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Double Skorokhod Map

and Reneging Real-Time Queues

 Lukasz Kruk,1 John Lehoczky,2,∗ Kavita Ramanan,3,†

and Steven Shreve3,‡

Maria Curie–Sklodowska University and Carnegie Mellon University

Abstract: An explicit formula for the Skorokhod map Γ0,a on [0, a] for a > 0
is provided and related to similar formulas in the literature. Specifically, it is
shown that on the space D[0,∞) of right-continuous functions with left limits
taking values in R,

Γ0,a(ψ)(t)

= ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)

]
∨ sup

s∈[0,t]

[
(ψ(s) − a) ∧ inf

u∈[s,t]
ψ(u)

]
is the unique function taking values in [0, a] that is obtained from ψ by minimal
“pushing” at the endpoints 0 and a. An application of this result to real-time
queues with reneging is outlined.

1. Introduction

In 1961 A. V. Skorokhod [12] considered the problem of constructing solutions to
stochastic differential equations on the half-line R+ with a reflecting boundary con-
dition at 0. His construction implicitly used properties of a deterministic mapping
on the space C[0,∞) of continuous functions on [0,∞). This mapping was used
more explicitly by Anderson and Orey in their study of large deviations properties
of reflected diffusions on a half-space in R

N (see p. 194 of [1]). These authors ex-
ploited the fact that the mapping, which is now called the Skorokhod map and is
denoted here by Γ0, has the explicit representation

Γ0(ψ)(t) ∆= ψ(t) + max
s∈[0,t]

[−ψ(s)]+ ,

and is consequently Lipschitz continuous (with constant 2). In fact, this formula
easily extends to a mapping on D[0,∞), the space of right-continuous functions
with left limits mapping [0,∞) into R. Given ψ ∈ D[0,∞), define

(1.1) η(t) = sup
s∈[0,t]

[− ψ(s)
]+ = − inf

s∈[0,t]

[
ψ(s) ∧ 0

]
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and

(1.2) Γ0(ψ) = ψ + η ∀ψ ∈ D[0,∞).

(Here, and in what follows, the operations ∨ and ∧ denote maximum and minimum,
respectively, and x+ represents x ∨ 0.) From (1.1) and (1.2) it is clear that Γ0(ψ)
is in D[0,∞) and takes values in R+, η is in D[0,∞) and is nondecreasing, and the
pair of functions (Γ0(ψ), η) satisfies the complementarity condition

(1.3)
∫ ∞

0

I{Γ0(ψ)(s)>0} dη(s) = 0,

which says that η “pushes” only when Γ0(ψ) is zero. These properties uniquely char-
acterize the pair of functions (Γ0(ψ), η), and this pair is said to solve the Skorokhod
problem for ψ on [0,∞).

Let z < a be a real number. The double Skorokhod map Γz,a is the mapping from
D[0,∞) into itself such that for ψ ∈ D[0,∞), Γz,a(ψ) takes values in [z, a] and has
the decomposition

(1.4) Γz,a(ψ) = ψ + η` − ηu,

where η` and ηu are nondecreasing functions in D[0,∞) so that the triple (Γz,a(ψ),
η`, ηu) satisfies the complementarity conditions

(1.5)
∫ ∞

0

I{Γz,a(ψ)(s)>z} dη`(s) = 0,
∫ ∞

0

I{Γz,a(ψ)(s)<a} dηu(s) = 0.

The function η` “pushes” only when Γz,a(ψ) is at the lower boundary z, and ηu
“pushes” only when Γz,a(ψ) is at the upper boundary a. Existence and uniqueness
of η` and ηu, and hence the validity of the definition of Γz,a(ψ) for continuous
functions ψ as well as step functions in D[0,∞), follow directly from Tanaka [13],
Lemmas 2.1, 2.3 and 2.6. In fact, it is well known that for every ψ ∈ D[0,∞), there
exist unique nondecreasing η` and ηu in D[0,∞) so that Γz,a(ψ) is a function in
D[0,∞) taking values in [z, a] and (1.5) is satisfied (see, e.g., [2], [15]). The triple
(Γz,a(ψ), η`, ηu) is said to solve the Skorokhod problem for ψ on [z, a].

In contrast to the formulas (1.1), (1.2) for the Skorokhod map on [0,∞), a unified
explicit formula for the Skorokhod map Γz,a on the space D[0,∞) was obtained only
recently. Such a formula was provided for Γ0,a by [10] as a composition of maps with
explicit formulas, and a formula for Γz,a with z 6= 0 can be immediately obtained
by translation. Given φ ∈ D[0,∞), define

(1.6) Λa(φ)(t) ∆= φ(t) − sup
s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]

φ(u)
]
.

It is shown in [10] that

(1.7) Γ0,a = Λa ◦ Γ0.

The explicit formula (1.7) and the alternative formula (1.8) below are potentially
useful in the study of the properties of the double Skorokhod map. Indeed, conti-
nuity and monotonicity properties of this map are developed in [10] using formula
(1.7). The explicit formula and related monotonicity properties have also been gen-
eralized to the case of a time-varying interval in [3].



Double Skorokhod Map 171

It has recently come to the attention of the authors of this paper that there
are several different formulas in the literature for Γ0,a restricted to various subsets
of D[0,∞). The earliest case of such a formula appears to be Lemma 2 of [4],
where the double reflection of a process that is the sum of an Itô integral and
an integral with respect to time is obtained. Equation (15) in Cooper, Schmidt
and Serfozo [5] provides a formula for Γ0,a restricted to the set of continuous,
bounded-variation functions in D[0,∞). Although the authors do not discuss its
relation to the Skorokhod map, Lemma 5.6 of Ganesh, O’Connell and Wischik [7]
gives a formula for Γ0,a restricted to a subset of the continuous, bounded-variation
functions. Equations (4) and (5) of Toomey [14] give an analog of Γ0,a for functions
on the integers rather than on [0,∞). Functions defined on the integers can be
regarded as piecewise constant functions in D[0,∞). Therefore, in [4], [5], [7] and
[14], the formulas provided can be interpreted as a definition of Γ0,a on subsets of
D[0,∞). In the cases of [5], [7] and [14], the subset on which the mapping is defined
is dense in D[0,∞) in the Skorokhod metric. Because the formulas provided by
these papers are Lipschitz continuous in the Skorokhod metric, their continuous
extensions to the closures of the sets on which they are specified must be given by
the same formulas. A separate argument (see [15]) can be used to show that Γ0,a

is also Lipschitz continuous on D[0,∞). Therefore, these extended formulas must
agree with Γ0,a on their domains of definition. This suggests that all these formulas
are closely related. One purpose of this paper is to work out these relationships. In
doing so, we discover another formulation of (1.7) that avoids the need to compose
mappings. In particular, in Section 2 we show that
(1.8)

Γ0,a(ψ)(t) = ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)
]
∨ sup
s∈[0,t]

[
(ψ(s) − a) ∧ inf

u∈[s,t]
ψ(u)

]
for all ψ ∈ D[0,∞). (In the above formula, and throughout this article, the opera-
tions ∧ and ∨ have priority over the operations + and −.) The relation between this
formula and the other formulas that have appeared in the literature is discussed in
Section 3.

There is a second purpose for this paper. The derivation of the explicit formula
for Γ0,a developed in [10] was motivated by the analysis of real-time queues with
reneging (see [11]). Because the derivation in [11] is highly technical, in Section 4
we provide a non-rigorous but more accessible explanation of that application.

2. Alternative formula for Γ0;a

We begin with the proof of (1.8).

Theorem 2.1 For ψ ∈ D[0,∞), define
(2.1)

Ξa(ψ)(t) ∆= ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)
]
∨ sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
.

Then Ξa = Λa ◦ Γ0 = Γ0,a.

Proof: We show that Ξa = Λa ◦ Γ0 and then appeal to (1.7). Let ψ ∈ D[0,∞) be
given. We have immediately from (2.1) that

Ξa(ψ)(0) = ψ(0) − (ψ(0) − a
)+ ∧ ψ(0) =

a if ψ(0) ≥ a,
ψ(0) if 0 ≤ ψ(0) ≤ a,
0 if ψ(0) ≤ 0.
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This agrees with Λa ◦Γ0(0) since, by (1.1), (1.2) and (1.6), Γ0(ψ)(0) = ψ(0)∨0 and
Λa(φ)(0) = φ(0) ∧ a when φ(0) ≥ 0.

Now let t > 0 be fixed. Let us define φ = ψ + η, where η is given by (1.1).
In other words, φ = Γ0(ψ). Let us next define φ = Λa(φ). We must show that
φ(t) = Ξa(ψ)(t).

Case I: η(t) = 0.
Because η is nondecreasing, in this case we have η(s) = 0 and φ(s) = ψ(s) for

all s ∈ [0, t]. In particular, ψ is nonnegative on [0, t]. Therefore, for every s ∈ [0, t],
0 ≤ (

ψ(s) − a
)+ ∧ infu∈[s,t] ψ(u). Since the latter expression can be rewritten as

0 ∨ [(ψ(s) − a
) ∧ infu∈[s,t] ψ(u)

]
, it follows that

Ξa(ψ)(t) = ψ(t) − 0 ∨ sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]

= ψ(t) − sup
s∈[0,t]

[(
ψ(s) − a

)+ ∧ inf
u∈[s,t]

ψ(u)
]

= Λa(ψ)(t) = Λa(φ)(t) = φ(t).

Case II: η(t) > 0.
In this case, (1.1) becomes η(t) = − infu∈[0,t] ψ(u). Using ψ = φ − η, we write

(2.1) as

Ξa(ψ)(t) = φ(t) −
{
η(t) +

[(
φ(0) − a− η(0)

)+ ∧ (− η(t)
)]

∨ sup
s∈[0,t]

[(
φ(s) − a− η(s)

) ∧ inf
u∈[s,t]

(
φ(u) − η(u)

)]}
= φ(t) − [((φ(0) − a− η(0))+ + η(t)

) ∧ 0
]

∨ sup
s∈[0,t]

[(
φ(s) − a+ η(t) − η(s)

) ∧ inf
u∈[s,t]

(
φ(u) + η(t) − η(u)

)]
.

The term
(
φ(0) − a − η(0)

)+ + η(t) is nonnegative, and so
[(
φ(0) − a − η(0)

)+ +
η(t)

] ∧ 0 = 0. Therefore,

Ξa(ψ)(t) = φ(t) − sup
s∈[0,t]

[(
φ(s) − a+ η(t) − η(s)

) ∧ inf
u∈[s,t]

(
φ(u) + η(t) − η(u)

)]+
.

We conclude the proof that this last expression is φ(t) ∆= Λa(φ)(t) by showing that
(2.2)[(
φ(s) − a+ η(t) − η(s)

) ∧ inf
u∈[s,t]

(
φ(u) + η(t) − η(u)

)]+
=
(
φ(s)−a)+∧ inf

u∈[s,t]
φ(u).

There are two possibilities. The first is that φ(u) ∆= Γ0(ψ)(u) > 0 for every
u ∈ [s, t]. According to the complementarity condition (1.3), η is then constant on
[s, t], and the left-hand side of (2.2) becomes

[(
φ(s) − a

) ∧ infu∈[s,t] φ(u)
]+, which

agrees with the right-hand side.
The other possibility is that φ(u) = 0 for some u ∈ [s, t]. Define u∗ = sup{u ∈

[s, t] : φ(u) = 0}. According to the complementarity condition (1.3), either φ(u∗) =
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0 and η is constant on [u∗, t] or else u∗ > s, φ(u∗−) = 0, φ(u∗) > 0, η is constant
on [u∗, t], and η is continuous at u∗. In either case, infu∈[s,t](φ(u) + η(t)−η(u)) = 0
and infu∈[s,t] φ(u) = 0, and hence (2.2) holds with both sides equal to zero. ˜
Remark 2.2 If ψ(0) ≤ 0, then(

ψ(0) − a
)+ ∧ inf

u∈[0,t]
ψ(u) = inf

u∈[0,t]
ψ(u),

and

Ξa(ψ)(t)(2.3)

= ψ(t) − inf
u∈[0,t]

ψ(u) ∨ sup
s∈[0,t]

[
(ψ(s) − a) ∧ inf

u∈[s,t]
ψ(u)

]
= ψ(t) − sup

s∈[0,t]

[((
ψ(s) − a

) ∨ inf
u∈[0,t]

ψ(u)
)
∧
(

inf
u∈[s,t]

ψ(u) ∨ inf
u∈[0,t]

ψ(u)
)]

= ψ(t) − sup
s∈[0,t]

[((
ψ(s) − a

) ∨ inf
u∈[0,t]

ψ(u)
)
∧ inf
u∈[s,t]

ψ(u)
]
.

Example 2.3 We provide here an example illustrating the fact that Ξa = Λa ◦Γ0,
and demonstrating in addition that Ξa 6= Λa. Let a = 1 and

(2.4) ψ(t) =
{−2 + t, 0 ≤ t ≤ 4,

6 − t, 4 ≤ t ≤ 6.

For 0 ≤ t ≤ 6, we have infu∈[0,t] ψ(u) = ψ(0) = −2. It is straightforward to compute

sup
s∈[0,t]

[((
ψ(s) − 1

) ∨ (−2)
)
∧ inf
u∈[s,t]

ψ(u)
]

=


−2, 0 ≤ t ≤ 1,

−3 + t, 1 ≤ t ≤ 4,
1, 4 ≤ t ≤ 5,

6 − t, 5 ≤ t ≤ 6.

According to (2.3),

Ξa(ψ)(t) = ψ(t) − sup
s∈[0,t]

[((
ψ(s) − 1

) ∨ (−2)
)
∧ inf
u∈[s,t]

ψ(u)
]

=


t, 0 ≤ t ≤ 1,
1, 1 ≤ t ≤ 4,

5 − t, 4 ≤ t ≤ 5,
0, 5 ≤ t ≤ 6.

We see that Ξa(ψ) 6= Λa(ψ) because

sup
s∈[0,t]

[(
ψ(s) − 1

)+ ∧ inf
u∈[s,t]

ψ(u)
]

=


−2 + t, 0 ≤ t ≤ 2,

0, 2 ≤ t ≤ 3,
−3 + t, 3 ≤ t ≤ 4,

1, 4 ≤ t ≤ 5,
6 − t, 5 ≤ t ≤ 6,

and so

Λa(ψ)(t) = ψ(t) − sup
s∈[0,t]

[(
ψ(s) − 1

)+ ∧ inf
u∈[s,t]

ψ(u)
]

=


0, 0 ≤ t ≤ 2,

−2 + t, 2 ≤ t ≤ 3,
1, 3 ≤ t ≤ 4,

5 − t, 4 ≤ t ≤ 5,
0, 5 ≤ t ≤ 6.
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The discrepancy between Ξa(ψ) and Λa(ψ) is due to the fact that ψ can take
negative values. If ψ is nonnegative, then Γ0(ψ) = ψ, and Theorem 2.1 implies
Ξa(ψ) = Λa ◦ Γ0(ψ) = Λa(ψ). For ψ given by (2.4),

φ(t) ∆= Γ0(ψ)(t) = ψ(t) + 2 =
{
t, 0 ≤ t ≤ 4,
8 − t, 4 ≤ t ≤ 6,

and

sup
s∈[0,t]

[(
φ(s) − 1

)+ ∧ inf
u∈[s,t]

φ(u)
]

=


0, 0 ≤ t ≤ 1,
−1 + t, 1 ≤ t ≤ 4,
3, 4 ≤ t ≤ 5,
8 − t, 5 ≤ t ≤ 6.

Therefore,

Λa(φ)(t) = φ(t) − sup
s∈[0,t]

[(
φ(s) − 1

)+ ∧ inf
u∈[s,t]

φ(u)
]

=


t, 0 ≤ t ≤ 1,
1, 1 ≤ t ≤ 4,
5 − t, 4 ≤ t ≤ 5,
0, 5 ≤ t ≤ 6.

This illustrates the result Ξa(ψ) = Λa ◦ Γ0(ψ) = Λa(φ) of Theorem 2.1. ˜

3. Comparison with Other Formulas

3.1. The formula of Cooper, Schmidt and Serfozo [5]

Following Cooper, Schmidt and Serfozo [5], we let H be a signed measure on the
Borel subsets of R+ whose total variation on each compact interval is finite. The
function t 7→ H(0, t] is right-continuous with left limits and is of bounded variation.
We denote this function by H(0, · ]. Let a be a positive number, and let x ∈ [−a, 0]
be given. Cooper et. al. [5] (equation [15]) define

(3.1) X(t) ∆= sup
s∈[0,t]

inf
u∈[s,t]

[
xI{s=u=0} +H(u, t] − aI{s=u>0}

]
and show that X = Γ−a,0

(
x+H(0, · ]). In particular, X(0) = x.

Negating (3.1), we obtain

(3.2) −X(t) = − sup
s∈[0,t]

inf
u∈[s,t]

[
xI{s=u=0} +H(u, t] − aI{s=u>0}

]
,

and the result in [5] implies that

(3.3) −X = Γ0,a

(− x−H(0, · ]).
In particular, −X(0) = −x.

To relate (3.2) to Ξa, we let ψ be a bounded variation function in D[0,∞). We
can then define the signed measure H by

(3.4) H(u, t] = ψ(u) − ψ(t), 0 ≤ u ≤ t.

The number −x in (3.3) must be taken to be in the interval [0, a]. We define −x in
terms of ψ by

(3.5) −x = Γ0,a(ψ)(0) =
[
ψ(0)

]+ ∧ a.
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It is then easily verified that

(3.6) x+ ψ(0) =
(
ψ(0) − a

)+ ∧ ψ(0).

With the choices of H and −x given by (3.4) and (3.5), (3.2) becomes

−X(t) = − sup
s∈[0,t]

inf
u∈[s,t]

[
xI{s=u=0} + ψ(u) − ψ(t) − aI{s=u>0}

]
= ψ(t) − inf

u∈[0,t]

[
xI{u=0} + ψ(u)

] ∨ sup
s∈(0,t]

inf
u∈[s,t]

[
ψ(u) − aI{s=u}

]
(3.7)

= ψ(t) −
[(
x+ ψ(0)

) ∧ inf
u∈(0,t]

ψ(u)
]
∨ sup
s∈(0,t]

[(
ψ(s) − a

) ∧ inf
u∈(s,t]

ψ(u)
]

= ψ(t) −
[(
ψ(0) − a

)+ ∧ ψ(0) ∧ inf
u∈(0,t]

ψ(u)
]

∨ sup
s∈(0,t]

[(
ψ(s) − a

) ∧ inf
u∈(s,t]

ψ(u)
]

= ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)
]
∨ sup
s∈(0,t]

[(
ψ(s) − a

) ∧ inf
u∈(s,t]

ψ(u)
]
.

Because ψ is right continuous, for 0 ≤ s ≤ t,(
ψ(s) − a

) ∧ inf
u∈(s,t]

ψ(u) =
(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u),

where we adopt the convention that infu∈(t,t] ψ(u) = ∞ to handle the case s = t.
Furthermore, this expression is right-continuous in s. Therefore, for t > 0,

sup
s∈(0,t]

[(
ψ(s) − a

) ∧ inf
u∈(s,t]

ψ(u)
]

= sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
.

We thus conclude from (3.7) that

−X(t) = ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)
]
∨ sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]

= Ξa(ψ)(t).(3.8)

To deal with the case that t = 0, it is easily verified that

Ξa(ψ)(0) = ψ(0) − (ψ(0) − a)+ ∧ ψ(0) =
[
ψ(0)

]+ ∧ a(3.9)
= Γ0,a(ψ)(0) = Λa ◦ Γ0(ψ)(0) = −X(0).

3.2. The formula of Chitashvili and Lazrieva [4]

Lemma 2 of [4] considers the process

(3.10) ξ(t) = ξ(0) +
∫ t

0

a(s) ds+
∫ t

0

b(s) dW (s),

where W is a Brownian motion, a(·) and b(·) are random processes adapted to the
filtration generated by W , and ξ(0) ∈ [γ1, γ2]. Here γ1 < γ2 are real numbers. In
Lemma 2 of [4], the doubly reflected version ξ∗ of ξ on [γ1, γ2] is shown to be

ξ∗(t) = sup
s∈[0,t]

inf
u∈[0,t]

[(
ξ(t) − ξ(s) + γ1

)
I{s>u} +

(
ξ(t) − ξ(u) + γ2

)
I{s<u}∪{s=u>0}
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+ξ(t)I{s=u=0}
]
.(3.11)

The proof of Lemma 2 in [4] is probabilistic, using the specific form (3.10) of ξ.
Because the three indicators I{s>u}, I{s<u}∪{s=u>0} and I{s=u=0} appearing on

the right-hand side of (3.11) sum to 1, the addition of the same constant to ξ, γ1 and
γ2 results in the addition of this constant to the right-hand side of (3.11), and hence
to ξ∗. We may therefore assume without loss of generality that γ1 = −a < 0, γ2 = 0
and ξ(0) ∈ [−a, 0]. With this simplification, we show below that −ξ∗ = Ξa(−ξ).
Actually, all we need to show is that

(3.12) ξ∗(t) = sup
s∈[0,t]

inf
u∈[s,t]

[
ξ(0)I{s=u=0} + ξ(t) − ξ(u) − aI{s=u>0}

]
,

because we can then set ψ = −ξ and proceed as in the previous section.
We thus begin with (3.11), where γ1 and γ2 have been set to −a and 0 respec-

tively, and ξ(0) ∈ [−a, 0]. We have

ξ∗(t) = sup
s∈[0,t]

inf
u∈[0,t]

[(
ξ(t) − ξ(s) − a

)
I{s>u}

+
(
ξ(t) − ξ(u)

)
I{s<u}∪{s=u>0} + ξ(t)I{s=u=0}

]
(3.13)

= sup
s∈[0,t]

[[
inf

u∈[0,s)

(
ξ(t) − ξ(s) − a

)] ∧ inf
u∈[s,t]

[
ξ(t) − ξ(u) + ξ(0)I{s=u=0}

]]
= sup

s∈[0,t]

[[
I{s>0}

(
ξ(t) − ξ(s) − a

)
+ ∞I{s=0}

]
∧ inf
u∈[s,t]

[
ξ(t) − ξ(u) + ξ(0)I{s=u=0}

]]
.

To evaluate the right-hand side of (3.13), we consider separately the cases s = 0
and 0 < s ≤ t. If s = 0, then[

I{s>0}
(
ξ(t) − ξ(s) − a

)
+ ∞I{s=0}

] ∧ inf
u∈[s,t]

[
ξ(t) − ξ(u) + ξ(0)I{s=u=0}

]
= inf

u∈[s,t]

[
ξ(t) − ξ(u) + ξ(0)I{s=u=0}

]
(3.14)

= inf
u∈[s,t]

[
ξ(0)I{s=u=0} + ξ(t) − ξ(u) − aI{s=u>0}

]
.

On the other hand, if s > 0, then[
I{s>0}

(
ξ(t) − ξ(s) − a

)
+ ∞I{s=0}

] ∧ inf
u∈[s,t]

[
ξ(t) − ξ(u) + ξ(0)I{s=u=0}

]
= inf

u∈[s,t]

[(
ξ(t) − ξ(s) − a

) ∧ (ξ(t) − ξ(u)
)]

(3.15)

= inf
u∈[s,t]

[
ξ(0)I{s=u=0} + ξ(t) − ξ(u) − aI{s=u>0}

]
.

Substituting (3.14) and (3.15) into (3.13), we obtain (3.12).

3.3. The formula of Ganesh, O’Connell and Wischik [7]

Section 5.7 of [7] records the size of a finite-buffer fluid queue at time zero under
the assumption that the queue was empty at time −t, where t > 0. The buffer size
of the queue is a, a positive number. We adjust the formula in [7] by relabeling
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time; our queue is empty at time zero and we record its size at time t. We call the
netput process ψ. The queue length is then Γ0,a(ψ).

We thus begin with a bounded-variation function ψ ∈ D[0,∞) satisfying ψ(0) =
0. Following [7], we define

M(s, t) ∆= infu∈[s,t]

(
ψ(t) − ψ(u)

)
= ψ(t) − supu∈[s,t] ψ(u),

N(s, t) ∆= supu∈[s,t]

(
ψ(t) − ψ(u)

)
= ψ(t) − infu∈[s,t] ψ(u).

We note that like ψ itself, M(s, t) and N(s, t) are right-continuous with left-hand
limits in s. Here and elsewhere, we adopt the notational conventions

(3.16) sup
u∈[s−,t]

ψ(u) ∆= lim
v↑s

sup
u∈[v,t]

ψ(u), inf
u∈[s−,t]

ψ(u) ∆= lim
v↑s

inf
u∈[v,t]

ψ(u).

We shall also use the notation (s−, t] ∆= [s, t] and 0− ∆= 0.

Lemma 3.1 For all t ≥ 0,

(3.17) sup
s∈[0,t]

[
N(s, t) ∧ (M(s, t) + a

)] ≤ inf
s∈[0,t]

[
N(s, t) ∨ (M(s, t) + a

)]
.

Proof: For t ≥ 0,

sup
s∈[0,t]

[
N(s, t) ∧ (M(s, t) + a

)]
(3.18)

= ψ(t) + sup
s∈[0,t]

[
− inf
u∈[s,t]

ψ(u) ∧
(
a− sup

u∈[s,t]

ψ(u)
)]

= ψ(t) − inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
.

The infimum over s ∈ [0, t] in the last line of (3.18) is either attained by some
s1 ∈ [0, t], or else there is an s1 in (0, t] for which the infimum is (in the notation
(3.16))

inf
u∈[s1−,t]

ψ(u) ∨ sup
u∈[s1−,t]

(
ψ(u) − a

)
.

In the former case, we let s′1 denote s1; in the latter case, s′1 denotes s1−. Capturing
both cases, we say that s′1 ∈ [0, t] satisfies

inf
u∈[s′1,t]

ψ(u) ∨ sup
u∈[s′1,t]

(
ψ(u) − a

)
= inf

s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
.

Continuing in this way, we observe that if s′1 = s1, then there is an s∗ ∈ [s1, t] that
attains infu∈[s1,t] ψ(u) or else there is an s∗ ∈ (s1, t] for which the infimum is ψ(s∗−).
If s′1 = s1−, then either there is an s∗ ∈ [s1, t] that attains inf [s1−,t] ψ(u) or else
there is s∗ ∈ [s1, t] for which the infimum is ψ(s∗−). If ψ(s∗) = infu∈[s′1,t] ψ(u), we
set s′∗ = s∗; if ψ(s∗−) = infu∈[s′1,t] ψ(u), s′∗ denotes s∗−. Capturing all these cases,
we say that s′∗ ∈ [s′1, t] satisfies ψ(s′∗) = infu∈[s′1,t] ψ(u). With these conventions, we
have

inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
= inf

u∈[s′1,t]
ψ(u) ∨ sup

u∈[s′1,t]

(
ψ(u) − a

)
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≥ ψ(s′∗) ∨ sup
u∈[s′∗,t]

(
ψ(u) − a

)
≥ inf

s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
.

The reverse inequality

inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)] ≤ inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]

obviously holds. Returning to (3.18), we see that

(3.19) sup
s∈[0,t]

[
N(s, t) ∧ (M(s, t) + a

)]
= ψ(t) − inf

s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
.

An analogous argument shows that

(3.20) inf
s∈[0,t]

[
N(s, t) ∨ (M(s, t) + a

)]
= ψ(t) − sup

s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
.

Now choose s3 ∈ [0, t], where s3 attains the infimum on the right-hand side
of (3.19) (in which case we write s′3 = s3) or if no such s3 exists, then choose
s3 ∈ (0, t], where s3− attains the infimum on the right-hand side of (3.19) (in
which case we write s′3 = s3−). Let s′4 be defined analogously in connection with
the supremum on the right-hand side of (3.20). If s′3 ≤ s′4 (this means either that
s3 < s4 or else that s3 = s4 and it is not the case that s′3 = s3, s′4 = s4−), we have
supu∈[s′3,t]

(
ψ(u) − a

) ≥ ψ(s′4) − a, and so

inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
= ψ(s′3) ∨ sup

u∈[s′3,t]

(
ψ(u) − a

)
(3.21)

≥ (ψ(s′4) − a
) ∧ inf

u∈[s′4,t]
ψ(u)

= sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
.

Relation (3.17) follows from (3.19) and (3.20). On the other hand, if s′3 ≥ s′4, then
ψ(s′3) ≥ infu∈[s′4,t] ψ(u), and again relation (3.21) and hence relation (3.17) hold. ˜

For x ∈ R and α ≤ β, define [x]βα = (x∨α)∧β. On a subset of bounded-variation
functions in D[0,∞) whose initial condition is zero, in [7] a mapping Φa is defined
by the formula

(3.22) Φa(ψ)(t) ∆=
[
ψ(t)

]infs∈[0,t][N(s,t)∨(M(s,t)+a)]

sups∈[0,t][N(s,t)∧(M(s,t)+a)]
.

According to this definition and relations (3.19) and (3.20),

Φa(ψ)(t)

=

(
ψ(t) ∨ sup

s∈[0,t]

[
N(s, t) ∧ (M(s, t) ∧ a)]) ∧ inf

s∈[0,t]

[
N(s, t) ∨ (M(s, t) + a

)]
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=

{
ψ(t) ∨

(
ψ(t) − inf

s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)])}

∧
(
ψ(t) − sup

s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
])

(3.23)

= ψ(t) −
(

0 ∧ inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)])

∨ sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
.

Theorem 3.2 Let ψ ∈ D[0,∞) satisfy ψ(0) = 0. Then Φa(ψ) = Ξa(ψ), where
Ξa(ψ) is given by (2.1).

Proof: According to (3.23),

ψ(t) − Φa(ψ)(t) =
(
0 ∧A(t)) ∨B(t),

where

A(t) ∆= inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]
, B(t) ∆= sup

s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
.

Using ψ(0) = 0, we obtain from equation (2.1) that

ψ(t) − Ξa(ψ)(t) = C(t) ∨B(t),

where
C(t) ∆= inf

s∈[0,t]
ψ(s).

To prove the theorem, we must show that

(3.24)
(
0 ∧A(t)

) ∨B(t) = C(t) ∨B(t).

Clearly, A(t) ≥ C(t), and because ψ(0) = 0, we have also 0 ≥ C(t). It follows
that

(
0 ∧A(t)

) ≥ C(t), and thus

(3.25)
(
0 ∧A(t)

) ∨B(t) ≥ C(t) ∨B(t).

If A(t) = C(t), then 0 ∧ A(t) = C(t) and so equality holds in (3.25). To complete
the proof, we need only establish the implication

(3.26) A(t) > C(t) =⇒ A(t) ≤ B(t).

Indeed, if A(t) > C(t), (3.26) will imply
(
0 ∧ A(t)

) ∨ B(t) ≤ B(t) ≤ C(t) ∨ B(t),
and we have the reverse of (3.25).

Assume

(3.27) A(t) > C(t).

Using the notation developed for Lemma 3.1, we choose s1 ∈ [0, t] so that ψ(s1) =
C(t) or s1 ∈ (0, t] so that ψ(s1−) = C(t). We use s′1 to denote s1 in the former case
and s1− in the latter case. We capture both cases by the relation

(3.28) ψ(s′1) = C(t) ≤ ψ(s) ∀s ∈ [0, t].
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We next define

s2
∆= sup

{
s ∈ [0, t]

∣∣∣∣∣
[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)]

∧
[
ψ(s−) ∨ sup

u∈[s−,t]

(
ψ(u) − a

)]
= A(t)

}
.

Either s2 ∈ [0, t] and ψ(s2)∨ supu∈[s2,t]

(
ψ(u)− a

)
= A(t), in which case we denote

s2 by s′2, or else s2 ∈ (0, t], ψ(s2) ∨ supu∈[s2,t]

(
ψ(u) − a) > A(t), and ψ(s2−) ∨

supu∈[s2−,t]
(
ψ(u)−a) = A(t), in which case we denote s2− by s′2. We capture both

cases by the equation

(3.29) ψ(s′2) ∨ sup
u∈[s′2,t]

(
ψ(u) − a

)
= A(t).

We cannot have s′2 < s′1 (which means s2 < s1 or s2 = s1, s′2 = s2−, s′1 = s1),
for then we would have, using (3.28) and the definition of A(t),

A(t) ≤ ψ(s′1) ∨ sup
u∈[s′1,t]

(
ψ(u) − a

) ≤ ψ(s′2) ∨ sup
u∈[s′2,t]

(
ψ(u) − a

)
= A(t),

a contradiction to the maximality property of s′2. Therefore, s′2 ≥ s′1.
We must have

(3.30) ψ(s) ≥ ψ(s′2) ∀s ∈ [s2, t].

If this were not the case, then we would have ψ(s) < ψ(s′2) for some s ∈ (s′2, t], and
then

A(t) ≤ ψ(s) ∨ sup
u∈[s,t]

(
ψ(u) − a

) ≤ ψ(s′2) ∨ sup
u∈[s′2,t]

(
ψ(u) − a

)
= A(t),

which also contradicts the maximality property of s′2.

Case I: A(t) = supu∈[s′2,t]
(
ψ(u) − a

) ≥ ψ(s′2).
Define

u2
∆= sup

{
u ∈ [s2, t]

∣∣ (ψ(u) − a
) ∨ (ψ(u−) − a

)
= A(t)

}
.

Then either ψ(u2)− a = A(t) or else u2 > 0, ψ(u2)− a < A(t), ψ(u2−)− a = A(t).
Let us consider first the case that ψ(u2)− a = A(t), in which case we denote u2 by
u′2. There cannot exist u3 ∈ (u2, t] for which ψ(u3) < A(t), for if such a u3 were to
exist, we would have ψ(u3) ∨ supu∈[u3,t]

(
ψ(u) − a

)
< A(t). Therefore,

(3.31) ψ(u) ≥ A(t) ∀u ∈ [u2, t].

Let us next consider the case that u2 > 0, ψ(u2) − a < A(t) and ψ(u2−) − a =
A(t), in which case we denote u2− by u′2. There cannot exist u3 ∈ [u2, t] such
that ψ(u3) < A(t), for if such a u3 were to exist, we would again have ψ(u3) ∨
supu∈[u3,t]

(
ψ(u) − a

)
< A(t). Once again, (3.31) holds. From (3.31) and the fact

that ψ(u′2) − a = A(t), we have immediately

B(t) ≥ (ψ(u′2) − a
) ∧ inf

u∈[u′
2,t]

ψ(u) = A(t).
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This completes the proof of (3.26) in Case I.

Case II: A(t) = ψ(s′2) > supu∈[s′2,t]
(
ψ(u) − a

)
.

Define

u1
∆= sup

{
u ∈ [s1, s2]

∣∣ (ψ(u) − a
) ∨ (ψ(u−) − a

) ≥ ψ(s′2)
}
.

If no such u1 were to exist, then we would have
(
ψ(u) − a

) ∨ (ψ(u−) − a
)
< ψ(s′2)

for all u ∈ [s1, s2], in which case we would have from (3.27), (3.28), and the case
assumption that

ψ(s′1)∨ sup
u∈[s′1,t]

(
ψ(u)− a

)
= ψ(s′1)∨ sup

u∈[s′1,s2]

(
ψ(u)− a

)∨ sup
u∈[s2,t]

(
ψ(u)− a

)
< ψ(s′2).

But according to the definition of A(t), it is dominated by the left-hand side of
this expression. We have a contradiction to the case assumption, which shows that
u1 ∈ [s1, s2] is well defined.

If ψ(u1) − a ≥ ψ(s′2), we denote u1 by u′1. If this is not the case, then u1 > 0,
ψ(u1) − a < ψ(s′2), ψ(u1−) − a = ψ(s′2), and we denote u1− by u′1. We capture
both cases by the relation

(3.32) ψ(u′1) − a ≥ ψ(s′2) = A(t).

The maximality property of u′1 implies that

sup
u∈(u′

1,s2]

ψ(u) − a < ψ(s′2).

If ψ(u3) < ψ(s′2) for some u3 ∈ (u′1, s2], then we would have

A(t) ≤ ψ(u3) ∨ sup
u∈[u3,t]

(
ψ(u) − a

)
< ψ(s′2),

a contradiction to the case assumption. Therefore,

(3.33) ψ(u) ≥ ψ(s′2) ∀u ∈ (u′1, s2].

It follows that

B(t) ≥ (ψ(u′1) − a
) ∧ inf

u∈[u′
1,t]

ψ(u)

≥ (ψ(u′1) − a
) ∧ ψ(u′1) ∧ inf

u∈(u′
1,s2]

ψ(u) ∧ inf
u∈[s2,t]

ψ(u),

and each of these terms dominates ψ(s′2) = A(t) by (3.32), (3.33), and (3.30). This
completes the proof of (3.26) in Case II, and thus completes the proof of Theorem
3.2. ˜

3.4. The formula of Toomey [14]

Toomey [14] records the size of a finite-buffer queue at time −k under the assump-
tion that the queue was of size qm at time −m < −k. The buffer size of the queue
is a, a positive number, and qm is assumed to be in [0, a]. There are two formulas,
(4) and (5), in [14], each obtained from the other by reversing the spatial axis.
We deal with (5), mapping −m into time zero and mapping −k into time t > 0
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and writing the formula for piecewise constant functions in D[0,∞) rather than
functions defined on the integers.

The netput process, cumulative arrivals minus offered service, over the time
interval −k to −m is denoted Ukm by [14] and by ψ(t) − ψ(0) here. We take
ψ(0) = qm ∈ [0, a], the initial queue length. In our notation, formula (5) in [14] is

inf
s∈(0,t]

sup
u∈(s,t]

[(
a+ ψ(t) − ψ(s)

) ∨ (ψ(t) − ψ(u)
)]

∧ sup
u∈(0,t]

[(
qm + ψ(t) − ψ(0)

) ∨ (ψ(t) − ψ(u)
)]

= ψ(t) − sup
s∈(0,t]

inf
u∈(s,t]

[(
ψ(s) − a) ∧ ψ(u)

] ∨ inf
u∈(0,t]

[0 ∧ ψ(u)] .

Because ψ is right-continuous and (ψ(0)−a)+ = 0, this expression can be rewritten
as

ψ(t) − sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]

ψ(u)
]
∨
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)
]
,

which is Ξa(ψ)(t) given by (2.1).

4. Application to real-time queues with reneging

4.1. Heavy-traffic convergence

Consider a sequence of single station queueing systems indexed by the positive
integers. In the n-th system, the interarrival times are a sequence of positive, in-
dependent, identically distributed random variables u(n)

1 , u
(n)
2 , . . . and the service

times are likewise a sequence of positive, independent, identically distributed ran-
dom variables v(n)

1 , v
(n)
2 , . . . . The arrival rate in the n-th system is λ(n) = 1/Eu

(n)
i ,

the service rate is µ(n) = 1/Ev
(n)
i , and the traffic intensity is ρ(n) ∆= λ(n)/µ(n). We

assume that λ(n) has a positive limit λ as n → ∞, µ(n) also has a positive limit
µ as n → ∞, u(n)

i has a limiting positive variance α2 as n → ∞, and v
(n)
i has a

limiting variance β2 as n→ ∞. We make the heavy traffic assumption

(4.1) ρ(n) = 1 − γ√
n

for some nonzero constant γ. This implies λ = µ.
For the n-th system, the customer arrival times are

S
(n)
k

∆=
k∑
i=1

u
(n)
i

and the customer arrival process is

A(n)(t) ∆= max
{
k
∣∣∣S(n)
k ≤ t

}
.

The work arrival process is

V (n)(k) ∆=
k∑
j=1

v
(n)
j .
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The netput process
N (n)(t) ∆= V (n)

(
A(n)(t)

)− t

represents the work that would be present in queue at time t if the server were
never idle between times 0 and t. We are taking the queue to be empty at time
zero. However, the queue may be idle prior to time t, and thus the work that is
actually present at time t is given by the workload process

(4.2) W (n) ∆= Γ0(N (n)),

where Γ0 is defined by (1.2). The idleness process

I(t) ∆= − inf
s∈[0,t]

N (n)(s)

plays the role of η of (1.1).
The scaled workload process is

(4.3) Ŵ (n)(t) ∆=
1√
n
W (n)(nt), t ≥ 0.

It is well known that the following heavy traffic convergence result holds under
assumption (4.1) and the Lindeberg condition

lim
n→∞ E

[(
u

(n)
j − (λ(n))−1

)2

I{∣∣u(n)
j

−(λ(n))−1
∣∣>c√n}]

= lim
n→∞ E

[(
v
(n)
j − (µ(n))−1

)2

I{∣∣v(n)
j

−(µ(n))−1
∣∣>c√n}] = 0 ∀c > 0.

Theorem 4.1 (Kingman [9], Iglehart and Whitt [8]) As n→ ∞,

(4.4) Ŵ (n) ⇒W ∗,

where W ∗ is a Brownian motion with drift −γ and variance per unit time λ(α2+β2),
reflected at the origin so as to always be nonnegative. More precisely, define N∗(t) ∆=
−γt+

√
λ(α2 + β2)B(t), where B is a standard Brownian motion. Then

(4.5) W ∗ ∆= Γ0(N∗).

4.2. Lead times

In real-time queues, customer deadlines are taken into account. We introduce a
sequence of lead times, which are positive, independent and identically distributed
random variables L(n)

1 , L
(n)
2 , . . . . Customer k arrives in system n at time S(n)

k with
deadline S

(n)
k + L

(n)
k . The lead time of customer k, which is the time until the

customer’s deadline elapses, is L(n)
k upon arrival of customer k and then decreases

at rate one thereafter, becoming negative when the customer becomes late.
Under the heavy traffic assumption (4.1), delay in the n-th system will be of

order
√
n, so the lead times must also be of order

√
n to avoid trivialities. We

assume therefore that there is a cumulative distribution function G independent of
n such that

(4.6) P

{
L

(n)
j√
n

≤ y

}
= G(y).
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For technical reasons, we also assume that there exists a finite y∗ for which G(y∗) =
1 and G(y) < 1 for y < y∗, i.e., we cannot have a lead time in the n-th system
larger than

√
ny∗ but we can have lead times equal to or at least arbitrarily close

to
√
n y∗. We also assume that y∗

∆= inf{y ∈ R|G(y) > 0} is strictly positive; this
seems to be essential to the results we obtain.

We serve the customers using the earliest deadline first (EDF) protocol. The
customer in service may be preempted by the arrival of a more urgent customer.
When service eventually resumes on the preempted customer, the service begins
where it left off, i.e., the work already done on that customer is not lost. We wish
to determine the heavy traffic limit of the distribution of the lead times of customers
in queue.

We define two measure-valued processes, W(n) and V(n), by specifying for every
Borel subset B of R that

W(n)(t)(B) ∆=
{

Work associated with customers in
queue at time t with lead times in B

}
,(4.7)

V(n)(t)(B) ∆=


Work associated with customers arrived
by time t with lead times in B, whether
or not still present at time t

 .(4.8)

We define the frontier to be

(4.9) F (n)(t) ∆=


Largest lead time of any customer who has ever been in
service, whether or not that customer is still present, or√
n y∗ − t if this quantity is larger than the former one

 .

We also define the scaled measure-valued workload process, scaled measure-valued
work arrival process, and scaled frontier, respectively:

Ŵ(n)(t)(B) ∆=
1√
n
W(n)(nt)(

√
nB),(4.10)

V̂(n)(t)(B) ∆=
1√
n
V(n)(nt)(

√
nB),(4.11)

F̂ (n)(t) ∆=
1√
n
F (n)(nt).(4.12)

At time t > 0, work whose lead time is less or equal to F (n)(t) receives priority.
However, the arrival rate of work in this category is less than the full arrival rate,
since F (n)(t) <

√
ny∗. Therefore, this work is not in heavy traffic, which leads to

the following result, proved in [6].

Lemma 4.2 (Crushing) As n→ ∞, Ŵ(n)(−∞, F̂ (n)] ⇒ 0.

Lemma 4.2 says that in order to understand the limiting distribution of lead
times, it is enough to consider only work whose lead time exceeds F (n). However,
since this work has never been in service, we can restrict attention to the measure-
valued work arrival process V(n) rather than the more complicated measure-valued
workload process W(n). The following limit for the scaled version of this process is
obtained in [6].

Theorem 4.3 For all y ∈ R,

(4.13) V̂(n)(·)(y,∞) ⇒ H(y) ∆=
∫ ∞

y

(
1 −G(x)

)
dx.



Double Skorokhod Map 185

In fact, the convergence in (4.13) is weak convergence of a sequence of measure-
valued processes to a measure on R, not just weak convergence of a real-valued
process for each fixed y.

Theorem 4.3 can be explained by the following heuristic. To have scaled lead
time x at scaled time t, a customer must have entered the system scaled time units
s earlier with scaled lead time x+ s. Given that a customer arrives at scaled time
t− s, the density at time t for the lead time at x of this customer is G′(x+ s). We
must integrate this density over all possible values of s ≥ 0 and multiply by the
limiting arrival rate λ of customers to obtain the density of customers with scaled
lead time x at scaled time t, which is therefore

λ

∫ ∞

0

G′(x+ s) ds = λ
(
G(∞) −G(x)) = λ

(
1 −G(x)

)
.

The limiting work brought by each customer is 1/µ = 1/λ. Therefore, to find the
density of work (as opposed to customers) with scaled lead time x at scaled time
t, we divide the expression above by λ. Finally, to obtain the amount of work in
(y,∞) at time t, we integrate the resulting expression from y to ∞ and obtain H(y)
defined in (4.13).

The limiting scaled work in the system is W ∗ defined by (4.5), and according to
Lemma 4.2, as n → ∞, this work is increasingly concentrated to the right of the
frontier F̂ (n). One can use these observations to show that F̂ (n) has a limit, and
this limit must be F ∗ = H−1(W ∗) so that

lim
n→∞ V̂(n)(t)

(
F (n)(t),∞) = H

(
F ∗(t)

)
= W ∗(t).

In the limit, arrived work to the right of the frontier accounts for all work in the
system. We summarize with the principal conclusions from [6].

Theorem 4.4 As n→ ∞,

F̂ (n) ⇒ F ∗ ∆= H−1(W ∗),(4.14)

Ŵ(n)(·)(y,∞) ⇒ H(y ∨ F ∗) ∀y ∈ R.(4.15)

The convergence in (4.14) is weak convergence of a sequence of measure-valued
processes to a measure-valued process. In other words, the density of the limit of
the measure-valued workload processes Ŵ(n)(t) is

(
1−G(x)

)
I{x≥F∗(t)}, which is the

density of the limit of V(n)(t) truncated at the random process F ∗(t).

4.3. Reneging

We modify the real-time queueing system of the previous subsection by assuming
that customers renege when they become late, i.e., a customer whose lead time
reaches zero disappears from the queue never to return. This system has the same
customer arrival process A(n), work arrival process V (n), and netput process N (n)

as the system without reneging. However, in contrast to the EDF queueing system
in Section 4.2, whose (scalar) workload process is Markov, the (scalar) workload
process in the system with reneging is not Markov. This is because different cus-
tomers reduce the workload by different amounts when they renege, and so it is
necessary to keep track of the lead times and remaining service requirements of all



186  Lukasz Kruk, John Lehoczky, Kavita Ramanan, and Steven Shreve

customers. In the presence of reneging, we need the full measure-valued workload
process in order to have a Markov system.

The workload process in the reneging system, denoted W
(n)
R , is less than or

equal to the workload process W (n) of (4.2). For the reneging system, we scale the
workload process to obtain (cf. (4.3))

Ŵ
(n)
R (t) =

1√
n
W

(n)
R (nt), t ≥ 0.

For the reneging system, we define the measure-valued workload process (cf. (4.7))

W(n)
R (t)(B) =

{
Work associated with customers in the reneg-
ing system at time t with lead times in B

}
and the scaled measure-valued workload process (cf. (4.10))

Ŵ(n)
R (t)(B) =

1√
n
W(n)
R (nt)(

√
nB).

Here B is an arbitrary Borel subset of R. The measure-valued work arrival process
V(n) and scaled measure-valued work arrival process V̂(n) for the reneging system
are the same as for the non-reneging system; these are given by (4.7) and (4.11).
For the reneging system, the frontier is (cf. (4.9))

F
(n)
R (t) ∆=


Largest lead time of any customer who has ever been in service in
the reneging system, whether or not that customer is still present,
or

√
n y∗ − t if this quantity is larger than the former one

 .

Because the reneging system serves customers that have not yet been in service in
the non-reneging system, we have F (n) ≤ F

(n)
R . The scaled frontier for the reneging

system is (cf. (4.10))

F̂
(n)
R (t) =

1√
n
F

(n)
R (t).

Recall the definition (1.6) of Λa and the reflected Brownian motion W ∗ of (4.5).
The principal result of [11] is the following.

Theorem 4.5 As n→ ∞,

(4.16) Ŵ
(n)
R ⇒W ∗

R
∆= ΛH(0)(W ∗),

which is a Brownian motion with drift −γ and variance per unit time λ(α2 + β2),
doubly reflected to stay in the interval

[
0, H(0)

]
. As n→ ∞,

F̂
(n)
R ⇒ F ∗

R
∆= H−1(W ∗

R),(4.17)

Ŵ(n)
R (·)(y,∞) ⇒ H(y ∨ F ∗

R) ∀y ∈ R.(4.18)

We sketch the proof of Theorem 4.5. For this we introduce M, the set of finite
measures on the Borel subsets of R. We endow M with the topology of weak
convergence. We denote by DM[0,∞) the set of functions from [0,∞) to M that are
right-continuous and have left limits. We further define a mapping Λ: DM[0,∞) →
DM[0,∞) by
(4.19)

Λ(µ)(t)(−∞, y] ∆=

(
µ(t)(−∞, y] − sup

s∈[0,t]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,t]
µ(u)(R)

])+

.
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Consideration of (4.19) reveals that Λ(µ)(t) is the measure on R that agrees with
µ(t) except that it has all mass removed to the left of some point, no mass removed
to the right of that point, and perhaps some of the mass removed at that point if
there is a point mass there. The point in question is the supremum of those y for
which

µ(t)(−∞, y] ≤ sup
s∈[0,t]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,t]
µ(u)(R)

]
.

The total amount of mass removed is almost the largest amount of “lateness” prior
to time t, by which we mean sups∈[0,t] µ(s)(−∞, 0], but this is tempered by the fact
that at some time between t and the prior time s when this maximal lateness was
obtained, the system may have become empty. For example, if there is an s1 ∈ [0, t]
and a u1 ∈ [s1, t] such that

sup
s∈[0,t]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,t]
µ(u)(R)

]
= µ(s1)(−∞, 0] ∧ inf

u∈[s1,t]
µ(u)(R) = µ(u1)(R),

then

Λ(µ)(u1)(R) =

(
µ(u1)(R) − sup

s∈[0,u1]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,u1]
µ(u)(R)

])+

= 0;

the system is empty at time u1 and rather than subtracting mass µ(s1)(−∞, 0] from
µ(t) to obtain Λ(µ)(t), we subtract only µ(u1)(R), the amount removed at time u1

in order to create the empty system. We conclude the paper with the detailed
Example 4.7 of the operation of Λ on a path of W(n).

Unlike Λa of (1.6), which maps real-valued functions to real-valued functions,
Λ maps measure-valued functions to measure-valued functions. To obtain a real-
valued process, we define

U (n)(t) ∆= Λ(W(n))(t),

U (n)(t) ∆= U (n)(t)(R)

=

(
W (n)(t) − sup

s∈[0,t]

[
W(n)(s)(−∞, 0] ∧ inf

u∈[s,t]
W (n)(u)

])+

.

Scaling these relations, we obtain

Û (n)(t) ∆=
1√
n
U (n)(nt)(4.20)

=

(
Ŵ (n)(t) − sup

s∈[0,t]

[
Ŵ(n)(s)(−∞, 0] ∧ inf

u∈[s,t]
Ŵ (n)(u)

])+

.

Note that the processes Ŵ (n)(·) = Ŵ(n)(·)(R) and Ŵ(n) appearing in (4.20) are for
the non-reneging system. We take the limit as n→ ∞. Although Λ is not continuous
on the set of all measure-valued processes, it is continuous on the set of processes
that can result as the limit of W(n). Therefore, we can use Theorems 4.1 and 4.4
and the continuous mapping theorem to obtain
(4.21)

Û (n)(t) ⇒
(
W ∗(t) − sup

s∈[0,t]

[(
W ∗(s) −H

(
0 ∨ F ∗(s)

)) ∧ inf
u∈[s,t]

W ∗(u)
])+

,
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where we have used the fact that

Ŵ(n)(s)(−∞, 0] = Ŵ(n)(s)(R) − Ŵ(n)(s)(0,∞) ⇒W ∗(s) −H
(
0 ∨ F ∗(s)

)
.

Because H is nonincreasing,

H
(
0 ∨ F ∗(s)

)
= H(0) ∧H(F ∗(s)

)
= H(0) ∧W ∗(s).

Therefore,

W ∗(s) −H
(
0 ∨ F ∗(s)

)
= W ∗(s) − (H(0) ∧W ∗(s)

)
=
(
W ∗(s) −H(0)

)+
.

Making this substitution in (4.21), we see that

(4.22) Û (n) ⇒ ΛH(0)(W ∗).

In conclusion, we have defined

(4.23) Û (n)(t) = Λ(Ŵ(n))(t)(R) ∀t ≥ 0,

taken the limit as n→ ∞, and obtained (4.22).
The following lemma implies that the processes Û (n) and Ŵ

(n)
R have the same

limit. In particular, (4.22) yields (4.16).

Lemma 4.6 Let D(n)(t) denote the work that arrives to the reneging system that
has lead time upon arrival less than or equal to the frontier at the time of arrival
and that ultimately reneges. Define D̂(n)(t) = 1√

n
D(n)(nt). Then

(4.24) 0 ≤ Û (n) − Ŵ
(n)
R ≤ D̂(n) ⇒ 0,

where the limit in (4.24) is taken as n→ ∞.

Just as with the non-reneging system, as n → ∞, work in the reneging system
concentrates to the right of the frontier F̂ (n)

R . The remainder of the argument follows
as in the derivation of (4.14) and (4.14). We know that the limiting scaled work in
the system is W ∗

R, that this work must be concentrated to the right of the limiting
frontier, and that work to the right of the frontier has never been is service and hence
is just the work that has arrived. The limit of arrived work is given by Theorem
4.3, and (4.17) and (4.17) follow.

We do not attempt to prove Lemma 4.6 here. Instead, we illustrate it with the
following example.

Example 4.7 Consider a system realization in which

u
(n)
1 = 1, v(n)

1 = 4, L(n)
1 = 3, S(n)

1 = 1,

u
(n)
2 = 1, v(n)

2 = 4, L(n)
2 = 5, S(n)

2 = 2,

u
(n)
3 = 3, v(n)

3 = 2, L(n)
3 = 1, S(n)

3 = 5,

u
(n)
4 = 2, v(n)

4 = 1, L(n)
4 = 4, S(n)

4 = 7,

u
(n)
5 = 2, v(n)

5 = 1, L(n)
5 = 1, S(n)

5 = 9.
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Then using δs to denote a unit of mass at the point s, we have

W(n)(t) =



0, 0 ≤ t < 1,
(5 − t)δ4−t, 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t, 2 ≤ t < 5,
(7 − t)δ6−t + 4δ7−t, 5 ≤ t < 7,
(11 − t)δ7−t + δ11−t, 7 ≤ t < 9,
2δ−2 + δ1 + δ2, t = 9.

The measure W(n)(t) is shown for integer values of t ranging between 1 and 9 in
Figure 1.

t = 10

4δ3

t = 20

3δ2

4δ5

t = 30

2δ1

4δ4

t = 40

δ0

4δ3

t = 50

2δ1

4δ2

t = 60

δ0

4δ1

t = 70

4δ0

δ4

t = 80

3δ−1

δ3

t = 90

2δ−2

δ1 δ2

Fig 1. Evolution of W(n)

We have W (n)(u) ≥ 4 for all u ∈ [2, 8] and hence

K(n)(t) ∆= sup
s∈[0,t]

[
W(n)(s)(−∞, 0] ∧ inf

u∈[s,t]
W (n)(u)

]
= sup

s∈[0,t]

W(n)(s)(−∞, 0]

=


0, 0 ≤ t < 4,
1, 4 ≤ t < 7,
4, 7 ≤ t ≤ 8.

However, for 8 ≤ t < 9, we have W (n)(t) = 12 − t ≤ 4. For t in this range, the
supremum in the definition of K(n)(t) is attained at s = 7, and

K(n)(t) = W(n)(7)(−∞, 0] ∧ inf
u∈[7,t]

W (n)(u) = 4 ∧ (12 − t) = 12 − t.
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For t = 9, we have W (n)(9) = 4 6= 12 − t. Nonetheless, the supremum in the
definition of K(n)(9) is still attained at s = 7. Indeed,

K(n)(9) = W(n)(u)(−∞, 0] ∧ inf
u∈[7,9]

W (n)(u) = 4 ∧
[

inf
u∈[7,9)

(12 − t) ∧ 4
]

= 3.

In summary,

K(n)(t) =


0, 0 ≤ t < 4,
1, 4 ≤ t < 7,
4, 7 ≤ t ≤ 8,
12 − t, 8 ≤ t ≤ 9.

The measure U (n)(t) is obtained by subtracting mass K(n)(t) from the measure
W(n)(t), working from left to right. This results in the formula

U (n)(t) =



0, 0 ≤ t < 1,
(5 − t)δ4−t, 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t, 2 ≤ t < 4,
(8 − t)δ7−t, 4 ≤ t < 5,
(6 − t)δ6−t + 4δ7−t, 5 ≤ t < 6,
(10 − t)δ7−t, 6 ≤ t < 7,
(8 − t)δ11−t, 7 ≤ t < 8,
0, 8 ≤ t < 9,
δ2, t = 9.

The measure U (n)(t) is shown for integer values of t ranging between 1 and 9 in
Figure 2.

The total mass in the U (n) system is

U (n)(t) =



0, 0 ≤ t < 1,
5 − t, 1 ≤ t < 2,
9 − t, 2 ≤ t < 4,
8 − t, 4 ≤ t < 5,
10 − t, 5 ≤ t < 7,
8 − t, 7 ≤ t < 8,
0, 8 ≤ t < 9,
1, t = 9.

This total mass path has jumps ∆U (n)(1) = 4, ∆U (n)(2) = 4, ∆U (n)(4) = −1,
∆U (n)(5) = 2, ∆U (n)(7) = −2 (the result of an arrival of mass 1 and the deletion
of mass −3), and U (n)(9) = 1.

We see that arriving mass to U (n) is not always placed at the lead time of the
arriving customer. In particular, U (n)(5−) = 3δ2, but U (n)(5) = δ1 + 4δ2. The mass
v
(n)
3 = 2 arriving at time 5 is distributed with one unit at L(n)

3 = 1 and one unit at
2. Furthermore, the mass v(n)

5 = 1 arriving at time t = 9, which begins a new busy
period for U (n), is placed at 2 rather than at L(n)

5 = 1.
Because of the failures of U (n) to place all arriving masses at their lead times,

the reneging system measure W(n)
R (t) is not U (n)(t) for 5 ≤ t < 7 and t = 9. The
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t = 10

4δ3

t = 20

3δ2

4δ5

t = 30

2δ1

4δ4

t = 40

4δ3

t = 50

δ1

4δ2

t = 60

4δ1

t = 70

δ4

t = 80 t = 90

δ2

Fig 2. Evolution of U(n)

full formula for the reneging system is

W(n)
R (t) =



0, 0 ≤ t < 1,
(5 − t)δ4−t, 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t, 2 ≤ t < 4,
(8 − t)δ7−t, 4 ≤ t < 5,
(7 − t)δ6−t + 3δ7−t, 5 ≤ t < 6,
(9 − t)δ7−t, 6 ≤ t < 7,
(8 − t)δ11−t, 7 ≤ t < 8,
0, 8 ≤ t < 9,
δ1, t = 9.

The measure W(n)
R (t) is shown for integer values of t ranging between 1 and 9 in

Figure 3.
Beginning at time t = 4, the reneging system begins serving the customer with

lead time 3, and thus by time t = 5, this customer, whose lead time is now 2,
requires only three remaining units of service. The customer arriving at time t = 5
with lead time 1 brings an additional two units of work. At time t = 5, the reneging
system thus has five units of work, which agrees with U (n)(5) = 5, but the mass in
the reneging system is not distributed according to the measure U (n)(5). At time
t = 6, an additional unit of work is deleted from the reneging system but not from
the U (n) system, and so W

(n)
R (6) = 3, whereas U (n)(6) = 4. This discrepancy is

due to the deletion in the reneging system at time 6 of the customer who arrived
at time t = 5, a customer who upon arrival was more urgent than the customer
in service in the reneging system. The work associated with this customer upon
arrival is counted in the process D(n) in Lemma 4.6.
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Lemma 4.6 asserts that we always have W (n)
R (t) ≤ U (n)(t), and the inequality

can be strict due to work that preempts the customer in service in the reneging
system, but the difference between W

(n)
R (t) and U (n)(t) is never more than the

amount of such work deleted by the reneging system up to time t. ˜

t = 10

4δ3

t = 20

3δ2

4δ5

t = 30

2δ1

4δ4

t = 40

4δ3

t = 50

2δ1

3δ2

t = 60

3δ1

t = 70

δ4

t = 80 t = 90

δ1

Fig 3. Evolution of the reneging system W(n)
R
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