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A note on bounds for VC dimensions

Aad van der Vaart1 and Jon A. Wellner2,∗

Vrije Universiteit, Amsterdam and University of Washington, Seattle

Abstract: We provide bounds for the VC dimension of class of sets formed
by unions, intersections, and products of VC classes of sets C1, . . . , Cm.

1. Introduction and main results

Let C be a class of subsets of a set X . An arbitrary set of n points {x1, . . . , xn} has
2n subsets. We say that C picks out a certain subset from {x1, . . . , xn} if this can
be formed as a set of the form C ∩ {x1, . . . , xn} for some C ∈ C. The collection C
is said to shatter {x1, . . . , xn} if each of its 2n subsets can be picked out by C. The
VC - dimension V (C) is the largest cardinality of a set shattered by C (or +∞ if
arbitrarily large finite sets are shattered); more formally, if

Δn(C, x1, . . . , xn) = #{C ∩ {x1, . . . , xn} : C ∈ C },

then

V (C) = sup
{

n : max
x1,...,xn

Δn(C, x1, . . . , xn) = 2n
}

,

and V (C) = −1 if C is empty. (The VC-dimension V (C) defined here corresponds to
S(C) as defined by [5] page 134. Dudley, and following him ourselves in [11], used the
notation V (C) for the VC-index, which is the dimension plus 1. We have switched
to using V (C) for the VC-dimension rather than the VC-index, because formulas
are simpler in terms of dimension and because the machine learning literature uses
dimension rather than index.)

Now suppose that C1, C2, . . . , Cm are VC-classes of subsets of a given set X with
VC dimensions V1, . . . , Vm. It is known that the classes �m

j=1Cj , �m
j=1Cj defined by

�m
j=1Cj ≡ {∪m

j=1Cj : Cj ∈ Cj , j = 1, . . . , m},

�m
j=1Cj ≡ {∩m

j=1Cj : Cj ∈ Cj , j = 1, . . . , m},

are again VC: when C1 = · · · = Cm = C and m = k, this is due to [2] (see also [3],
Theorem 9.2.3, page 85, and [5], Theorem 4.2.4, page 141); for general C1, C2 and
m = 2 it was shown by [3], Theorem 9.2.6, page 87, (see also [5], Theorem 4.5.3,
page 153), and [9], Lemma 15, page 18. See also [8], Lemma 2.5, page 1032. For a
summary of these types of VC preservation results, see e.g. [11], page 147. Similarly,
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if D1, . . . , Dm are VC-classes of subsets of sets X1, . . . , Xm, then the class of product
sets �m

j=1Dj defined by

�m
j=1Dj ≡ {D1 × . . . × Dm : Dj ∈ Dj , j = 1, . . . , m}

is a VC-class of subsets of X1 × · · · × Xm. This was proved in [1], Proposition 2.5,
and in [3], Theorem 9.2.6, page 87 (see also [5], Theorem 4.2.4, page 141).

In the case of m = 2, consider the maximal VC dimensions max V (C1 � C2),
max V (C1 � C2), and maxV (D1 � D2), where the maxima are over all classes C1, C2

(or D1, D2 in the last case) with V (C1) = V1, V (C2) = V2 for fixed V1, V2. As shown
in [3], Theorem 9.2.7, these are all equal:

max V (C1 � C2) = max V (C1 � C2) = max V (D1 � D2) ≡ S(V1, V2).

[3] provided the following bound for this common value:

Proposition 1.1. S(V1, V2) ≤ T (V1, V2) where, with rC≤v ≡
∑v

j=0

(
r
j

)
,

T (V1, V2) ≡ sup{r ∈ N : rC≤V1 rC≤V2 ≥ 2r }.(1.1)

Because of the somewhat inexplicit nature of the bound in (1.1), this proposition
seems not to have been greatly used so far.

Furthermore, [4] (Theorem 4.27, page 63; Proposition 4.38, page 64) showed that
S(1, k) ≤ 2k + 1 for all k ≥ 1 with equality for k = 1, 2, 3.

Here we give a further more explicit bound for T (V1, V2) and extend the bounds
to the case of general m ≥ 2. Our main result is the following proposition.

Theorem 1.1. Let V ≡
∑m

j=1 Vj. Then the following bounds hold:

⎧⎨
⎩

V (�m
j=1Cj)

V (�m
j=1Cj)

V (�m
1 Dj)

⎫⎬
⎭ ≤ c1V log

(
c2m

eEnt(V )/V̄

)
≤ c1V log(c2m),(1.2)

where V ≡ (V1, . . . , Vm), c1 ≡ e
(e−1) log(2)

.= 2.28231 . . . , c2 ≡ e
log 2

.= 3.92165 . . . ,

Ent(V ) ≡ m−1
m∑

j=1

Vj log Vj − V log V

is the “entropy” of the Vj’s under the discrete uniform distribution with weights
1/m and V = m−1

∑m
j=1 Vj.

Corollary 1.1. For m = 2 the following bounds hold:

S(V1, V2) ≤ T (V1, V2) ≤
⌊
c1(V1 + V2) log

(
2c2

exp(Ent(V )/V )

)⌋
≡ R(V1, V2)

where c1, c2, Ent(V ), and V are as in Theorem 1.

Proof. The subsets picked out by �iCi from a given set of points {x1, . . . , xn}
in X are the sets C1 ∩ · · · ∩ Cm ∩ {x1, . . . , xn}. They can be formed by first
forming all different sets of the form C1 ∩ {x1, . . . , xn} for C1 ∈ C1, next in-
tersecting each of these sets by sets in C2 giving all sets of the form C1 ∩ C2 ∩
{x1, . . . , xn}, etc. If Δn(C, y1, . . . , yn) ≡ #{C ∩ {y1, . . . , yn} : C ∈ C } and Δn(C) =
maxy1,...,yn Δn(C, y1, . . . , yn) for every collection of sets C and points y1, . . . , yn (as
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in [11], page 135), then in the first step we obtain at most Δn(C1) different sets,
each with n or fewer points. In the second step each of these sets gives rise to at
most Δn(C2) different sets, etc. We conclude that

Δn(�iCi) ≤
∏

i

Δn(Ci) ≤
∏

i

(
en

Vi

)Vi

,

by [11], Corollary 2.6.3, page 136, and the bound (en/s)s for the number of subsets
of size smaller than s for n ≥ s. By definition the left side of the display is 2n for
n equal to the VC-dimension of �iCi. We conclude that

2n ≤
m∏

i=1

(
en

Vi

)Vi

,

or

n log 2 ≤
m∑

i=1

Vi log(e/Vi) +

(
m∑

i=1

Vi

)
log n.

With V ≡
∑

i Vi, define r = en/V . Then the last display implies that

rV
log 2

e
≤

∑
i

Vi log(e/Vi) + V log(rV/e),

or

r
log 2

e
≤ log r + log V −

∑
i Vi log Vi

V

= log r + log m − Ent(V )
V

= log
(

mr

eEnt(V )/V

)
,

and this inequality can in turn be rewritten as

x

log x
≡ mr/eEnt(V )/V

log
(
mr/eEnt(V )/V

) ≤ m

eEnt(V )/V
· e

log 2
≡ y.

Now note that g(x) ≡ x/ log x ≤ y for x ≥ e implies that x ≤ (e/(e − 1))y log y: g is
minimized by x = e and is increasing; furthermore y ≥ g(x) for x ≥ e implies that

log y ≥ log x − log log x = log x

(
1 − log log x

log x

)
≥ log x

(
1 − 1

e

)

so that

x ≤ y log x ≤ y

(
1 − 1

e

)−1

log y =
e

e − 1
y log y.

Thus we conclude that

mr

eEnt(V )/V
≤ e

e − 1
me

eEnt(V )/V log 2
log

(
m

eEnt(V )/V
· e

log 2

)
,

which implies that

r ≤ e2

(e − 1) log 2
log

(
m

exp(Ent(V )/V )
· e

log 2

)
.
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Expressing this in terms of n yields the first inequality (1.2). The second inequality
holds since Ent(V ) ≥ 0 implies exp(Ent(V )/V ) ≥ 1.

The corresponding statement for the unions follows because a class C of sets
and the class Cc of their complements possess the same VC-dimension, and ∪iCi =
(∩iC

c
i )c.

In the case of products, note that

Δn(�m
1 Dj) ≤

m∏
1

Δn(Dj) ≤
m∏

j=1

(
en

Vj

)Vj

,

and then the rest of the proof proceeds as in the case of intersections.

It follows from concavity of x �→ log x that with pj ≡ Vj/
∑m

i=1 Vi,∑m
j=1 Vj log Vj∑m

j=1 Vj
=

m∑
1

pj log Vj ≤ log

(
m∑
1

pjVj

)
≤ log

(
m∑
1

Vj

)

and hence

1 ≤ m

eEnt(V )/V
≤ m,(1.3)

or 0 ≤ Ent(V )/V ≤ log m, or

0 ≤ Ent(V ) ≤ V log m.

Here are two examples showing that the quantity m/eEnt(V )/V can be very close
to 1 (rather than m) if the Vi’s are quite heterogeneous, even if m is large.

Example 1.1. Suppose that r ∈ N (large), and that Vi = ri for i = 1, . . . , m. Then
it is not hard to show that

m

eEnt(V )/V
→ r

r − 1
r1/(r−1) =

r

r − 1
exp((r − 1)−1 log r)

as m → ∞ where the right side can be made arbitrarily close to 1 by choosing r
large.

Example 1.2. Suppose that m = 2 and that V1 = k, V2 = rk for some r ∈ N.
Then

Ent(V )/V = log 2 − 1
r + 1

log((r + 1)(1 + 1/r)r) → log 2

as r → ∞ for any fixed k. Therefore

2

eEnt(V )/V
→ 1

as r → ∞ for any fixed k.

Our last example shows that the bound of Theorem 1.1 may improve considerably
on the bounds resulting from iteration of Dudley’s bound S(1, k) ≤ 2k + 1.

Example 1.3. Suppose V1 = V (C1) = k and Vj = V (Cj) = 1 for j = 2, . . . , m.
Iterative application of Dudley’s bound S(1, k) ≤ 2k + 1 yields V (�m

j=1Cj) ≤
2m−1(k + 1) − 1, which grows exponentially as m → ∞. On the other hand, Theo-
rem 1.1 yields V (�m

j=1Cj) ≤ c1(m + k − 1) log(c2m) which is of order c1m log m as
m → ∞.
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Although we have succeeded here in providing quantitative bounds for
V (�m

j=1Cj), V (�m
j=1Cj), and V (�m

1 Dj), it seems that we are far from being able
to provide quantitative bounds for the VC - dimensions of the (much larger) classes
involved in [6], [7], and [10].
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