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Estimation of irregular probability

densities∗

Lieven Desmet1,† , Irène Gijbels2,† and Alexandre Lambert3

Katholieke Universiteit Leuven and Université catholique de Louvain

Abstract: This paper deals with nonparametric estimation of an unknown
density function which possibly is discontinuous or non-differentiable in an
unknown finite number of points. Estimation of such irregular densities is
accomplished by viewing the problem as a regression problem and applying
recent techniques for estimation of irregular regression curves. Moreover, the
method can deal with estimation of densities that have an irregularity at the
endpoint(s) of their support. A simulation study compares the performance of
the proposed method with those of other methods available in the literature.
A further illustration on real data is provided.

1. Introduction

Consider a random variable X with unknown density function fX . Based on an
i.i.d. sample X1, X2, · · · , Xn from X a well-known nonparametric estimator for fX
is the kernel density estimator

(1) fn(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
,

with K a kernel function and h > 0 a bandwidth parameter. When fX(·) is con-
tinuous at x, then fn(x) is a consistent estimator of fX(x). By contrast, in points
of discontinuity the estimate will typically smooth out the discontinuous behaviour
and will not be consistent (see e. g. [20] and [27]). A particular example here is
the case of a density with support [0,+∞[ (for example an exponential density)
which is discontinuous at the endpoint 0 of its support. See for example [11]. Sev-
eral approaches for obtaining consistent estimates of densities at such discontinu-
ous endpoints or boundary points have been proposed in the literature: a reflection
method of [25], transformation methods as in [21] and kernel methods with specially
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adapted kernels for the boundary points, as in [17]. There is also a vast literature
on detection of locations of discontinuity points in density or regression functions
(see e. g. [6], [28], [12], among others, and references therein).

An important issue in kernel density estimation is the choice of the bandwidth.
Global and local bandwidth selection procedures have been studied. See [27] and
references therein. Papers on local bandwidth selection in kernel density estima-
tion include [23], [24] and [18], among others. See [5] for a comparative study on
bandwidth selectors.

In this paper we consider the more general problem of estimating fX when this
function possibly exhibits discontinuities, at the function itself or in its derivative, at
certain (unknown) locations at the interior or at the boundary of its support. If the
density is continuous but not differentiable at a point x, then the estimate (1) will
be consistent but the rate of convergence is slower than at points of continuity. To
deal with estimation of densities that possibly show irregularities of the jump type
(i. e. discontinuity in the function itself) or of the peak type (i. e. discontinuity in
the derivative) we first view the density estimation problem as a regression problem
and then apply the technique developed by [10] for regression functions with jump
and/or peak irregularities to the resulting regression problem. Of importance is
to link the density estimation problem with the regression problem to see how
properties of the regression estimation context lead to properties of the resulting
density estimator. Viewing density estimation as a regression problem is not new,
and has been used in for example [7] and [19] for respectively estimation of densities
at boundaries and densities at points of discontinuity. The contribution of this paper
consists of dealing with estimation of irregular densities showing jump or peak
irregularities at unknown locations. The proposed method also leads to consistent
estimation at (discontinuous) boundary points. The method relies on local linear
fits. The merits of techniques based on local linear fitting for estimating regression
curves and surfaces with irregularities have been largely proven in [13], [14], [11],
[9] and [8].

The paper is organized as follows. In Section 2 we recall how binning of the data
leads to a regression problem, and we briefly discuss important properties of this
regression problem. Section 3 provides insights in how irregularities in the density
fX have an impact on the regression problem. The proposed estimation procedure is
discussed in Section 4. The finite sample performance of the method is investigated
via a simulation study in Section 5, which includes also comparisons with existing
methods, and a real data example.

2. Density estimation formulated in a regression context

2.1. Data binning

Define an interval [a, b] such that essentially no data point Xi fall outside it. Par-
tition the interval [a, b] into N subintervals {Ik; k = 1, · · · , N} of equal length
(b− a)/N . More precisely, let Ik = [a+(k− 1) b−a

N , a+ k b−a
N [, for k = 1, · · · , N − 1,

and let the last bin be IN = [a + N−1
N (b − a), b]. Denote by Ck the number of

observations in the bin Ik, k = 1, · · · , N . The bin counts (C1, . . . , CN ) behave like
a multinomial distribution with n trials and probabilities (β1/N, . . . , βN/N) where

βk := N
∫ a+(b−a) k

N

a+(b−a) k−1
N

fX(x) dx, k = 1, · · · , N . Denote by xk = a + b−a
N (k − 1

2 ) the

center of the bin Ik, k = 1, · · · , N .
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Then, asymptotically, forN = N(n) tending to infinity with n, we have that βk ≈
(b − a)fX(xk). Since the counts Ck ∼ Binomial(n, βk/N), it holds that E(Ck) =
nβk/N = mβk, withm = n/N , and Var(Ck) = nβk/N(1−βk/N) = mβk(1−βk/N),
and hence asymptotically, as N tends to infinity, E{Ck/((b − a)m)} ≈ fX(xk)
and Var{Ck/((b − a)m)} ≈ fX(xk)/((b − a)m). Estimating fX(x) can thus be
viewed as a heteroscedastic nonparametric regression problem where the regression
curve (the mean regression function) is fX(x) and the conditional variance function
σ2(x) ≈ fX(x)/m with data set {(xk, Ck/((b− a)m), k = 1, · · ·N} as the sample.

We will assume that m → ∞ as n → ∞, meaning that the number of data per
bin also increases as the total number of data increases.

For future developments it is convenient to treat the bin counts as Poisson vari-
ables. Indeed, the variables Ck ∼ Binomial(n, βk/N) behave asymptotically like
Poisson variables with parameter mβk (recall, as n → ∞, we have that N → ∞).

A widely used approach to diminish heteroscedasticity is to apply a variance-
stabilizing transformation to the bin counts, which in some sense normalizes their
variance to a constant value.

Strictly speaking, the local linear fitting procedure does not require the condi-
tional variance to be constant but its consistency properties are established under
continuity. This is not guaranteed when starting from densities with jumps as these
will show up in the conditional variance. Due to the variance stabilizing transfor-
mation we need however not to worry about this. See Section 3.

2.2. Variance stabilizing transformations

It was suggested already by [2] that the square root of a Poisson variable (say X ∼
Poisson(λ) with λ > 0) has a distribution that is closer to the normal distribution
than the original variable. The variance is approximately 1/4 when λ is large. This
idea was further explored in [1], in particular by considering transformations of the
type

√
X + c with c ≥ 0.

The behaviour of the expectation and the variance of the transformed
√
X + c

Poisson random variable X, for λ → ∞, can be obtained via Taylor expansion. The
following result can be found in for example [4].

Lemma 1 Assume X ∼ Poisson(λ) and c ≥ 0 is a constant. Then it holds:

E(
√
X + c) = λ

1
2 +

4c− 1

8
λ− 1

2 − 16c2 − 24c+ 7

128
λ− 3

2 +O(λ− 5
2 )

V ar(
√
X + c) =

1

4
+

3− 8c

32
λ−1 +

32c2 − 52c+ 17

128
λ−2 +O(λ−3) .

In [1] it was proposed to take c = 3/8 in order to get a constant variance and
nearly constant bias but [4] argue that the choice c = 1/4 is better for minimizing
the first order bias E(

√
X + c)−√

λ while still stabilizing the variance equally well
(for λ large enough). In this paper we opt for the choice c = 1/4.

2.3. Asymptotic properties of the transformed bin counts

In [4] the behaviour of the transformed bin counts as stochastic variables was studied
in detail. That paper establishes an explicit decomposition of the transformed bin
counts in a deterministic term directly related to the (square root of the) density in
the corresponding grid points, a deterministic o(1) term and a stochastically small
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random variable. This result extends Lemma 1 and applies it to the binning case
where the bin counts Ck are assumed Poisson variables with parameter mβk.

Proposition 1 With notations as before, Ỹk =
√

Ck + 1
4 , we have

(2) Ỹk =
√

mβk + εk +
1

2
Zk + ξk, k = 1, 2, . . . , N ,

where the Zk are i.i.d. N(0, 1) variables, the εk are constants that are O((mβk)
− 3

2 ),

the quantity
∑N

k=1 ε
2
k is O(1) and the ξk are independent and stochastically small

variables. More, precisely we have: E|ξk|� ≤ c�(mβk)
− �

2 and P (|ξk| > α) ≤ (α2mβk)
− �

2

where � > 0, α > 0 and c� > 0 is a constant (depending on � only).

The authors in [4] rely on this regression model to estimate fX(·) using wavelet
block thresholding techniques. The simulation study in Section 5 includes a com-
parison with this method.

The above result is of course an asymptotic result requiring that mβk → ∞.
Note that then the εk are o(1) quantities and the ξk are oP (1). It is thus important
that βk > 0 while m → ∞. In other words, the result is not applicable for βk = 0
as the parameter of a Poisson variable cannot be 0. Consequently, the finite sample
behaviour of any estimate using this model could be bad in regions where the true
density is zero or close to zero. Therefore, we need to assume, on the domain under
consideration, that inf fX(x) > 0.

3. Variance stabilization and irregularities

We now turn to the situation that the unknown density fX is continuous and
twice differentiable except at a finite (unknown) number of points in which the
density function itself or its derivative is discontinuous. A point s is called a jump
irregularity when fX(s+) = fX(s−) + d with fX(s−) > 0, fX(s+) > 0, and d 
= 0.
A point s is called a peak irregularity when f ′

X(s+) = f ′
X(s−) + d∗, with d∗ 
= 0

and fX(s+) = fX(s−) > 0, where f ′
X denotes the first derivative of fX . We assume

that the second order derivatives of fX at all regular points (i. e. points at which fX
is continuous and twice differentiable) are uniformly bounded. We now investigate
what is the impact of such irregularities on the regression problem related to the
transformed counts.

The following result shows how the asymptotic variance changes with the grid
point xk. It is an immediate consequence of Lemma 1.

Corollary 1 Let Ck be the bin counts and suppose that xk and xk+1 are in the
interior of the support of fX . Then the asymptotic difference in variance over these
neighbouring grid points behaves like:

ΔVark := Var(

√
Ck +

1

4
)− Var(

√
Ck+1 +

1

4
) =

1

m

3− 8c

32
(
1

βk
− 1

βk+1
) + o(1/m) .

Proof. Apply Lemma 1 to the variables Ck that are distributed as Poisson variables
with parameter mβk. Then we have Var(

√
Ck + c) = 1

4 + 3−8c
32

1
mβk

+ o(1/m). The
result follows by rewriting this equation in the neighbouring point with index k+1
and taking the difference. �

From the result in Corollary 1 we get insight into the effect of the variance
stabilisation on the behaviour of the conditional variance function in the regression
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problem, and more particularly on how this variance changes with the x-coordinate.
We first study ΔVark, with xk and xk+1 interior points of the support of fX , for
different situations, namely that the interval ]xk, xk+1[: (S1) does not contain any
irregularity point; (S2) contains a jump irregularity point s; and (S3) contains a
peak irregularity point s. The findings can be summarized as follows:

(S1). We have that |fX(xk)− fX(xk+1)| = O(1/N) and since asymptotically
βk → (b − a)fX(xk) we have that ( 1

βk
− 1

βk+1
) → 0 as well as 1/m → 0.

Therefore ΔVark vanishes asymptotically, or in other words the variance in
smooth regions of the density fX tends to behave like a constant.
(S2). In this situation we have fX(xk) = fX(s−) +O(1/N) and fX(xk+1) =
fX(s−)+d+O(1/N) and a first order approximation of the ( 1

βk
− 1

βk+1
) term

is given by d[(b − a) fX(s−)(fX(s−) + d)]−1. However, since 1/m → 0, the
quantity ΔVark will converge to zero although slower than in situation (S1)
(and (S3)).
(S3). In this case, an analysis similar to the one in (S1) applies, and the
difference in variance ΔVark vanishes asymptotically.

The case when the unknown density shows a jump discontinuity at an endpoint
of its support is discussed in Section 4.2.

4. Proposed estimation procedure

4.1. Jumps and peaks preserving fit

In [10] a nonparametric method for estimating regression curves with jump and/or
peak irregularities using local linear fitting was proposed. The aim is to apply this
method to the regression model obtained from the binned and transformed data.

The requirement of homoscedastic errors in [10] can be relaxed since it is sufficient
to have a continuous (locally constant) conditional variance for the method to work.
From the result in (2) and the discussion in Section 3 we know that the regression

model for (xk, Ỹk) has a less heteroscedastic conditional variance, and the effect of
irregularities in the interior of the support vanishes asymptotically.

We need to assume that m = n/N → ∞; thus the number of observations per
bin grows as the number of observations grows.

From the transformed bin counts Ỹk =
√
Ck + 1

4 we can effectively estimate

the function g(·) that relates to the original density fX(·) as follows: g(x) ≈√
m(b− a)fX(x) + 1

4 . Once an estimate for g(·) is obtained we recover an estimate

for fX(·) by applying an inverse transformation.
In summary, the estimation procedure reads as follows:

• Step 1. Binning step: set up the grid of N equal-length intervals and calculate
the bin counts Ck, k = 1, . . . , N .

• Step 2. Root transform: put Ỹk =
√

Ck + 1
4 and treat (xk, Ỹk), k = 1, . . . , N

as the new equispaced sample for a nonparametric regression problem.
• Step 3. Apply the jump and peak preserving local linear fit of [10] to obtain
an estimate ĝ(·) of g(·).

• Step 4. Perform an inverse transformation and renormalization

(3) f̂X(.) = S (ĝ2(.)− 1

4
)+ ,
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where z+ = max(z, 0) and S is a normalization constant.

The jump and peak preserving local linear fitting method of [10] consists of
fitting three local linear models, using observations in a centered, a right and a
left neighbourhood of the point. In the presence of a jump or peak irregularity,
one of the three fits will outperform the other two, and this fit is selected in a data
driven way using an appropriate diagnostic quantity. We now provide details of this
estimation algorithm in Step 3. Let Kc be a bounded symmetric kernel density
function supported on the interval [−1/2, 1/2], and let h > 0 be the bandwidth
parameter. The (conventional) local linear estimate for g(x) is obtained by weighted
least-squares minimization:

(4) (âc,0(x), âc,1(x)) = arg min
a0,a1

N∑
k=1

[
Ỹk − a0 − a1(xk − x)

]2
Kc

(
xk − x

h

)
.

Starting from this conventional kernel Kc one then considers one-sided versions
K�(x) = Kc(x) I{x ∈ [−1/2, 0 [ } and Kr(x) = Kc(x) I{x ∈ [0, 1/2] } which via
a weighted least-squares minimization as in (4) but with K = K�, respectively
K = Kr, leads to the left local linear estimate, respectively the right local linear
estimate, denoted by (âj,0(x), âj,1(x)) with j = �, r respectively.

Consider the Residual Sum of Squares (RSS) of the three fits, defined as:

(5) RSSj(x) =

N∑
k=1

[
Ỹk − âj,0(x)− âj,1(x)(xk − x)

]2
Kj

(
xk − x

h

)
, j = c, �, r .

Then an important diagnostic quantity is

(6) diff(x) = max

(
RSSc(x)

wc(x)
− RSS�(x)

w�(x)
,
RSSc(x)

wc(x)
− RSSr(x)

wr(x)

)
,

where wj(x) =

N∑
k=1

Kj

(
xk − x

h

)
, for j = c, �, r. The peak and jump preserving

local linear regression estimator is then given by

(7) ĝ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

âc, 0(x) if diff(x) < u

âr, 0(x) if diff(x) ≥ u and RSSr(x)
wr(x)

< RSS�(x)
w�(x)

â�, 0(x) if diff(x) ≥ u and RSSr(x)
wr(x)

> RSS�(x)
w�(x)

(â�, 0(x) + âr, 0(x))/2 if diff(x) ≥ u and RSSr(x)
wr(x)

= RSS�(x)
w�(x)

,

where u > 0 is a suitably chosen threshold value.

Together with good choices of the parameters h and u involved, this leads to the
following practical estimation algorithm:

Consider a grid of bandwidths hgrid := (h1, . . . , hM ).
Iterate over these bandwidths and put h := hq, q = 1, . . . ,M .
For this bandwidth:

� Calculate estimates âj,0(x) and âj,1(x) for j = �, r, c.

� Obtain d̂ := supx |âr,0(x)− â�,0(x)| and d̂∗ := supx |âr,1(x)− â�,1(x)|.
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� Put umax := 1
2

(
d̂2

Cc
0(0)
v0,c

+ d̂∗
2 Cc

2(0)
v0,c

h2
)
, with v0,c =

∫ 1/2

−1/2
Kc(t) dt and

with Cc
0(0) and Cc

2(0) constants that only depend on K (see [10] for
details).

� Put ugrid := (0.001umax, 0.01umax, 0.1umax, umax).
Now iterate over the threshold values and put u := up, p = 1, . . . , 4.

∗ For the combination of h and u values at hand, calculate ĝ−k(xk) as
in (7), but leaving out the k-th observation itself.

∗ Calculate
∑n

k=1[Ỹk − ĝ−k(xk)]
2.

� Retain the value of u that yields the minimum for the sum in the former
step and associate with hq by putting it ũq.

Repeat the above procedure for each bandwidth and look for the bandwidth
hq (and associated threshold ũq) that yields the lowest value for the sum.
Calculate the final estimate with (7) from the couple (h, u) obtained as above.

For a detailed study of this jump and peak preserving estimator, in a general
regression context, see [10]. From this and previous studies we need to impose
conditions on how the bandwidth decreases as N → ∞. More precisely, we need
to impose that h ∼ (logN)2/5N−1/5, which can be translated to a condition on n
depending on the relation between N and n.

From the discussion in Section 3 it is already clear that the above estimation
procedure can deal with estimation of irregular densities at the interior of their
support. We now show that the method can also handle a non-smooth behaviour
of the density at an unknown boundary.

4.2. Densities with discontinuity at the boundary

As mentioned before a boundary point can be seen as a potential jump in the
regression function to be estimated with the jump and peak preserving local linear
fit of Section 4.1. In practice, we take a large enough binning interval (extending
to the left of the smallest and to the right of the largest observation) and consider
the unknown density as a function defined on this whole interval (coinciding with
the density on its support and with value zero outside of the support).

Let s be a boundary point of the support of fX , and suppose that fX(·) is
discontinuous in s, i. e. fX(s−) = 0, and fX(s+) = dB > 0, and we have uniformly
bounded derivatives up to the second order outside of s. Then to the left of s
the bin counts have variance zero (since they remain zero themselves) and to the
right of s we see the variance converging to 1/4. Therefore, asymptotically, the
jump discontinuity in the variance cannot be resolved by a variance stabilizing
transformation.

The proposed method however can deal with this situation in an automatic way.
The jump and peak preserving estimator from Section 4.1 will select the suitable
one-sided local linear fit in the neighbourhood of the boundary, and hence will
estimate the jump correctly. The argumentation for this is in two steps: first we
analyse this problem in the regression context in Lemma 2 and then we apply this
to the density estimation setting.

Lemma 2 Consider a regression model Yi = m(xi)+ εi where m(·) is an unknown
function such that m(x) = 0 for x < s and m(s+) = d > 0 (and m has continuous
second order derivatives outside of s), the errors have constant variance σ2 for
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xi > s (and are 0 for xi < s), with Eε4 < ∞. Assume the kernel K is uniform
Lipschitz continuous and h → 0, nh

logn → ∞ as n → ∞. Then asymptotically, we
have the following behaviour of the residual sum of squares quantities, in points
x = s+ τh near the jump point s.

−1/2 < τ ≤ 0 0 < τ < 1/2

RSSc(x)
wc(x)

d2
Cc

0(τ)

v0,c
+

v
τ,+
0,c

v0,c
σ2 + o(1) a.s. d2

Cc
0(τ)

v0,c
+

v
τ,+
0,c

v0,c
σ2 + o(1) a.s.

RSSr(x)
wr(x)

d2
Cr

0 (τ)

v0,r
+

v
τ,+
0,r

v0,r
σ2 + o(1) a.s. σ2 + o(1) a.s.

RSS�(x)
w�(x)

o(1) a.s. d2
C�

0(τ)

v0,�
+

v
τ,+
0,�

v0,�
σ2 + o(1) a.s.

where asymptotic remainder terms are uniform in x and with vτ,+0,j :=
∫
1
1/2
−τ Kj(t) dt

for j = �, r, c.

The proof of Lemma 2 is omitted here, and can be found in [8].
We cannot immediately apply this result to our density estimation setting where

responses Ỹk are obtained from transformed bin counts. However, asymptotically
we do have conditions as in the lemma: for xk < s we have Ck = 0, Ỹk = 0.5 and
VarỸk = 0, whereas for xk > s, asymptotically Ỹk =

√
mβk +

1
2Zk + oP (1), with Zk

standard normal variables as in (2).

The jump d and the quantity σ2 in the lemma then correspond to (
√

m(b− a)dB−
0.5), respectively 1/4 in our setting. Asymptotically, as m → ∞, the contribution
of the jump increases unboundedly. Therefore, considering (7) and the definition of

diff(x) in (6), we have for −1/2 < τ ≤ 0, diff(x) = RSSc(x)
wc(x)

−RSS�(x)
w�(x)

which increases

asymptotically above threshold values and clearly RSSr(x)
wr(x)

> RSS�(x)
w�(x)

so the left es-

timate will be selected. Now for 0 < τ < 1/2 we will see diff(x) = RSSc(x)
wc(x)

− RSSr(x)
wr(x)

increase above threshold and since RSS�(x)
w�(x)

> RSSr(x)
wr(x)

, the right estimate will be

selected.

5. Numerical analysis

5.1. Simulation study

The proposed estimation method is applied to five test densities with jump and/or
peak irregularities in the interior or with discontinuous boundary.

Model (a) is a discontinuous density defined from two different exponential den-
sities.

fX(x) = 0.5 exp(x) I{x < 0}+ 5 exp(−10x) I{x ≥ 0} .

Model (b) is a discontinuous density which is a mixture of two different normal
densities and was considered in [15]:

fX(x) = 0.5fN(0,( 10
3 )2) I{x < 0}+ 0.5fN(0,( 32

3 )2) I{x ≥ 0} .

Model (c) is the claw density defined in [22] (their model #10). It can be seen as a
convex combination of normal densities:

fX(x) =
1

2
fN(0,1)(x) +

1

10

(
fN(−1,( 1

10 )
2)(x) + fN(− 1

2 ,(
1
10 )

2)(x) + fN(0,( 1
10 )

2)(x)

+fN( 1
2 ,(

1
10 )

2)(x) + fN(1,( 1
10 )

2)(x)
)

.
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Strictly speaking this is a smooth model but it is challenging.
Model (d) is the standard exponential density (so with a discontinuity at the bound-
ary).
Model (e) is a density with discontinuity in the first derivative.

fX(x) = 5 exp(−|10x|) .

All these models have unbounded support (on at least one side), and are shown in
Figure 1.
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Fig. 1. The five test models.

An illustration of the effect of the variance stabilization is provided in Figure 2.
Hundred samples of size n = 16384 are generated from each model. Each sample is
binned into N = 256 bins. In each gridpoint we thus have a sample of bin counts
and transformed bin counts of size 100 (from the 100 repetitions), from which the
sample standard deviations are then calculated.
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Fig. 2. Variance stabilization in each model. Black circles indicate standard deviations
based on bin counts Ck, grey crosses show standard deviations based on transformed bin

counts
√

Ck + 1
4
for a large value m = 64.

As can be seen from Figure 2 the original bin counts are strongly heteroscedastic
and the standard deviations follow the shape of the density itself, as explained in
Section 2.1. This greatly improves when taking a transformation: peaks get largely
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suppressed and discontinuities also diminish. However, in those regions where the
density was already small (near zero) we still have small values after transformation
and hence standard deviation is still far from the theoretical value. In addition, a
discontinuity at the boundary still gives rise to a discontinuity of magnitude 0.5
in the standard deviation of the transformed values (see Model (d)). However this
does not cause any problem, as explained in Section 4.2.

In this simulation study we include a comparison with a variety of other methods,
such as standard kernel density estimation methods (see the estimator in (1)) with
different bandwidth selection strategies as well as methods developed for densities
with irregularities such as wavelet thresholding and a histogram method combined
with a suitable selection of the number of bins. An overview of the considered
estimators and their short notation is given in Table 1.

Table 1

Overview of estimators

Name Method Input data Main smoothing parameter
̂f1 proposed esti-

mator
binned transformed global bandwidth (cross-validation)

kernel raw data global bandwidth:
̂f2 Sheather-Jones solve-the-equation (ste)
̂f3 Sheather-Jones direct plug-in (dpi)
̂f4 conventional

local linear
binned transformed local bandwidth

̂f5 wavelet raw data thresholding
̂f6 wavelet binned transformed blocked thresholding

histogram raw data number of bins:
̂f7 penalized max likelihood (Hellinger distance)
̂f8 penalized max likelihood (L2 distance)

Details about the methods are provided below.

• The proposed estimator is denoted by f̂1 = f̂X , defined in (3), and is obtained
via the fully automatic procedure described in Section 4.1. We use an equis-
paced grid of bandwidth values hgrid = {0.02 + (q − 1)0.01; q = 1, · · · , 13}.

• Methods f̂2 and f̂3 are kernel density estimators based on the Sheather-Jones
bandwidth selectors, respectively with direct plug-in and solve-the-equation
strategies, as implemented in R: stats package. See [26].

• Method f̂4 is the estimate obtained from local kernel regression with a variable
bandwidth as in [16] (package R: lokern).

• Estimator f̂5 is a recent wavelet thresholding method of [15]. As recommended
in that paper we use the Haar wavelet basis for which the theory was developed
as well as the guidelines on the finest resolution level. An important procedure
parameter is then still the p-value for the testing procedure, for which no
guidelines are given. The results reported here are for p = 0.05 (which gave
the best performance in the majority of cases).

• In f̂6, binned and transformed data are used as a model for
√
f (up to a

scaling factor). The block thresholding wavelet method yields
√̂
f and the

final estimate is obtained by squaring and renormalization (see [4]). The pa-
rameter λ∗ in the James-Stein shrinkage formula regulates thresholding. The
standard value of 4.50524 recommended in the paper gives only small amount
of smoothing (visually the estimates were quite wiggly), therefore simulations
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were also done for 10 and 100 times this value. The reported results are for
λ∗ = 10× 4.50524.

• Methods f̂7 and f̂8 are histogram methods developed by [3] where the num-
ber of bins is selected by maximization of a maximum likelihood criterium
(respectively based on Hellinger or L2 distance) over a grid of values namely
from 10 to 100 (steps of 2) or from 100 to 800 (steps of 10).

In the simulation study hundred replications were performed and in one replica-
tion a sample of size n was generated from the given distribution. For the methods
that are based on regression, data were binned over a number N of bins: for samples
sizes n 2048, 1024 and 512, the number of bins N are respectively 512, 256 and 128.

We now summarize the simulation results. For saving space we only present
plots for Model (a) and sample size n = 1024. These pictures provide information
on the performance of each method, including its variability. For each method we
present pointwise 10% and 90% quantiles and median values calculated from the
100 estimation values. For increasing the visibility at the peak irregularity at the
point zero, we add short horizontal segments at that location.
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Fig. 3. 10% and 90% percentiles (dotted lines), median (black solid line) and true model

(thick grey line). Left panel: f̂1, middle panel: f̂2 and right panel: f̂3.

Figure 3 presents the results for the proposed jump and peak preserving local
linear method (f̂1) and for the global bandwidth kernel methods (f̂2 and f̂3). From

this figure it can be seen that f̂1 shows reasonably low bias and low variance (except

near the irregularity where the gap between quantiles is larger). The estimates f̂2, f̂3
have higher variance in the smooth regions and both underestimate the irregularity
(unlike for f̂1, the true model value falls outside the 10% to 90% quantile interval).
In general we noticed that the cross-validation procedure selects significantly larger
bandwidths than the Sheather-Jones bandwidth selectors. However, bias is still
reduced thanks to one-sided estimation in the jump and peak preserving procedure.
Outside of the irregularities, variance is kept low thanks to the larger bandwidth.

Using a local bandwidth parameter (estimate f̂4) introduces some artifacts as
can be seen from Figure 4. This happens in all models except in Model (c). The
artifacts are related to jumps in the local bandwidth selection taking place in the
transition from flat regions (large selected bandwidth) to regions with higher density
values (more reasonable smaller bandwidth values are selected). Local bandwidth
selection around irregularities behaves as one would expect as can be seen in the
right panel of Figure 4. Across all models, the variance of f̂4 is comparable to that
of f̂1 or slightly larger. In Model (a) the variance is larger for f̂4 than for f̂1. The
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Fig. 4. Left panel: 10% and 90% quantiles (dotted lines), median (black solid line) and

true model (thick grey line) for f̂4. Right panel: selected local bandwidth 10%, 50% and
90% quantiles.

bias for f̂4 is comparable with that of f̂2 and f̂3.

For results on Model (a) for the wavelet threshold method (estimate f̂5 of [15]),
see Figure 5 (left panel). In terms of bias this wavelet method does a rather poor
job, in particular in Models (a), (c), (d) and (e), where the true model values at
irregular points fall outside of the band delimited by 10% and 90% quantiles (not
all plots are shown here). The variability is also quite large in certain models.
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Fig. 5. Left panel: 10% and 90% quantiles (dotted lines), median (black solid line) and

true model (thick grey line) for f̂5. Right panel: same for f̂6.

The blocked wavelet thresholding estimate f̂6 is based on squaring the estimate
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obtained from the binned transformed data. This approach introduces a systematic
bias in the baseline (bin counts of zero are transformed to a value of 0.5, squaring
and rescaling still yields a non-zero value). Especially in Models (b), (c) and (d)
this effect was visible (due to the scale of these models). In general the performance

of this blocked wavelet estimate f̂6 was rather poor. A possible explanation is again
the bias in the baseline, which in turn causes bias in other regions when doing the
normalization step.

The histogram methods of [3] (estimates f̂7 and f̂8) perform quite well. See

Figure 6 for results for Model (a), showing a better performance for f̂8 than for f̂7
at the discontinuity location. In general the variant f̂8 based on an L2 measure,
selected a larger number of bins (resulting into better bias properties but a larger
variance). Except for Model (e) the bias is indeed quite good. For these models, the
method based on L2 outperforms the recommended one, both in terms of bias and
MISE (see also Table 2).
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Fig. 6. Left panel: 10% and 90% quantiles (dotted lines), median (black solid line) and

true model (thick grey line) for f̂7. Right panel: same for f̂8.

Table 2

MISE values for n=2048 and n=512.

Model (a). Model (b). Model (c). Model (d). Model (e).
n 2048 512 2048 512 2048 512 2048 512 2048 512
̂f1 0.01929 0.0973 0.001084 0.002156 0.006986 0.01169 0.00593 0.01375 2.122 2.407
̂f2 0.05620 0.08888 (0.02926) (0.1216) 0.01032 0.05013 0.01254 0.02253 2.474 2.516
̂f3 0.05609 0.1273 0.001887 0.002853 0.008586 0.01456 0.01153 0.01961 2.472 2.501
̂f4 0.04827 0.08178 0.001222 0.002719 0.006762 0.02012 0.02916 0.01974 2.558 2.4851
̂f5 0.04907 0.1257 0.0009915 0.002741 0.016394 0.04696 0.009218 0.06274 2.598 2.827
̂f6 0.07452 0.1041 0.002454 0.003847 0.01740 0.01826 0.02551 0.03288 3.407 3.503

f̂7 0.06238 0.1448 0.001023 0.003562 0.01195 0.03666 0.007062 0.01451 2.812 3.124
̂f8 0.02697 0.09854 0.0007281 0.002595 0.01055 0.02696 0.005029 0.01128 2.521 2.412

In Table 2 we provide the MISE (Mean Integrated Squared Error) values for all

models for sample sizes n = 2048 and n = 512. From this table it is seen that f̂1
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has the best performance in many models (for example in the challenging Model
(e)) or it has very competitive performance. If it is outperformed, then this is by

f̂8. The latter estimate has good to very good performance in Models (a), (b) and

(d). The proposed estimate f̂1 is doing quite well overall, far better than f̂3, f̂5 and

f̂6.

As for specific methods: among the Sheather-Jones global bandwidth methods,
f̂3 (direct plug-in, with larger selected bandwidths) shows better MISE (some val-

ues for f̂2 were unreliable due to convergence problems and therefore put between
parentheses). It is not surprising that f̂3 is doing well in smooth models such as
model (c), however from pictures its inconsistency at jumps and unsatisfactory
behaviour at peaks is clearly visible (see Figure 3 for Model (a)). For the local

bandwidth type kernel estimate f̂4, note the low value for Model (c) and the high
value for Model (d) (n = 2048), probably due to the artifacts mentioned before.

Finally, in the histogram methods f̂8 outperforms f̂7 also in terms of MISE (the
former method selects generally a larger number of bins).

The effect of sample size is also clearly visible: MISE values are generally larger
for the smaller sample size, in line with a general decline in variance and bias
performance noticed for smaller sample size.

5.2. Data example: call center data

The data example concerns data gathered between January 1st and December 31st
of 1999 in the call-center of “Anonymous Bank” in Israel. We gratefully acknowledge
Prof. Avisham Mandelbaum and Dr. Ilan Guedj from Technion University at Haifa
for making the data freely accessible.

The dataset, organized per month, contains some 20000–40000 records on phone
calls made to the call center. Among many other features recorded we focus on the
time the call entered the system. We use data for the month of May, concerning
39553 phonecalls.
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Fig. 7. Black solid line: proposed estimate f̂1, black dotted line: kernel estimate f̂3.
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In Figure 7 data are plotted together with two density estimates: the proposed
estimator f̂1 and the kernel density estimate f̂3 based on Sheather-Jones direct plug-
in bandwidth (of value 0.264; the solve-the-equation bandwidth yields a bandwidth

of 0.297 and f̂2 is very similar to f̂3). The bandwidth selected in the cross-validation
procedure was 0.72. This results in a smooth curve except for some peak features.
In contrast, the estimate f̂3 based on a smaller bandwidth produces a rather wiggly
curve (probably too wiggly to reflect the true underlying density). The estimate f̂1
shows a smoothly ascending curve (starting shortly after 7am, time at which the call
center begins to be staffed), leading to a peak between 10 and 11 when people seem
to be most keen on thinking about banking. After the peak, the density decreases
to a plateau in the early afternoon and then descends further to reach a minimum
around 8pm. After this, the density increases again peaking around 10pm, which
may be related to phone rates in Israel which change at that time. The call center
stops being staffed at midnight.
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