
IMS Collections
Nonparametrics and Robustness in Modern Statistical Inference and Time Series
Analysis: A Festschrift in honor of Professor Jana Jurečková
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Qualitative robustness and weak

continuity: the extreme unction?

Ivan Mizera1,∗

University of Alberta

Abstract: We formulate versions of Hampel’s theorem and its converse, es-
tablishing the connection between qualitative robustness and weak continuity
in full generality and under minimal assumptions.

1. Qualitative robustness

The definition of qualitative robustness was given by Hampel [11]. Suppose that tn
is a sequence of statistics (estimators or test statistics), that, for each sample size n,
describe a procedure. Let P be a probability measure that identifies the stochastic
model we believe that underlies the data, and let LP (tn) be the distribution of tn
under this stochastic model; Hampel [11] implicitly views the data as independent,
identically distributed random elements of some sampling space X (assumed to be
complete separable metric space), with P then the common distribution of these
random elements, a member of P(X ), the space of all probability measures on X
(defined on the Borel σ-field generated by the topology of X ). Let π denote the
Prokhorov metric on P(X ), as defined in Huber [15]; see also Section 3 below.

Definition 1. Let P be a probability measure from P(X ). A procedure tn is called
qualitatively robust at P if for any ε > 0 there is δ > 0 such that

(1) π(P,Q) ≤ δ implies π(LP (tn),LQ(tn)) < ε

for all sufficiently large n.

The fact that (qualitative) “robustness is related to some form of continuity”,
as we can read, for instance, on page 72–73 of Maronna et al. [18], became a part
of universal statistical knowledge. It was demonstrated already by Hampel [11] for
procedures representable by functionals on the space P(X ), the procedures that can
be summarized in terms of a functional, T , defined on a subset of P(X ) rich enough
to guarantee that for any relevant collection of xi’s,

(2) tn(x1, . . . , xn) = T (Δx1,...,xn
),

where Δx1,...,xn
stands for the empirical probability supported by the points x1,

x2, . . . , xn (the probability allocating mass 1/n to every of the xi’s). For proce-
dures representable by functionals, qualitative robustness is essentially equivalent to
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weak continuity, the continuity with respect to the weak convergence of probability
measures—as defined, for instance, by Billingsley [1].

Possible subtleties arising in this context can be illustrated on a very simple (and
already discussed elsewhere) example: median. We define the estimator as the value
of t where the graph of the function

(3) ψ(t) =
1

n

n∑
i=1

sign(Xi − t)

crosses zero level. This happens when ψ(t) = 0; but there may be no such t, as
ψ is not continuous. Nonetheless, given that ψ is nondecreasing, we can complete
its graph by vertical segments connecting the jumps, and then take t giving the
location where such augmented graph intersects the horizontal coordinate axis.

Such a provision takes care of jumps, but still leaves possible ambiguity: some-
times there may be not one, but several t such that ψ(t) = 0. (Note that if ψ
happens to cross zero level at a jump, then the corresponding location is unique.)
To finalize the definition of median, we have to adopt some “ambiguity resolution
stance”. Roughly, there are three possibilities.

(i) Ignore: that is, consider median defined not for all n-tuples of data, but only
for those for which it is defined uniquely. In statistical science, such a strategy is
often vindicated by the fact that data configurations yielding ambiguous results
happen to be rather a mathematical than practical phenomenon, especially if the
underlying stochastic model implies their occurrence with probability zero. While
this point of view is pertinent, for instance, for the Huber estimator—which in
theory can yield non-unique result, but in practice seldom will—for the median,
however, the ambiguity is bound to occur for most of data configurations with
even n.

(ii) View the definition as set-valued: instead of uniquely defined median, consider
a median set—in this case always a closed interval, due to the monotonicity of ψ.
This strategy is likely to be successful if it can be pursued without invoking too
much of non-standard mathematics—simply as an attitude that instead of ignoring
ambiguous data configurations, one can rather admit an occasional possibility of
multiple solutions and still maintain some theoretical control over these, as pointed
out by Portnoy and Mizera [23] in the discussion of Ellis [8].

(iii) Consider a suitable selection: that is, define the median as a point selected in
some specific way from the median set. The often used alternative is the midpoint
of the median interval—but minimum or maximum could be considered too. The
selection strategy may be naturally suggested by the implementation of the method,
when a specific algorithm returns some particular, and thus unique, solution.

A functional representation of the median can be obtained via the straightfor-
ward extension of (3): we define the median functional, T (P ), to be the location t
where the graph of

(4) ψP (t) =

∫
sign(x− t)P (dx)

crosses the zero level (using the same provision as above to define what this pre-
cisely means). Any “ambiguity resolution stance” mentioned above can be directly
generalized to this situation.
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A standard argument shows that if Pn → P weakly, then ψPn
(t) → ψP (t) for

every continuity point t of ψ; further analytical argument based on monotonicity
yields that every limit point of a sequence tn of points giving locations where ψPn

crosses zero level is a location where ψP crosses zero level. In the terminology
introduced below, T is weakly semicontinuous at every P , and weakly continuous
at every P for which it is uniquely defined. Therefore, by Theorem 6.2 of Huber
[15], or by our Theorem 1, median is qualitatively robust at every P for which T is
uniquely defined.

The justification of this step—from continuity to qualitative robustness—is the
theme of this note, and we will return to it in the next section. Let us illustrate
now why uniqueness is necessary, on a simple example (capturing nevertheless the
essence of behavior for any P yielding a non-degenerate median interval): let P be
concentrated with equal mass 1/2 in two points, −1, and +1. Fix ε = 1/4, say. Let
Q−

α and Q+
α be concentrated on {−1,+1} with corresponding probabilities 1/2+α,

1/2−α and 1/2−α, 1/2+α, respectively; given δ > 0, we can always choose α > 0
so that both π(P,Q−

α ) < δ and π(P,Q+
α ) < δ. A standard probabilistic argument

yields that we can find N such that for any n > N , the probability of median being
+1 is bounded from above by 1/4, if we sample from Q−

α ; and the same bound takes
place for the probability of median being −1, if we sample from Q+

α . Consequently,
π(LQ1

(tn),LQ2
(tn)) > 1/4 for n > N . Given that we arrived to this for fixed ε and

arbitrary δ, we conclude that median cannot be qualitatively robust at P .

Note that to reach this conclusion, we essentially do not need to know how the
estimator is defined in ambiguous situations: albeit data configurations with equal
number of −1’s and +1’s are possible, they occur only with small probability, which
further decreases to 0 for n → ∞. The fact that qualitative robustness requires
uniqueness of T at P does not depend, and would not change with an adopted
“ambiguity resolution stance”. The probabilistic behavior of a sample of size n
from P is not relevant either: except for the data configuration with equal number
of −1’s and +1’s, which occurs with small probability ηn (tending to 0 with growing
n), there are only two possible cases, by symmetry each occurring with probability
1− ηn/2: either −1’s or +1 are in majority, and the median is then unambiguously
equal to −1 or +1.

The situation is somewhat different in the functional setting, where the weak
continuity of T depends on the adopted “ambiguity resolution stance”. If we take
in the example above T (P ) to be 0, the midpoint of the median set [−1, 1], then
we loose continuity: for α→ 0 we have T (Q−

α ) = −1 for all α > 0, which suddenly
jumps to 0 for P (which corresponds to α = 0). If we adopt the set-valued definition
of T , then we have a set-valued weak semicontinuity at P : for any sequence Qn con-
verging weakly to P , the sets T (Qn) are eventually contained in an ε-neighborhood
of the set T (P ). It might be tempting to consider this as a, possibly extended,
definition of robustness, as indicated in Section 1.4 of Huber [15]:

“We could take this . . . as our definition and call a . . . statistical functional T robust if
it is weakly continuous. However, following Hampel [11], we prefer to adopt a slightly
more general definition.”

Indeed, Definition 1 has an advantage that it is directly based on the procedures
rather than on their functional representations, whose existence and form may not
be always that clear and intuitive as in our median example, and whose scope
is limited to permutation-invariant, exchangeable situations—while Definition 1
exhibits a clear potential for extensions to situations structured beyond such a
framework; and also, as we have seen, essentially does not depend on the adopted
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“ambiguity resolution stance”.
Thus, adopting the Hampel [11]’s Definition 1 of the qualitative robustness, we

would like to revisit now how it relates to the weak continuity of T at P , in situations
when T is uniquely defined at P , but possibly may not be so elsewhere.

2. Weak continuity

Definition 2. A functional T is called weakly continuous at P , if for any ε > 0
there is δ > 0 such that

(5) π(P,Q) ≤ δ implies d(θ, τ) < ε

for any value θ and τ of T at P and Q, respectively.

The appearance of the word “any” above means that the definition is formulated
for set-valued T , without explicitly mentioning this fact; the value of T is considered
to be a subset of X . Of course, univalued T (with values that are singletons, sets
consisting of precisely one element) are a special case.

For a set-valued functional T , we can also define weak semicontinuity of T at P
by the requirement that for any ε > 0 there is δ > 0 such that π(P,Q) < δ implies
that T (Q) ⊆ T (P )ε, the set T (P )ε containing all points within ε distance from
the set T (P ). This seems to be equivalent to Definition 2, but is not: T is weakly
continuous at P , if and only if it is weakly semicontinuous and univalued at P .

As mentioned above, Hampel [11] pointed out that weak continuity at P implies
qualitative robustness at P . However, his Theorem 1 and its Corollary required also
an additional assumption of global pointwise continuity of all tn: every tn had to be
continuous as a function of the vector (x1, x2, . . . , xn), for all such vectors. Although
Hampel [11] gives also a version (Theorem 1a) which weakens this assumption and
allows exceptions from the pointwise continuity if those occur under zero probability
P , verifying his condition can be in general burdensome.

For instance, the condition of pointwise global continuity holds true, and is not
difficult to verify for every data vector, if we define the median as the midpoint of
the median interval. However, when exploring, in Mizera and Volauf [20], the same
topic for a multivariate generalization of the median called the Tukey median, we
realized that this route would lead to serious complications. First, specifying the
appropriate selection from a convex set in Rk is not that straightforward for k > 1;
second, we realized that the Tukey median may not be always continuous—so, third,
we would have to show that such configurations occur with probability zero under
P yielding the weak continuity of the Tukey median.

Such complications are not necessary: Huber [15], while giving the result the
name of Hampel, also noted that weak continuity of T at P is all what is needed.
A somewhat related global version was given already by Hampel [11]: weak con-
tinuity at an empirical probability Δx1,...,xn

implies the pointwise continuity of tn
at (x1, . . . , xn); therefore, if weak continuity is postulated at all P , the pointwise
continuity then follows. The Hampel [11]’s proof suggests that some version of local
pointwise continuity, or even local boundedness would suffice; but it is not obvious
how such a condition would have to be formalized.

So, we could use Theorem 6.2, Section 2.6 of Huber [15] to conclude that the
Tukey median is qualitatively robust whenever it is weakly continuous—if not for
the following. Huber [15]’s formulation and proof uses for the first π in (1) the Lévy
metric, instead of the Prokhorov one. This means that Theorem 6.2 is formally
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valid only for X = R; that is good enough for our median example, but does not
apply to the Tukey median, when X = Rk. Actually, Huber [15] allows tn to assume
values in Rk; but P is clearly restricted to P(R).

We did not consider this minor detail to be of major importance; it is clear that
Huber [15] envisioned the broad validity of his Theorem 6.2—only for educational
or practical reasons he preferred the simple argument based on the uniformity in
the Glivenko–Cantelli theorem (with a direct consequence for the Lévy metric)
to possibly more technical treatment required for the general case (which can be
nowadays carried in the language of the modern theory of empirical processes,
which Huber [15] pioneered in his works). Thus, writing Mizera and Volauf [20],
we believed that we could limit our focus to continuity questions, their statistical
consequences for robustness being well known.

However, the reviewers of Mizera and Volauf [20] did not initially share this
view—until we introduced in the revised version a theorem, which up to some
technical details is identical with Theorem 1 below. Its proof, however, was consid-
erably out of scope of Mizera and Volauf [20]; in lieu of it we rather promised that
“the proof of the theorem will appear elsewhere in the literature”—hoping that
somebody (a referee or anybody else) would argue that this is not really necessary,
because the theorem appears to be an obvious consequence of Huber [15], Hampel
[11], or some other reference.

However, it seems that our hope has not materialized, and it is time to fulfill our
promise now. Before formulating the theorem and showing how the original proof
of Huber [15] can be altered to cover rigorously also the multidimensional case, we
need to discuss one formal subtlety. Thinking of our functionals and procedures as
of set-valued mappings, we are not completely sure whether we may still speak in a
mathematically consistent manner about their distribution. There are ways to for-
malize the notion of law for set-valued random functions—however, we would prefer
to stay away from this level of abstraction. In practice, a lot of procedures consist of
functions yielding unique values with probability one—we will call such set-valued
functions lawful, as we can speak about their distributions without ambiguities.
For instance, the �1 regression estimator is lawful as long as the distribution of
covariates is continuous. However, the case of median—as well as that of the Tukey
median—is different; the median is not lawful for even n, unless we consider its law-
ful version: a univalued selection from the estimator, that is a univalued function
picking always one value from the set of all possible ones. This resembles the selec-
tion strategy for the “ambiguity resolution stance”, with one important distinction:
now the selection does not have to be deterministic, but may be also randomized: a
lawful version of the sample median may be a point selected at random according
to the uniform distribution on the median interval. We stress that lawful versions
are introduced exclusively for “law enforcement”, to ensure that the symbol L(tn)
in the definition of qualitative robustness is well-defined; as far as other aspects are
concerned, we will consider functionals in their original deterministic expression.

Theorem 1. Suppose that a procedure tn is represented by a functional T . If T is
weakly continuous at P , then any lawful version of tn is qualitatively robust at P .

The proof—which is that of Huber [15], only the argument using the Lévy metric
is replaced by a more general one—is given in Section 3. The rest of this section
presents the converse to Theorem 1, to make this note self-contained; we essentially
follow Hampel [11], the proofs are given in Section 3.

The appropriate formulation of the converse requires some insights into the na-
ture how the procedure is represented by a functional. We remark that the general
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question of representability by functionals may involve some delicate aspects; Ham-
pel [11] and Huber [15] addressed the question to some extent; see also Mizera [19].
For example, such representation exist only when the tn’s exhibit some mutual
consistency—if an empirical probability for a given n arises as an empirical proba-
bility for some other n, the corresponding tn should yield the same result. Again,
we do not want to go into more depth than needed here.

Developing all the theory in the set-valued context, we have to include an ap-
propriate definition of convergence in probability: for the purposes of Definition 3,
we say that a sequence of random sets En converge to E in probability, if for any
selected subsequence xn ∈ En, the distance of xn to E converges to 0 in probability.
In the set-valued terminology, this may be called rather “upper convergence”, but
for the present purpose, the name and definition are good enough; the interesting
cases will be those when E = {x} is a singleton, and then the term “convergence”
is justified, and means that xn converges to x in probability for any sequence tn
selected from the En’s.

Definition 3. A representation of a procedure tn by a functional T is called consis-
tent at P , if tn converges in probability to T (P ) whenever the data are independent
and identically distributed according to the law P .

Proposition 1. If a procedure tn is represented by a functional T weakly continuous
at P , then this representation is consistent at P .

Definition 4. A representation of a procedure tn by a functional T is called regular,
if (i) it is consistent for every P in the domain of T ; and (ii) for every P and every
τ ∈ T (P ), there is a sequence Pν of empirical probabilities weakly converging to P ,
the functional T is univalued at every Pν , and T (Pν) converges to τ .

The following result serves as a “prototype” of the converse part of Hampel’s
theorem. It can be used for disproving qualitative robustness in nonregular cases—
in particular, when T is not univalued at P .

Proposition 2. Suppose that a procedure tn is represented by a functional T . If
there are Q−

ν , Q
+
ν such that (i) both Q−

ν and Q+
ν weakly converge (in n) to P ; (ii)

T (Q−
ν ) converges to θ and T (Q

+
ν ) to τ , where θ �= τ ; (iii) T is univalued at every Q−

ν

and Q+
ν ; (iv) the representation of tn by T is at every Q−

ν and Q+
ν consistent—then

no lawful version of tn is qualitatively robust at P .

The converse to Theorem 1 is formulated for regular representations.

Theorem 2. Suppose that the representation of a procedure tn by a functional T
is regular. If some lawful version of tn is qualitatively robust at P , then T is weakly
continuous (in particular, uniquely defined) at P .

3. Proofs

We assume that S is a Polish space, a complete and separable metric space with a
metric d. For E ⊂ S, Eε denotes the ε-fattening of E, the set of all x ∈ S within
ε distance from E. The Prokhorov metric, π(P,Q), is defined as the infimum of all
ε > 0 such that P (E) ≤ Q(Eε) + ε for all measurable E. It is uniformly equivalent
to the bounded Lipschitz metric β,

(6)
2

3
π2(P,Q) ≤ β(P,Q) ≤ 2π(P,Q).
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The bounded Lipschitz metric is defined as

β(P,Q) = sup
f∈BL(S)

∣∣∣∣
∫
f dP −

∫
f dQ

∣∣∣∣,

where BL(S) stands for the set of all real functions on S satisfying

sup
u∈S

|f(u)|+ sup
u,v∈S

|f(u)− f(v)|
d(u, v)

≤ 1;

in particular, |f | ≤ 1 for all f from BL(S). A set F is called totally bounded, if
for any ε > 0 there is a finite collection of ε-balls, balls with radius ε in metric �,
covering F ; the symbol N(ε, F, �) then denotes the minimal cardinality of such a
collection, the ε-covering number of F in metric �. Symbols Lp

E denote the usual
metrics on spaces of functions defined on E.

Let X1, X2, . . . , Xn be independent random variables, each with the distribu-
tion Q; it can be arranged that all Xi are defined on the same probability space
(Ω,S,PQ) (depending on Q). Let Qn be the (random) empirical probability measure
supported by the random variables Zi; note that the distribution of Qn depends
on Q.

Lemma 1. Let K be a totally bounded subset of S. For every ε > 0,

(7) PQ

[
sup

f∈BL(Kε)

∣∣∣∣
∫
f dQn −

∫
f dQ

∣∣∣∣ > 48ε

]

tends to 0 uniformly in all Q ∈ P(Kε).

Proof. Proceeding as in the proof of Theorem 6 of Dudley et al. [7], we obtain an
upper bound for (7),

(8) 2N(6ε, BL(Kε), L1
Qn

) e−18nε2 ≤ 2N(6ε, BL(Kε), L∞
Kε) e−18nε2 .

The inequality, obtained by approximating the functions in BL(Kε) by stepwise
functions and using their analytical properties,

(9) N(6ε, BL(Kε), L∞
Kε) ≤

(
1

2ε

)N(2ε,Kε, d)

and the fact that N(2ε,Kε, d) ≤ N(ε,K, d) together imply, given the total bound-
edness of K, that the covering numbers in (8) are bounded uniformly in n. Hence
the expressions in (8) and consequently in (7) tend to 0, uniformly in Q.

Lemma 2. For fixed E ⊆ S and any ε > 0, the sequence PQ

[
Qn(E) > 2ε

]
converges

to 0 as n→ ∞, uniformly in all Q ∈ P(S) such that Q(E) ≤ ε.

Proof. Use the Chebyshev inequality for the Bernoulli sequence of independent
events with p = Q(E) ≤ ε,

PQ

[
Qn(E) ≥ 2ε

]
= PQ

[
Qn(E)− p ≥ 2ε− p

]
≤ PQ

[|Qn(E)− p| ≥ ε
] ≤ p(1− p)

nε2
≤ 1

nε
.

The lemma follows.
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Lemma 3. Let P ∈ P(S). For any ε > 0, there exists a totally bounded subset K
of S such that

(10) PQ

[
sup

f∈BL(S)

∣∣∣∣
∫
Kε

f dQn −
∫
Kε

f dQ

∣∣∣∣ > 96ε

]
→ 0,

uniformly in all Q ∈ P(S) such that π(P,Q) ≤ ε/2.

Proof. Given ε > 0, choose a compact subset K of S such that P (K) ≥ 1 − ε/2;
here we use the fact that a probability measure on a Polish space is tight, in the
terminology of Theorem 1.4 of Billingsley [1]. Fix η > 0 and choose n0 such that
(7) in Lemma 1 is bounded by η/3 for all n ≥ n0. Choose n1 such that

(11)
n1(1− ε)

2
≥ n0,

4ε

n1(1− ε)
≤ η

3
, and

1

2304n1ε2
≤ η

3
;

note that the first inequality also implies n1 ≥ n0. Let Q be an element from P(S)
such that π(P,Q) ≤ ε/2; then

1− ε

2
≤ P (K) ≤ Q(Kε/2) +

ε

2
≤ Q(Kε) +

ε

2

and consequently 1 − ε ≤ Q(Kε). Let NQ be the (random) number of Xi ∈ Kε;
let QKε denote the conditional probability on Kε defined by QKε(E) = Q(E ∩
Kε)/Q(Kε). Using again the Chebyshev argument as in Lemma 2, for the Bernoulli
series of events with p = Q(Kε) ≥ 1− ε, we obtain, using the first two inequalities
in (11), that for any n ≥ n1,

PQ

[
NQ ≤ n0

] ≤ PQ

[
NQ ≤ 1

2n1(1− ε)
] ≤ PQ

[
NQ ≤ 1

2n(1− ε)
]

≤ PQ

[∣∣∣∣NQ

n
− p

∣∣∣∣ ≥ p

2

]
≤ 4(1− p)

np
≤ 4ε

n1(1− ε)
≤ η

3
,

(12)

uniformly in Q. The Chebyshev inequality yields once again, now together with the
third inequality in (11), that for n ≥ n1,

(13) PQ

[∣∣∣∣NQ

n
− p

∣∣∣∣ > 48ε

]
≤ p(1− p)

482 nε2
≤ p ε

2034n1ε2
≤ 1

2034n1ε
≤ η

3
,

again uniformly in Q. Dividing the expression within (10) by p = Q(Kε), we obtain
that for n ≥ n1,

PQ

[
sup

f∈BL(S)

∣∣∣∣ 1

np

∑
Xi∈Kε

f(Xi)− 1

p

∫
Kε

f dQ

∣∣∣∣ ≥ 96ε

p

]

≤ PQ

[
sup

f∈BL(S)

∣∣∣∣ 1

np

∑
Xi∈Kε

f(Xi)− 1

NQ

∑
Xi∈Kε

f(Xi)

∣∣∣∣ ≥ 96ε

2p

]

+ PQ

[
sup

f∈BL(S)

∣∣∣∣ 1

NQ

∑
Xi∈Kε

f(Xi)− 1

Q(Kε)

∫
f dQ

∣∣∣∣ ≥ 96ε

2p

]

= PQ

[∣∣∣∣NQ

n
− p

∣∣∣∣ sup
f∈BL(S)

∣∣∣∣ 1

NQ

∑
Xi∈Kε

f(Xi)

∣∣∣∣ ≥ 48ε

]

+ PQ

[
sup

f∈BL(Kε)

∣∣∣∣ 1

NQ

∑
Xi∈Kε

f(Xi)−
∫
f dQKε

∣∣∣∣ ≥ 48ε

p

]

≤ PQ

[∣∣∣∣NQ

n
− p

∣∣∣∣ > 48ε

]
+ PQ

[
sup

f∈BL(Kε)

∣∣∣∣ 1

NQ

∑
Xi∈Kε

f(Xi)−
∫
f dQKε

∣∣∣∣ > 48ε

]
.
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By (13), the left-hand expression is dominated by η/3; the right-hand one can be
written as

∞∑
m=1

PQ

[
sup

f∈BL(Kε)

∣∣∣∣ 1

NQ

∑
Xi∈Kε

f(Xi)−
∫
f dQKε

∣∣∣∣ > 48ε

∣∣∣∣ NQ = m

]
PQ[NQ = m]

which can be split to two sums: the first is dominated by

∑
m≤n

PQ[NQ = m] = PQ

[
NQ ≤ n0

] ≤ 1
3η,

by (12); the second is

∑
m>n

PQ

[
sup

f∈BL(Kε)

∣∣∣∣ 1

NQ

∑
Xi∈Kε

f(Xi)−
∫
f dQKε

∣∣∣∣ > 48ε

∣∣∣∣ NQ = m

]
PQ[NQ = m]

=
∞∑

m>n

PQKε

[
sup

f∈BL(Kε)

∣∣∣∣ 1m
m∑
i=1

f(Zi)−
∫
f dQKε

∣∣∣∣ > 48ε

]
PQ[NQ = m]

≤ 1
3η

∞∑
m>n

PQ[NQ = m] ≤ 1
3η,

where Z1, Z2, . . . , Zm are independent random variables (different for each m), each
with distribution QKε , so that Lemma 1 applies. As η was arbitrary, the lemma
follows.

Lemma 4. For any α, η > 0, there exists δ > 0 and ν such that

(14) PQ

[
π(Qn, P ) > α

]
< η

whenever n ≥ ν and π(P,Q) < δ.

Proof. Given P and α, choose ε < α2/12 such that 96ε ≤ α2/3. As in the proof of
Lemma 3, we take a compact K such that Q(Kε) ≥ 1− ε whenever π(Q,P ) < δ =
ε/2. By (6), we obtain

PQ

[
π(Qn, P ) > α

] ≤ PQ

[
β(Qn, P ) >

2
3α

2
]

≤ PQ

[
sup

f∈BL(S)

∫
S\Kε

|f | dQn + sup
f∈BL(S)

∫
S\Kε

|f | dQ > 1
3α

2

]

+ PQ

[
sup

f∈BL(S)

∣∣∣∣
∫
Kε

f dQn −
∫
Kε

f dQ

∣∣∣∣> 1
3α

2

]

≤ PQ

[
Qn(S \Kε) > 1

4α
2
]
+ PQ

[
sup

f∈BL(S)

∣∣∣∣
∫
Kε

f dQn −
∫
Kε

f dQ

∣∣∣∣> 96ε(1− ε)

]

By Lemma 3, there exists n1 such that the second term is bounded by η/2 for
n ≥ n1. Since Q(S \Kε) ≤ ε < α2/12, Lemma 2 yields n2 such that for n ≥ n2,

PQ

[
Qn(S \Kε) > 1

4α
2
] ≤ PQ

[
Qn(S \Kε) > 1

6α
2
] ≤ 1

2η.

Setting ν = max{n1, n2} concludes the proof.
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Proof of Theorem 1. Let � be the metric on the range of T . Given ε > 0, weak
continuity of T at P yields α such that �(τ, T (P )) < ε/3 whenever τ ∈ T (Q) and
π(P,Q) < α. Setting η to ε/3 and taking ν and δ yielded by Lemma 4, we obtain
that if n ≥ ν and π(P,Q) ≤ δ, then

PQ

[
�(τ, T (P )) > 1

3ε
]
< 1

3ε

whenever τ ∈ T (Qn). The Strassen theorem — see Huber [15], Chapter 2, Theorem
3.7, or also the original paper Strassen [26]—then gives

(15) π(LQ(tn), δT (P )) ≤ 1
3ε;

here δT (P ) stands, in the spirit of the notation introduced above, for the point
(Dirac) measure concentrated in T (P ). Using (15) once again for Q = P and then
combining both inequalities, we obtain the desired result: if π(P,Q) ≤ δ, then
π(LQ(tn),LP (tn)) < ε for n ≥ ν, uniformly in Q.

Proof of Proposition 1. The proposition follows from the Varadarajan theorem,
stating that when the data are independently sampled from P , the correspond-
ing empirical probability measures converge weakly to P with probability one. The
consistency then follows from the weak continuity of T at P .

Proof of Proposition 2. Let � be the metric on the range of T , and suppose that
�(θ, τ) = ε > 0. Suppose that some lawful version of tn is qualitatively robust at P .
Given ε/4, we may pick Q−, Q+, out of Q−

ν and Q+
ν satisfying assumptions (ii), (iii),

and (iv), such that T is univalued, and the representation of tn by T is consistent
at both Q− and Q+; by qualitative robustness, we can pick them so that for some
n1

π(LQ−(tn),LP (tn)) ≤ 1
4ε,(16)

π(LQ+(tn),LP (tn)) ≤ 1
4ε,(17)

for all n ≥ n1. The consistency at Q− and Q+ yields n2 such that for all n ≥ n2,

PQ−
[
�(T (Q−

n ), T (Q
−)) ≥ 1

4ε
]
< 1

4ε,(18)

PQ−
[
�(T (Q−

n ), T (Q
−)) ≥ 1

4ε
]
< 1

4ε.(19)

Take n ≥ max{n1, n2}. Applying the Strassen theorem to (18) and (19) (given that
T is univalued at Q− and Q+), we obtain that

π(LQ−(tn), δT (Q−)) <
1
4ε,(20)

π(LQ+(tn), δT (Q+)) <
1
4ε.(21)

Combining (20), (21) with (16) and (17) yields that d(θ, τ) = π(δT (Q−), δT (Q+)) < ε,
a contradiction.

Proof of Theorem 2. Suppose that θ, τ ∈ T (P ), θ �= τ . By the regularity of T , there
are Q−

ν and Q+
ν that satisfy the assumptions of Proposition 2. Hence θ = τ . The

same argument yields that θ must be equal to the limit (possibly in a one-point
compactification of the range of T ) of any other sequence T (Pν) such that Pν → P .
Hence, T has a unique limit at P , equal to T (P ).
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4. Final remarks

After the introduction by Hampel [11], which reappeared in the more settled form
in Hampel, Ronchetti, Rousseeuw and Stahel (1986), and the influential treatment
by Huber [15], all in the context of estimation and independent sampling, quali-
tative robustness was extended to hypothesis testing framework by Lambert [16]
and Rieder [24]; dependent data models of time series flavor were considered by
Papantoni-Kazakos [21], Boente et al. [2]; some further theoretical aspects were
addressed by Cuevas [3]. It seems that despite these developments, its use for eval-
uating robustness was not too intense: a few relevant references are Rieder [25],
Good and Smith [9], Cuevas and Sanz [4], Machado [17], and He and Wang [13].
The fade-out citation pattern is indicated by the only 21st century exception re-
trieved from scholar.google.com, Daouia and Ruiz-Gazen [5].

As the name indicates, and the definition clearly shows, qualitative robustness
does not provide any “quantitative” appraisal: the procedure is judged either not
robust or robust—and in the latter case we do not know “how much”. The rush
for “more” and “most” robust methods might have been the reason that other
robustness criteria gained more following. Nevertheless, given the multitude of “de-
sirable features” considered in the screening of aspiring data-analytic techniques,
qualitative robustness may be just enough to draw a dividing line in the territory
of robustness—especially in complex situations where classical criteria modeled in
standard circumstances may loose steam.

In the universe of mathematical sciences, qualitative robustness is similar to
the notion of stability used in the theory of differential equations: a small change
in initial conditions still renders the new solution staying in a tube enclosing the
original one. Interestingly, the translation of “qualitatively robust at P” to “solution
exists, is unique, and depends continuously on the data”, discussed in this note,
corresponds exactly to what in applied mathematics is called well-posed problem in
the sense of Hadamard [10]. Indeed, continuous dependence on the data is essential
for any procedure, in particular for its numerical implementation—which is always
based on approximation; it ensures the stability of an algorithm. A referee pointed
out that among the references given above, we might have missed some that, like
Hildebrand and Müller [14], refer more generally to “robustness” or “continuity”
without mentioning explicitly qualitative robustness. In the similar spirit, we may
see witness a resurrection of the term (likely under a different name) in learning
theory — see Poggio, Rifkin, Mukherjee, and Niyogi (2004).

Of course, numerical stability requires only pointwise continuity; qualitative ro-
bustness goes a step further, requiring continuity with respect to the distribution
underlying the data. Some may argue that it goes too far, indicating that continuity
violated by statistical procedures otherwise in common use may be too stringent a
requirement. In the context of well-posedness in the sense of Hadamard [10], the
usual mode of requiring continuity is “in some reasonable topology”. All this in-
dicates that the most important aspect of qualitative robustness, and robustness
theory in general, lies at its very start—as pointed out by Davies [6], and put down
already by Huber [15],

“It is by no means clear whether different metrics give rise to equivalent robustness
notions; to be specific we work with Lévy metric for F and the Prokhorov metric for
L(Tn).”

We remark that such a choice might came out as natural under the influence of
Billingsley [1] in the times of Hampel [11]; the question is whether it still remains
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such. Of course, the relationship between qualitative robustness and continuity
discussed in this note indicates that it is only the induced topology, not a particular
metric, that matters for qualitative robustness.
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