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A note on bounds for VC dimensions

Aad van der Vaart! and Jon A. Wellner?*

Vrije Universiteit, Amsterdam and University of Washington, Seattle

Abstract: We provide bounds for the VC dimension of class of sets formed
by unions, intersections, and products of VC classes of sets C1,...,Cpm.

1. Introduction and main results

Let C be a class of subsets of a set X. An arbitrary set of n points {z1,...,2,} has
2™ subsets. We say that C picks out a certain subset from {z1,...,z,} if this can
be formed as a set of the form C' N {zy,...,x,} for some C € C. The collection C
is said to shatter {x1,...,x,} if each of its 2" subsets can be picked out by C. The
VC - dimension V(C) is the largest cardinality of a set shattered by C (or +oo if
arbitrarily large finite sets are shattered); more formally, if

AL(Cozr,y. . xn) =#{CN{x1,...,2n}: C€C},
then

V() = sup{n  max A,(Cyxq, ..., xp) = 2”},
T1yeeeyTn
and V(C) = —1if C is empty. (The VC-dimension V(C) defined here corresponds to
S(C) as defined by [5] page 134. Dudley, and following him ourselves in [11], used the
notation V(C) for the VC-index, which is the dimension plus 1. We have switched
to using V(C) for the VC-dimension rather than the VC-index, because formulas
are simpler in terms of dimension and because the machine learning literature uses
dimension rather than index.)

Now suppose that C1,Ca,...,Cy, are VC-classes of subsets of a given set X with
VC dimensions Vi, ..., V;,. It is known that the classes LJZ,C;, M7, C; defined by

Ll?bzlcj = {UTZle : Cj € Cj, 7=1,... 7m},
MG ={N7L,Ci: Cj€Cy, j=1,...,m},

are again VC: when C; = -+ = C,,, = C and m = k, this is due to [2] (see also [3],
Theorem 9.2.3, page 85, and [5], Theorem 4.2.4, page 141); for general C;, Cs and
m = 2 it was shown by [3], Theorem 9.2.6, page 87, (see also [5], Theorem 4.5.3,
page 153), and [9], Lemma 15, page 18. See also [8], Lemma 2.5, page 1032. For a
summary of these types of VC preservation results, see e.g. [11], page 147. Similarly,
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if Dq,...,D,, are VC-classes of subsets of sets X7, ..., X, then the class of product
sets X7, D; defined by

|X|§’I:1DjE{D1><...XDmZ DjEDj, j=17,m}

is a VC-class of subsets of X; X -+ x X,;,. This was proved in [1], Proposition 2.5,
and in [3], Theorem 9.2.6, page 87 (see also [5], Theorem 4.2.4, page 141).

In the case of m = 2, consider the maximal VC dimensions max V(C; U Cs),
max V(C; MCs), and max V(D1 K Ds), where the maxima are over all classes Cy,Co
(or D1, Dy in the last case) with V(Cy) = Vi, V(C2) = V4 for fixed Vi, V5. As shown
in [3], Theorem 9.2.7, these are all equal:

max V(C; UCq) = max V(€ MCy) = max V(D K Dy) = S(Vq, V).

[3] provided the following bound for this common value:

Proposition 1.1. S(V4,V,) < T(V4, Va) where, with ,C<, = Z;}:o (’;),

(1.1) T(V1,Va) =sup{r e N: ,C<y, ,C<y, > 2"},

Because of the somewhat inexplicit nature of the bound in (1.1), this proposition
seems not to have been greatly used so far.

Furthermore, [4] (Theorem 4.27, page 63; Proposition 4.38, page 64) showed that
S(1,k) <2k +1 for all k£ > 1 with equality for &k =1,2,3.

Here we give a further more explicit bound for T'(V;, V3) and extend the bounds
to the case of general m > 2. Our main result is the following proposition.

Theorem 1.1. Let V = Z;n:l Vj. Then the following bounds hold:

V(UTLCy) com
(12) V(I_I;"ZICJ) < C1V10g (W) < C1V10g(02m),
V(K{'D;) -
where V.= (Vi,..., V), 1 = m =2.28231..., 0 = @ = 3.92165. ..,

Ent(V)=m™" Y VjlogV; - ViegV
i=1

is the “entropy” of the V;’s under the discrete uniform distribution with weights
1/m and V =m™1 Z;’;l V;.

Corollary 1.1. For m = 2 the following bounds hold:

S(VA.Va) < T(VA,Va) < |ea(Va + V) log (XME;(V_)/V)) | = roama)

where c1, ¢, Ent(V), and V are as in Theorem 1.

Proof. The subsets picked out by M;C; from a given set of points {x1,...,2,}
in X are the sets C; N --- N Cp, N {x1,...,2,}. They can be formed by first
forming all different sets of the form Cy N {xz1,...,z,} for C; € Ci, next in-
tersecting each of these sets by sets in Co giving all sets of the form C; N Cy N
{z1,...,zn}, etc. U AL(Coy1,. - yn) = #{CN{y1,...,yn}t: C €C}land A,(C) =

maxy, .y, An(C,y1,...,yn) for every collection of sets C and points y1,...,y, (as
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n [11], page 135), then in the first step we obtain at most A, (C;) different sets,
each with n or fewer points. In the second step each of these sets gives rise to at
most A, (Cs) different sets, etc. We conclude that

Auma>sgp%w»s1;(%)w,

by [11], Corollary 2.6.3, page 136, and the bound (en/s)® for the number of subsets
of size smaller than s for n > s. By definition the left side of the display is 2™ for
n equal to the VC-dimension of M;C;. We conclude that

m Vi
en
2" < —
<II(%) -
=1
or

nlog2<ZV10g e/V;) + (ZV)logn

=1

With V' =3, V;, define r = en/V. Then the last display implies that

log 2
V=S <3 Vilog(e/Vi) + Vlog(rV/e),
¢ i
or
RiAl .
—1 & <logr +logV — 721‘/; o8 Vi
e 1%
Ent(V) mr
ogr + logm % og <6Ent(z)/v) ,

and this inequality can in turn be rewritten as

Ent(V)/V

x _ mr/e m e

= < .
o84 Jog (s feEnWIT) T BtV log?

Y.

Now note that g(z) = x/loga < y for x > e implies that < (e/(e—1))ylogy: g is
minimized by x = e and is increasing; furthermore y > g(z) for z > e implies that

log1 1
logy > logx — loglogz = logx (1 — M) >logx (1 — —)
log e

so that
—1
1 e
xéylogw§y<1> logy:ﬁylogy-
e e —

Thus we conclude that

mr < e me 1 m e
— — 0 — - ,
eFt)/V = e — 1 BtV Jog2  ° \ BrtV)/V  log?2
which implies that
62

(e—1)log2 log <exp(Ent(K)/V) . log2) .

r <
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Expressing this in terms of n yields the first inequality (1.2). The second inequality
holds since Ent(V) > 0 implies exp(Ent(V)/V) > 1.

The corresponding statement for the unions follows because a class C of sets
and the class C¢ of their complements possess the same VC-dimension, and U;C; =
(M C¥)e.

In the case of products, note that

m m V;
m en
ALETD;) < [[Aa(D)) < ] (7) ,
1 j=1 "7

and then the rest of the proof proceeds as in the case of intersections. O

It follows from concavity of x — logx that with p; = V;/ > " Vi,

227;1 VjlogV; i

STV = ij logV; < log (Zpﬂ@) <log <Z V]>
j=1"J 1 1 T

and hence

m

(1.3) <M <
CEnt(V)/V

m,

or 0 < Ent(V)/V <logm, or
0 < Ent(V) < Vlogm.
Here are two examples showing that the quantity m/ eEntW)/V can be very close

to 1 (rather than m) if the V;’s are quite heterogeneous, even if m is large.

Example 1.1. Suppose that 7 € N (large), and that V; = r® fori = 1,...,m. Then
it is not hard to show that

m _ T ,rl/(rfl) _ T
BtV 1 — 1 =1

exp((r — 1) logr)

as m — oo where the right side can be made arbitrarily close to 1 by choosing r
large.

Example 1.2. Suppose that m = 2 and that V; = k, Vo = rk for some r € N.
Then

Ent(V)/V =log2 —

1 log((r +1)(1 +1/r)") — log2

as r — oo for any fixed k. Therefore

2
eEnt(V)/V

as r — oo for any fixed k.

Our last example shows that the bound of Theorem 1.1 may improve considerably
on the bounds resulting from iteration of Dudley’s bound S(1,%) < 2k + 1.

Example 1.3. Suppose Vi = V(C1) = kand V; = V(C;) =1 for j =2,...,m.
Iterative application of Dudley’s bound S(1,k) < 2k + 1 yields V(M7,C;) <
2m~1(k + 1) — 1, which grows exponentially as m — oo. On the other hand, Theo-
rem 1.1 yields V/(M72,C;) < c1(m + k — 1) log(cam) which is of order ¢;ymlogm as
m — oo.
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Although we have succeeded here in providing quantitative bounds for
V(U7L,Cy), V(ML Cy), and V(XT'Dy), it seems that we are far from being able
to provide quantitative bounds for the VC - dimensions of the (much larger) classes
involved in [6], [7], and [10].
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