] = E

[(
1 − φ(W )

W

)
S

(n − k)σ2
− log

S

(n − k)σ2

− log
(

1 − φ(W )
W

)
− 1

]

= MRσ2 + E

[
− φ(W )

Wσ2

S

n − k
− log

(
1 − φ(W )

W

)]
.

Here MRσ2 = log γ − Γ′(γ)/Γ(γ) and γ = (n − k)/2. By the chi-square identity (See
e.g. [7]),

E

[
φ(W )S
Wσ2

]
= E

[
(n − k + 2)

φ(W )
W

− 2φ′(W )
]

.

Also using the relation

− log(1 − x) =
∞∑

i=1

xi

i
≤ x +

1
2

x2

1 − x
,

for 0 < x < 1, we have

E[L2(σ̂2
ν , σ2)]

≤ MRσ2 + E

[
φ(W )

W

{
2

n − k

(
Wφ′(W )

φ(W )
− 1

)
+

1
2

max
φ(w)/w

1 − φ(w)/w

}]
.

For φ(w) = νw/(ν + 1 + w), one gets

E[L2(σ̂2
ν,C , σ2)]

≤ MRσ2 + E

[
ν

1 + ν + W

{
− 2

n − k

W

1 + ν + W
+

ν

2

}]
.

Hence

1
2
E

[
L1(θ̂ν,C , θ, σ2)

]
+

m

2
E[L2(σ̂2

ν,C , σ2)] ≤ MRθ,σ2 − ν

2
E

[
ψ(W )

(1 + ν + W )3

]
,

where MRθ,σ2 is the minimax risk given by (4.1) and

ψ(w) =
w2

2

(
4
{∑ di

ci
− 2 max

di

ci
+

m

n − k

}
− ν

{
2 max

di

ci
(n − k + 2) + m

})

+ (ν + 1)w
(

4
{∑ di

ci
− max

di

ci

}
+

2m

n − k
− ν

{
(n − k − 2) max

di

ci
+ m

})

+
(1 + ν)2

2

(
4
∑ di

ci
− νm

)
≥ 0.

Hence the theorem follows.
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