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Stochastic Equations Driven

by a Cauchy Process

Vladimir P. Kurenok1

University of Wisconsin–Green Bay

Abstract: Using the method of Krylov’s estimates, we prove the existence of
(weak) solutions of the one-dimensional stochastic equation dXt = b(Xt−)dZt+
a(Xt)dt with arbitrary initial value x0 ∈ IR and the driven symmetric Cauchy
process Z. The bounded coefficient b is assumed to be of non-degenerate form
and the drift a to satisfy the condition |a(x)| ≤ (1/2)|b(x)| for all x ∈ IR.

1. Introduction

The goal of this note is to prove the existence of (weak) solutions for stochastic
differential equations (SDE’s) of the form

dXt = b(Xt−)dZt + a(Xt)dt, X0 = x0 ∈ IR,(1.1)

where a, b : IR → IR are measurable functions and Z is a one-dimensional symmetric
Cauchy process.

Since a symmetric Cauchy process is a semimartingale, the equation (1.1) is a
particular case of SDE’s driven by a semimartingale for which the general exis-
tence results are known (cf. [2], Theorem 6.2.3). Those results are subject to some
condition of Lipshitz continuity of the coefficients and the condition of their linear
growth. The natural question arises whether one can improve those general results
in the case of equation (1.1)?

The equation (1.1) without drift (a = 0) but with the time-dependent coefficient
b was considered in [5] where one proved the existence of solutions under some
conditions of the local integrability of b. A slightly different sufficient condition in
the case of time-independent coefficient b when a = 0 was provided in [10]. The
approaches in [5] and [10] were similar and essentially based on using a time-change
method. Another particular case of the equation (1.1), when b = 1, was considered
in [9] where one constructed a solution under the assumption that supx |a(x)| < 1/2.
The method used there was a purely analytical one relying on Markov properties
of the solution X satisfying (1.1). To our knowledge, for the equation (1.1) in its
general form, there are no known weaker existence conditions than conditions of
Lipshitz continuity of the coefficients mentioned above.

We shall prove here the existence of a solution of the equation (1.1) for bounded b
satisfying a non-degenerate condition and the drift a such that |a(x)| ≤ (1/2)|b(x)|
for all x ∈ IR. In contrast to [9], we shall use a probabilistic technique based on
some variants of Krylov’s estimates for solutions of SDE’s driven by a symmetric
Cauchy process. It is similar to the approach exploited in [8] where the equation
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of the form (1.1) driven by a symmetric stable process Z of index 1 < α < 2 was
considered.

2. Some integral estimates

Let ID[0,∞)(IR) be the Skorokhod space, i.e. the set of all real-valued functions
x(·) : [0,∞) → IR with right-continuous trajectories and with finite left limits.
For simplicity, we shall write ID instead of ID[0,∞)(IR). We will equip ID with the
σ-algebra D generated by the Skorokhod topology. Under IDn, n ≥ 1, we will un-
derstand the n-dimensional Skorokhod space defined as IDn = ID × . . . × ID with
the corresponding σ-algebra Dn being the direct product of n one-dimensional σ-
algebras D.

Let Z be a process with Z0 = 0 defined on a complete probability space (Ω,F ,P)
and let IF = (Ft) be a filtration on (Ω,F ,P). We use the notation (Z, IF) to express
that Z is adapted to the filtration IF. A process (Z, IF) is said to be a symmetric
Cauchy process if trajectories of Z belong to ID and

E
(
eiξ(Zt−Zs)|Fs

)
= e−(t−s)|ξ|

for all t > s ≥ 0, ξ ∈ IR.
We are dealing here with the existence of solutions of equation (1.1) in the

weak sense (cf. [6], chapter 4).
It is well-known that a symmetric Cauchy process Z is a Markov process; hence

it can be characterized in terms of its infinitesimal generator L defined as

(Lg)(x) =
∫

IR\{0}

(
g(x+ z)− g(x)− 1{|z|<1}gx(x)z

) c1
|z|2

dz

with c1 being a constant depending on Z only and g ∈ C2, where C2 is the set of
all bounded and twice continuously differentiable functions g : IR → IR. Here gx
denotes the derivative of g.

We also recall some known facts about the Fourier transforms of functions Lg
and gx. Let g ∈ L1(IR) and

Fg(x) :=
∫
IR

eizxg(z)dz

be the Fourier transform of g. Then the following facts are true (cf. Proposition 9,
page 24 in [3]):

(i) Assume that g ∈ C2 and Lg ∈ L1. Then, it holds that

F (Lg)(x) = −|x|Fg(x).

ii) Assume that g is absolutely continuous on every compact subset of IR and
gx ∈ L1(IR). Then

Fgx(x) = −ixFg(x).

Let f be a nonnegative, measurable function such that f ∈ C∞0 (IR) where
C∞0 (IR) denotes the class of all infinitely many times differentiable real-valued func-
tions with compact support defined on IR. Assume further that T is the class of all
IF-predictable one-dimensional processes (at) such that |at| ≤ 1/2.
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Consider the controlled processes Xa of the form

dXa
t = dZt + atdt

and, for any λ > 0, define the corresponding value function v(x), x ∈ IR, by

v(x) = sup
a∈T

E

∞∫
0

e−λsf(x+Xa
s )ds.

Lemma 2.1 It holds that
sup
x
v(x) ≤ N‖f‖2,(2.1)

where ‖f‖2 :=
(∫

IR
f2(y)dy

)1/2

.

Proof . We provide only a sketch of the proof because it follows similar steps
as the proof of Lemma 3.1 in [8].

First, using the Bellman’s principle of optimality (cf. [7], chapter 1), it is proven
that

Lv − λv + (1/2)|vx|+ f = 0(2.2)

a.e. in IR.
Now, let q(x) be a nonnegative function such that q ∈ C∞0 (IR) and

∫
IR
q(x)dx =

1. For any measurable function h : IR → [0,∞) and any ε > 0 we define

h(ε)(x) =
1
ε

∫
IR

q

(
x− y

ε

)
h(y)dy

to be the ε-convolution of h with q. Set

f(ε) := λv(ε) − Lv(ε) − (1/2)|v(ε)
x |.

It follows then that

(Lv(ε) − λv(ε))2 = ((1/2)|v(ε)
x |+ f(ε))2

and ∫
IR

(
Lv(ε)(x)− λv(ε)(x)

)2

dx =
∫
IR

(
(1/2)|v(ε)

x |(x) + f(ε)(x)
)2

dx(2.3)

≤ 1
2

∫
IR

(
v(ε)
x (x)

)2

dx+ 2
∫
IR

(
f(ε)(x)

)2

dx.

Using the Parseval-Plancherel equality∫
IR

(v(ε)(x))2dx =
1
2π

∫
IR

|Fv(ε)(z)|2dz,

and integration by parts, the relation (2.3) can be rewritten in terms of Fourier
transforms as∫

IR

|Fv(ε)(x)|2(|x|+ λ)2dx ≤ 1
2

∫
IR

|Fv(ε)(x)|2|x|2dx+ 2
∫
IR

(
Ff(ε)(x)

)2

dx.(2.4)
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Since (|x|+ λ) > |x| for all x ∈ IR, one has

1
2

∫
IR

|Fv(ε)(x)|2(|x|+ λ)2dx ≤ 2
∫
IR

(
Ff(ε)(x)

)2

dx.

Applying the inverse Fourier transform and the Cauchy-Schwarz inequality, we
finally obtain from (2.4) for all y ∈ IR and λ > 0(

v(ε)(y)
)2

≤ 1
4π2

∫
IR

|Fv(ε)(x)|2
(
|x|+ λ

)2

dx

∫
IR

(
|x|+ λ

)−2

dx

≤ N

∫
IR

(
f(ε)(x)

)2

dx,

where

N =
1
π2

∫
IR

(|x|+ λ)−2dx <∞.

The desired estimate follows then by taking the limit ε→ 0 in the above inequality
and using the Lebesgue dominated convergence theorem.

Now, let X be a solution of the equation (1.1) and

τm(X) = inf{t ≥ 0 : |Xt| > m}.

For m ∈ IN, define ‖f‖2,m := (
∫
[−m,m]

|f(x)|2dx) 1
2 as the L2-norm of f on [−m,m].

We are interested in L2 - estimates of the form

E
∫ t∧τm(X)

0

e−λψuϕuf(x+Xu)du ≤ N‖f‖2,m,

where ψ and ϕ are some nonnegative, predictable processes. We shall assume that

|a(x)| ≤ (1/2)|b(x)| for all x ∈ IR.(2.5)

Theorem 2.2 Suppose X is a solution of the equation (1.1) driven by a symmetric
Cauchy process and the condition (2.5) is satisfied. Then, for any x ∈ IR, λ > 0, t ≥
0, and any measurable function f : IR → [0,∞), it holds that

E
∫ t∧τm(X)

0

e−λψu |b(Xu)|f(x+Xu)du ≤ N‖f‖2,m,(2.6)

where ψt =
∫ t
0
|b(Xs)|ds and the constant N depends on m and t only.

Proof . Assume first that f ∈ C∞0 (IR) so that there is a solution v of equation
(2.2) satisfying the inequality (2.1). By taking the ε-convolution on both sides of
(2.2), we obtain

Lv(ε) − λv(ε) + (1/2)|v(ε)
x |+ f (ε) ≤ 0.

Then, for all s ∈ [0, τm(X)), applying the Itô’s formula to the expression

v(ε)(x+Xs)e−λψs ,
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yields

Ev(ε)(x+Xs)e−λψs − v(ε)(x)

= E
∫ s

0

e−λψu

[
|b(Xu)|Lv(ε) − |b(Xu)|λv(ε) + a(Xu)v(ε)

x

]
(x+Xu)du

≤ E
∫ s

0

e−λψu |b(Xu)|
[
Lv(ε) − λv(ε) + (1/2)|v(ε)

x |
]
(x+Xu)du

≤ −E
∫ s

0

e−λψu |b(Xu)|f (ε)(x+Xu)du.(2.7)

Hence using Lemma 2.1 we obtain

E
∫ s

0

e−λψu |b(Xu)|f (ε)(x+Xu)du ≤ sup
x∈[−m,m]

v(ε)(x) ≤ N‖f (ε)‖2,m.

Letting ε→ 0 and s→ t and using the Fatou’s lemma, we arrive at

E
∫ t∧τm(X)

0

e−λψu |b(Xu)|f(x+Xu)du ≤ N‖f‖2,m.

The latter inequality can be extended in a standard way first to any function f ∈
L2(IR) and then to any nonnegative, measurable function using the monotone class
theorem arguments (see, for example, [4], Theorem 20).

Corollary 2.3 Let X be a solution of the equation (1.1) with b = 1 and |a(x)| ≤
1/2. Then, for any t ≥ 0,m ∈ IN, and any nonnegative, measurable function f , it
holds that

E
∫ t∧τm(X)

0

f(Xu)du ≤ N‖f‖2,m,

where N is a constant depending on m and t only.

3. Existence of solutions

Here we apply the L2-estimates obtained in the previous section to construct a
solution of SDE’s driven by a symmetric Cauchy process. We start first with the
equation

dXt = dZt + a(Xt)dt, X0 = x0 ∈ IR, t ≥ 0.(3.1)

Theorem 3.1 Assume that |a(x)| ≤ 1/2 for all x ∈ IR. Then, for any x0 ∈ IR,
there exists a solution of the equation (3.1).

Proof . The proof is similar to the proof of Theorem 4.1 in [8] so that we only
provide the outline of it.

By standard arguments, there exists a sequence of uniformly bounded (by the
constant 1/2) and Lipshitz continuous functions an, n = 1, 2, . . . such that an → a
as n→∞ pointwise. By Theorem 6.2.3 in [2], for any fixed n and a given symmetric
Cauchy process Z defined on a probability space (Ω,F ,P), there is a unique solution
Xn of the equation

Xn
t = x0 + Zt +

∫ t

0

an(Xn
s )ds.

Set Y nt :=
∫ t
0
an(Xn

s )ds and consider the sequence of 3-dimensional processes
(Xn, Z, Y n), n ∈ IN. It is a simple consequence of the uniform boundness of the
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functions an that the sequence satisfies the assumptions of Aldous’s criterion of
weak convergence ([1]). Furtheremore, using the famous embedding principle of
Skorokhod (cf. Theorem 2.7 in [6]), we conclude that there exist a probability space
(Ω̃, F̃ , P̃) and the processes (X̃n, Z̃, Ỹ n), (X̃, Z̃, Ỹ ) on it such that the distributions
of the processes (Xn, Z, Y n) and (X̃n, Z̃, Ỹ n) coincide for any n ∈ IN and

(X̃n, Z̃, Ỹ n) → (X̃, Z̃, Ỹ ) a.s. as n→∞.

Similarly as in [7] (chapter 2), one shows that, for all n ∈ IN,

X̃n
t = x0 + Z̃t +

∫ t

0

an(X̃n
s )ds, t ≥ 0

with probability one.
Since the convergence in probability implies the existence of a subsequence for

which the convergence almost surely follows, we observe that in order to finish the
proof it is enough to verify that, for all t ≥ 0,∫ t

0

an(X̃n
s )ds→

∫ t

0

a(X̃s)ds as n→∞

in probability.
For any t ≥ 0,m, k ∈ IN, and ε > 0, one has

P̃
(
|
∫ t

0

an(X̃n
s )ds−

∫ t

0

a(X̃s)ds| > ε

)
≤ P̃

(∣∣∣∣ ∫ t

0

ak(X̃n
s )ds−

∫ t

0

ak(X̃s)ds
∣∣∣∣ > ε/3

)
+ P̃

( ∫ t∧τm(X̃n)

0

|ak − an|(X̃n
s )ds > ε/3

)
+ P̃

( ∫ t∧τm(X̃)

0

|ak − a|(X̃s)ds > ε/3
)

+ P̃
(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
.

The convergence of the first term on the right-hand side of the last inequality to
zero as n → ∞ is trivial because ak is a smooth, bounded function. Secondly, the
last two terms can be made arbitrary small uniformly for all n by choosing large
enough m. To verify the convergence to zero of the remaining two terms, we apply
the Chebyshev’s inequality and Krylov’s estimates to obtain

P̃
( ∫ t∧τm(X̃n)

0

|ak − an|(X̃n
s )ds > ε/3

)
≤ 3N

ε
‖ak − an‖2,m(3.2)

and

P̃
( ∫ t∧τm(X̃)

0

|ak − a|(X̃s)ds > ε/3
)
≤ 3N

ε
‖ak − a‖2,m,(3.3)

where in the inequality (3.3) we used the Krylov’s estimate for the limit process X̃
that can be obtained from Krylov’s estimates for the processes X̃n (cf. Lemma 4.2
in [8]).

By letting n, k → ∞ we obtain that the right-hand sides of (3.2) and (3.3)
converge to zero.
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Theorem 3.2 Suppose that

i) there exists δ1 > 0 and δ2 > 0 such that δ1 ≤ |b(x)| ≤ δ2 for all x ∈ IR;
ii) |a(x)| ≤ (1/2)|b(x)| for all x ∈ IR.

Then, for any x0 ∈ IR, there exists a solution of the equation (1.1).

Proof . Consider the stochastic equation

Yt = x0 + Z̄t +
∫ t

0

A(Ys)ds,(3.4)

where A = |b|−1a and Z̄ is a symmetric Cauchy process defined on a probability
space (Ω,F ,P). It follows from the conditions i) and ii) that |A(x)| ≤ 1/2 for all
x ∈ IR. Therefore, by Theorem 3.1, the equation (3.4) has a solution for any initial
value x0 ∈ IR.

Now, let

Tt =
∫ t

0

|b(Ys)|−1ds, t ≥ 0.(3.5)

It is easy to see that the process T is well-defined and is adapted to the filtration
generated by the process Y . Moreover, T∞ = limt→∞ Tt = ∞. Define by At the
right-inverse of T . Because T is strictly increasing, A is a continuous time change
with respect to the mentioned filtration and A∞ = ∞. It can be immediately
verified from (3.5) that

At =
∫ t

0

|b(YAs
)|ds.

Define Xt := YAt
. By making the time change in the equation (3.4), one obtains

Xt = x0 + Z̄At
+

∫ t

0

a(Xs)ds.

Using similar arguments as in [5], one concludes that there exists a symmetric
Cauchy process Z such that Z̄At =

∫ t
0
b(Xs−)dZs so that X is a solution of equation

(1.1) with X0 = x0.

Corollary 3.3 Assume that

i) there exists a constant δ2 > 0 such that 0 < |b(x)| ≤ δ2 for all x ∈ IR and
|b|−1 ∈ L2(IR);

ii) |a(x)| ≤ (1/2)|b(x)| for all x ∈ IR.

Then, for any x0 ∈ IR, there exists a solution of equation (1.1).

Proof . The proof is similar to that of Theorem 3.2. The only difference is that we
need other arguments to verify the finiteness of the integral functional T defined in
(3.5). Since |A| ≤ 1/2, the application of Corollary 2.3 yields

E
∫ t∧τm(Y )

0

|b(Ys)|−1ds ≤ N‖b−1‖2,m.

Since τm(Y ) →∞ as m→∞, we obtain by letting m→∞ in the last inequality

E
∫ t

0

|b(Ys)|−1ds ≤ N‖b−1‖2
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and, consequentely,
ETt <∞

for all t ≥ 0 due to the assumption |b|−1 ∈ L2(IR). Therefore, Tt < ∞ a.s. for all
t ≥ 0.

Acknowledgements

The author thanks the anonymous referee for helpful comments which improved
the style of the paper.

References

[1] Aldous, D. (1978). Stopping times and tightness. Ann. Probab. 6 335–340.
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