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Diffusion Processes on Manifolds

Fabrice Debbasch1 and Claire Chevalier

Université Pierre et Marie Curie–Paris 6, UMR 8112, ERGA-LERMA

Abstract: This is an informal introduction to stochastic analysis on both
Riemannian and Lorentzian manifolds. We review the basics underlying the
construction of diffusions on manifolds, highlighting the important differences
between the Riemannian and Lorentzian cases. We also discuss a few recent
applications which range from biophysics to cosmology.

1. Introduction

The aim of the present contribution is to offer an informal and self-contained intro-
duction to stochastic analysis on manifolds and to highlight some of its most recent
applications to physics. The interest in diffusions on manifolds dates back at least
to Itô [29, 30], who first extended stochastic calculus to deal with processes de-
fined on Riemannian manifolds. Section 2 is therefore devoted to diffusions process
on Riemannian manifolds. Section 2.1 reviews the basic construction of these pro-
cesses, highlighting the fact that these diffusions are most simply defined through
their generators. Section 2.2 offers an extension which deals with diffusions defined
on a fixed base manifold equipped with a statistical ensemble of Riemannian met-
rics. This extension is used in Section 2.3 to model realistically the influence of
metric fluctuations on the so-called lateral diffusions occuring on 2-D biophysical
interfaces. Section 3 is devoted to processes defined on Lorentzian manifolds and,
more particularly, with diffusions in 4-D relativistic space-times. Section 3.1 deals
with diffusions in flat Minkowski space-time, insisting on the important conceptual
and technical differences displayed by the constructions of stochastic processes on
Riemannian and Lorentzian manifolds. Diffusions on curved Lorentzian manifolds
are presented in Section 3.2, along with an H-theorem obeyed by at least the sim-
plest of these processes and an application to diffusions in an expanding universe.
A final section reviews some processes which have been recently considered in the
mathematical and physical literature and which our text had hitherto not explic-
itly mentioned. We then suggest a few lines along which we believe research on
stochastic analysis on manifolds could fruitfully develop.

2. Diffusions on Riemannian Manifolds

2.1. Basics

A Riemannian manifold is defined [18] as a real base manifold B equipped with a
Riemannian metric g. This metric defines a canonical volume measure on B, which
is usually denoted by dVolg. Diffusions on Riemannian manifolds are best defined
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through their generators [22, 27, 33, 35]. Let L be a second order elliptic operator
which acts on functions defined on I × B, where I is some interval of the positive
real axis. Consider the equation

(2.1) ∂tn = Ln,

and suppose that this conserves the integral of n with respect to dVolg. The idea
underlying the construction of stochastic processes on B is to consider equation (2.1)
as a forward Kolmogorov equation. More precisely, given a local chart (x) covering
U ⊂ B, the adjoint L† of L can be locally decomposed on the basis (∂xi , ∂xi∂xj ),
i, j = 1, · · · , d, where d is the dimension of B; let L† = ai(x)∂xi + bij(x)∂xi∂xj . The
operator L† is the generator of the stochastic process dxi

t = ai(x)dt + σij(x)d(Bj)t

with (bij)(x) = 1
2 (σ(x)σT (x))ij , i, j = 1, · · · , d. This x-process defines a stochastic

process on U ⊂ B at all times t inferior to the exit time from U . It can be shown that
this local definition can be extended into a global and intrinsic (i.e. coordinate-free)
definition [33].

In particular, a Brownian motion Bg
t on B is defined by choosing L = Δg, the

Laplace-Beltrami operator [18] associated with the metric g. In coordinates,

(2.2) Δgn =
1√

detgij

∂i

(√
detgijg

ij∂jn
)

,

where gij are the components of the metric g in the chart x and gij are the compo-
nents of the matrix inverse to gij . Equation (2.1) then conserves the normalization
of n with respect to dVolg because dVolg =

√
detgijd

nx.
The above construction can be extended to include cases in which the metric

g explicitly depends on time t [6, 10]. The Brownian motion B
g(t)
t is then defined

through the forward Kolmogorov equation

(2.3)
1

μg(t)/h
∂t

(
μg(t)/h n

)
= Δg(t)n,

where μg(t)/h is the density of dVolg(t) with respect to dVolh, h being an arbitrary
time-independent metric on the manifold. Note that this definition of B

g(t)
t does

not depend on the choice of h; it is also the minimal extension of the standard defi-
nition which ensures that

∫
n dVolg(t) is conserved in time, even for time-dependent

metrics. Let us also mention that conditional entropy currents for these Brownian
motions have been constructed in [10].

2.2. Comparing diffusions in different metrics

Many situations of physical or biophysical interest involve diffusions on interfaces
[4, 11, 15, 34, 38] and it is convenient, for most purposes, to model these interfaces
as 2-D Riemannian manifolds. In such a model, the base manifold B codes for the
topology of the interface and the metric g(t) defined on B codes for the possible
time-dependent local geometry of the interface. In practice, the topology of a ‘real’
physical interface is often known with great precision, but its local geometry is
not, our knowledge being for example limited by the finite temporal and spatial
resolutions of the experiments one wants to model. The natural way to take this
into account is to change the mathematical model of the interface [6, 10].

First, one still encodes the topology of the interface in the choice of a certain
base manifold B, but one introduces a new structure Σ on B, which will code for the
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finite spatial resolution of a given observational set-up; the simplest possible choice
for Σ is an atlas of B, with typical chart (x) = (x1, x2), where the finite spatial
resolution of the observational set-up is represented by a certain typical spatial
cutoff scale x∗. By convention all scales much larger than the cutoff scale will be
called large scales and scales smaller than the cutoff scale will be called small scales.
One similarly introduces a temporal cutoff t∗ on the real axis and defines large and
small temporal scales accordingly.

Second, one introduces on B, not a single metric g(t), but a collection of metrics
g(t, ω), ω ∈ Ω, where Ω is an at this stage arbitrary probability space. The obser-
vational constraint is that these metrics all coincide with a certain effective metric
ḡ(t) on large spatial and temporal scales, but differ from ḡ(t) on small scales. We
make two further hypotheses. The first one, which is not restrictive, is that ḡ(t)
varies on large temporal and spatial scales only; the second one is restrictive, but
computationaly convenient, and states that < g(t, ω) >= ḡ(t), where the angular
brackets denote the averaging over ω.

Consider now a ‘real’ diffusion on the physical interface. This ‘real’ diffusion
is best modeled by a collection of diffusions Mt(ω), Mt(ω) ∈ B for all values of
(t, ω) ∈ R+ × Ω. It is natural to wonder if there is a sense in which this collection
of diffusions averages into a diffusion M̄t defined on B endowed with the effective
metric ḡ. We will now present a preliminary result which strongly suggests this is
not the case. The conjecture is thus that small scale variations of the local geometry
cannot generically be neglected and that diffusions in g do not average into diffusions
in ḡ.

Let us focus on the simplest diffusions, i.e. Brownian motions. Let h be an
arbitrary time-independent Riemannian metric on B and let G(t) be an arbitrary
ω-independent Riemannian metric on B. Let also NidVolG(t=0) be an arbitrary
probability measure on B. This probability measure can be considered as an initial
condition and we will call N(t, ω)dVolG(t) the probability measure generated from
NidVolG(t=0) by the Brownian motion B

g(t,ω)
t . The density N(t, ω) satisfies the

following forward Kolmogorov equation:

(2.4)
1

μg/h
∂t

(
μg/h

N(t, ω)
μg/G

)
= Δg(t,ω)

(
N(t, ω)
μg/G

)
,

which ensures that
∫
B N(t, ω)dVolG(t) = 1 at all times. There is a canonical choice

for G(t), namely G(t) = ḡ(t), and it will be retained for the remainder of this
presentation.

We will say that the collection of diffusions Mt(ω) averages into a diffusion in ḡ if
there exists a diffusion M̄t in ḡ(t), with initial density Ni with respect to dVolḡ(t=0),
whose density N̄(t) at time t with respect to dVolḡ(t) coincides with < N(t, ω) >,
where angular brackets denote averages over ω. We will now present a perturbative
treatment of diffusions in nearly flat metrics which strongly suggests that collections
of diffusions generally do not average into Itô processes.

2.3. Application

We choose B = R
2 and introduce a global chart x = (x1, x2) which plays the role of

the extra structure Σ introduced in Section 2.2. The spatial and temporal cutoffs
are still denoted by x∗ and t∗ respectively. We then consider the collection of metrics
g(t, ω) defined by

(2.5) g(t, x, ω) = η + εγ(t, x, ω),
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where η is the flat metric, with components ηij = diag(1, 1) in this chart, and εγ,
ε � 1, is a perturbation around η, with components:

(2.6) γij(t, x, ω) =
∑
nn′

Aij
nn′ cos (Kn.x + Ωn′t + φnn′ + ω).

We choose Ω = [0, 2π[, equipped with the uniform probability measure dpω =
1
2π dω. Averaging over ω thus yields: 〈γ(t, x, ω)〉 = 0, which implies that ḡ = η.
In accordance with the discussion in Section 2.2, we finally impose that all wave
numbers Kn (resp. all pulsations Ωn′) are superior to K∗ = 2π/x∗ (resp. Ω∗ =
2π/t∗).

Equation (2.4) transcribes into

(2.7) ∂t (N(t, x, ω)) = ∂i

(√
detgij(t, x, ω)gij(t, x, ω)∂j

(
N(t, x, ω)√
detgij(t, x, ω)

))
,

which conserves the normalization of N(t, ω) with respect to dVolη = d2x (i.e.∫
R2 N(t, x, ω)d2x = 1 at all times).

Formally expand (2.7) in powers of ε and average the obtained expansion over
ω. The result takes the form ∂tN̄ = LN̄ , where the operator L is a formal series
in ε; this last equation is a formal transport equation for the average density N̄ .
Let F(N̄) be the spatial Fourier transport of N̄ ; the transport equation can be
transcribed [6, 10] into an equation of the form:

(2.8) ∂tF(N̄) = −k2
(
1 + ε2F (t, k)

)F(N̄),

where F (t, k) depends exponentially on k. Thus, if N̄ is analytic in ε, it cannot be
the density of an Itô process.

The exact expression for F is reproduced in [6]. Inspecting this expression reveals
that, at fixed k, F grows exponentially in time if there exist wave numbers Kn and
Kp of the perturbation for which either (Kn − Kp)2 + 2k.(Kn − Kp) or (Kn −
Kp)2 − 2k.(Kn − Kp) is positive. This is for example the case if one can find an
(n, p) such that k = Kn − Kp. The term ε2F (t, k) then becomes of order unity
after a typical time τ(ε, k) which scales as | ln ε|/k2 [6]. This result suggests that
the small scale variations of the metric have a cumulative effect on the large scale
aspects of Brownian motions and that Brownian motions on a nearly flat surface
generally do not even remain ‘close’ to Brownian motions on a plane.

3. Relativistic diffusions as examples of diffusions on Lorentzian
manifolds

3.1. Diffusions on flat Lorentzian manifolds

3.1.1. Special Relativistic space-time

Relativistic space-time is a real 4-D Lorentzian manifold [39]. In the absence of grav-
itational field, this manifold is isomorphic to R

4, can thus be covered by single chart
atlases, and is equipped with the flat Minkowski metric η. It is possible to choose
charts1 xμ = (ct, r) in which the metric components read: ημν = diag(−1, 1, 1, 1);
these charts are called Lorentzian (or inertial) charts. It is also customary to call

1c stands for the velocity of light in vacuo
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Lorentzian or inertial frame a set of inertial charts which only differ by isometries in
r-space. As done by most authors, we will hereafter only use global inertial charts
to map the flat 4-D Minkowski space-time.

Motions of point masses on the space-time manifold are represented by parame-
trized curves. It is customary, and often convenient, to choose as parameter the so-
called proper-time σ along the motion. In a given chart, a motion is thus represented
by a set of four functions xμ(σ), μ = 0, 1, 2, 3, σ itself being defined by dσ2 =
−ημνdxμdxν . This parameter is real because 3-D velocities of point masses are
bounded by c. The 4-velocity u of a point mass m is then given by uμ = dxμ/dσ
and its 4-momentum p by pμ = mcημνuν .

A given observer will however wish to represent motions in the usual intuitive
way, i.e. as 3-D functions r(t) of his/her own time t. Let v(t) = dr/dt be the
usual 3-D velocity and γ(v) =

√
1 − v · v/c2 be the so-called Lorentz factor (here,

· stands for the usual 3-D euclidean scalar product). A direct calculation shows
that u0 = γ(v) and u = γ(v)v/c. The energy E and the 3-D momentum p of
the point mass are defined by pμ = (−E/c,p). One thus has E = γmc2 and
p = mγ(v)v. Note that the square root in the definition of γ traces the fact that
the Euclidean norm of the 3-D velocity v of any point mass is bounded by c. At
any point of space-time, the four components pμ are not independent, but rather
satisfy p2 − p2

0/c2 = −m2c2. Thus, at any point of space-time, momentum space is
actually not 4 dimensional, but is rather a 3-D hyperboloid naturally embedded in
4-D real euclidean space. The phase space P of a relativistic point mass is thus a 7-
D submanifold of the 8-D bundle cotangent to space-time. Any chart (xμ) = (ct, r)
of the 4-D space-time manifold induces a chart of the 8-D bundle cotangent to
space-time, with coordinates (xμ, pν) = (ct, r, p0,p). This chart in turn induces a
chart (ct, r,p) of the phase-space P of a special relativistic point mass.

3.1.2. Why a naive construction of stochastic processes fails on Lorentzian
manifolds

Suppose one is interested in modeling stochastic motions of relativistic point masses
in flat 4-D space-time. It seems quite natural to start by trying to construct a rela-
tivistic equivalent of the usual 3-D Brownian motion Bt. Typically, one might wish
to construct a 4-D Brownian motion Bσ, using the proper-time σ along the motion
as parameter. Such an object, however, cannot exist on a Lorentzian manifold.

Indeed, the jump probabilities of such a Bσ would have to be proportional to
exp (−ημνΔxμΔxν/Δσ), where Δx represents the jump in space-time made by
the point mass during the proper time interval Δσ. But, since the manifold is
Lorentzian, ημνΔxμΔxν is not positive definite. Indeed, in the flat case discussed
here, and in inertial coordinates, ημνΔxμΔxν = (Δr)2 − c2(Δt)2, and the jump
probability could not be normalized in the time jump Δt.

The same problem can be looked at from the point of view of partial differential
equations, by considering what the generator of Bσ would be. The Kolmogorov
equation associated to Bσ would read ∂sn = Δηn; in inertial coordinates, this gives
∂sn =

(
∂2/∂r2 − ∂2/∂(ct)2

)
n = �n, where � is the standard D’Alembert operator,

which is obviously hyperbolic, and not elliptic. Finally, the density n associated to
Bσ would be a σ-dependent function defined on the space-time manifold, and, at
any proper time σ, this function could be integrated on 4-D domains of space-time
against the natural 4-D volume measure dVolη. In an inertial chart, n would thus
appear as a function of the five variables, (σ, ct, r) and, for all values of σ, could be
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integrated against d(ct) ∧ d3r in 4-D domains of space-time. Thus, n would not be
a density in the usual sense of the word, since standard densities are represented by
functions of the four real variables (ct, r) only, and can only be integrated at fixed
time t in 3-D domains of the space-time.

Thus, the standard Riemannian construction of stochastic processes cannot be
extended in a naive way to the Lorentzian case.

3.1.3. The Relativistic Ornstein–Uhlenbeck Process (ROUP)

The way out of these difficulties is to construct a diffusion in momentum space and
to use this diffusion to generate a diffusion in physical space-time [19]. In other
words, one constructs a diffusion in the whole phase-space P of a relativistic point
mass, and not on the space-time manifold only. This idea underlies the construc-
tion of the ROUP [14], which models how a special relativistic point mass diffuses
through its interaction with a fluid in thermodynamical equilibrium. The state of
this fluid is characterized by its temperature T and its 4-velocity U , which are both
uniform and constant. One can, without any loss of generality, decide to work in
global inertial charts of space-time which belong to the rest frame of the fluid and,
in these charts, U = (1, 0).

Given any of these charts (ct, r), consider the following set of stochastic differ-
ential equations:

drt =
1
m

pt

γ(pt)
dt

dpt = −α
pt

γ(pt)
dt +

√
2DdBt,(3.1)

where γ(p) =
√

1 + p2/m2c2 is the Lorentz factor, conceived as a function of p, and
α and D are two strictly positive real constants. The first equation in (3.1) is simply
the definition of the usual 3-D velocity v in terms of p. The second equation states
that the force experienced by the diffusing particle is made up of two contributions.
The first one is a deterministic frictional force and the second one is what physicists
call a Gaussian white noise.

The forward Kolmogorov equation associated with (3.1) reads:

(3.2) ∂tΠ + ∂r .

(
p

mγ
Π

)
+ ∂p .

(
−α

p
γ

Π
)

= D ΔpΠ,

where Π(t, r,p) represents the density of the process (at given initial condition)
with respect to the Lebesgue measure d3rd3p. The p-process admits an invariant
measure, whose density Πinv with respect to d3p is given by:

(3.3) Πinv(p) =
1

4π(mc)3
kB/(mc2β)

K2(mc2β/kB)
exp

(
−mc2β

kB
γ(p)

)
,

with β mc2/kB = D/α. This invariant measure is called the Jüttner distribution
and is associated to a thermal equilibrium at temperature 1/β. Since the diffusion
is induced by the interaction of the particle with a fluid at temperature T , one gets
the following special relativistic fluctuation-dissipation theorem:

(3.4) kBT = mc2 D

α
.
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The so-called Galilean limit is obtained by formally letting the velocity of light
c tends to infinity. The p-process (3.1) then degenerates into the usual Ornstein–
Uhlenbeck process and the Jüttner distribution becomes a Maxwellian at temper-
ature 1/β. The fluctuation-dissipation theorem conserves its form (3.4).

The stochastic equations (3.1) define a process on R
6. We will now construct

a stochastic process on the phase space P of a point mass. Let us again pick an
arbitrary global chart (ct, r) belonging to the rest frame of the fluid surrounding the
diffusing particle. As already mentioned, this chart induces a global chart (ct, r,p)
on the one particle phase space P. The system (3.1) implies the following set of
SDE:

d(ctσ) = γ(pσ)dσ

drσ =
pσ

mc
dσ

dpσ = −α
pσ

c
dσ +

√
γ(pσ)

c

√
2DdBσ.(3.5)

Note that the proper-time σ is now used as parameter in (3.5). The new system (3.5)
fixes the stochastic proper-time evolution of the (ct, r,p)-coordinates of a point of
P. Since the chart (ct, r,p) is global, (3.5) also fixes the proper-time evolution of
the coordinates of the same point in any (not necessarily global nor inertial) other
chart of P. The SDE (3.5) thus defines a stochastic process on P. This process is
the ROUP.

3.1.4. Manifestly covariant Kolmogorov equation for the ROUP

Equation (3.2) is the forward Kolomogorov equation associated to the ROUP in
any chart of P associated to a space-time chart belonging to the proper frame
of the fluid surrounding the diffusing particle. It is not clear, however, how the
transport equation reads in other charts. One might think that the above system
(3.5) of SDEs furnishes a straightforward answer, but this is not so. The problem
lies in the very definition of the densities associated to (3.2). The definition of the
proper-time σ (i.e. dσ2 = c2dt2 − dr2) entails that the increments of t and r are
not independent from the increments of the parameter σ. Any density would thus
have to be a function of only 4 + 3 = 7 of the 8 variables (σ, ct, r,p). It may at
first glance seem natural to retain σ, r and p, but, even if were mathematically
interesting, the density of relativistic diffusion at fixed value of the proper time σ
would not be a physically measurable object anyway, since only densities at fixed
values of a time-coordinate on the manifold are accessible to observations.

It turns out that the easiest way to solve the problem is to consider how a change
of charts acts on the original SDEs. Let (ct, r,p) be the chart of P in which (3.1)
applies, and let (ct′, r′,p′) be another chart of P corresponding to an inertial chart
(ct′, r′) of the space-time. It is possible to obtain from (3.1) the stochastic equations
governing the evolution of (r′,p′) with the time coordinate t′. It is then possible
to derive directly from these new stochastic equations the Kolmogorov equation
which describes the transport in the chart (ct′, r′,p′). The main conclusion of these
computations [3] is that the density Π of the ROUP is actually a function defined
on the phase-space P. Given any inertial chart (ct, r,p), this function transcribes
into a function Π(t,x,p), which represents the density of the process with respect
to the volume measure d3xd3p associated to the chart under consideration. The
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Kolmogorov equation verified by Π(t, r,p) is however rather complicated, unless of
course (ct, r) belongs to the inertial frame of the fluid (in which case the Kolmogorov
equation simply is (3.2)).

There is nevertheless a technique which helps simplify computations, when these
are carried out in charts which do not belong to the proper frame of the fluid
surrounding the particle [28]. The idea is to extend the function Π into a function,
say f , defined on the whole 8-D cotangent bundle and to also extend the original
Kolmogorov equation for Π into a new, computationaly simpler transport equation
for f . Here are the results one obtains. Let (xμ) be a global inertial chart of the
space-time and (xμ, pν) its associated chart of the cotangent bundle. In this chart,
the function f appears as a function f(x, p) and the simplest transport equation
which extends to the full 8-D cotangent bundle the original 7-D dynamics of the
ROUP reads [2]:

(3.6) ∂xμ(pμf) + ∂pμ(mc Fμ
d f) + DKμρβν∂pρ

(
pμpβ

p.U
∂pν f

)
= 0,

with

(3.7) Fμ
d = −λμ

νpν p2

m2c2
+ λα

β

pαpβ

m2c2
pμ,

(3.8) λμ
ν =

α(mc)2

(p.U)2
Δμ

ν ,

(3.9) Δμν = ημν − UμUν ,

and

(3.10) Kμρβν = UμUβΔρν − UμUνΔρβ + UρUνΔμβ − UρUβΔμν .

3.2. Diffusions on curved Lorentzian manifolds

3.2.1. General construction

Relativistic gravitation is mathematically described by endowing the 4-D space-
time manifold with an arbitrary, possibly curved Lorentzian metric g [18, 39]. The
derivative operator ∇ used on the space-time is built from the Levi-Civita connec-
tion of g; this connection is commonly represented in a given chart by the so-called
Christoffel symbols Γμ

αβ . The phase-space P of a relativistic point-mass is still a
7-D submanifold of the cotangent bundle, and is defined by the so-called mass-shell
relations p.p = −m2c2, p0 < 0 where · denotes the scalar product defined by g.

Let α and D be two smooth, positive definite functions on P and U a vector-field
on space-time verifying U.U = −1. One can define [12] a stochastic process on P
through the following transport equation:

(3.11) Dμ(gμν(x)pνf) +
∂

∂pμ
(mc Fdμf) + Kμ β

ρ ν ∂pρ

(
D

pμpβ

p.U
∂pν f

)
= 0.

Here, f is a function defined on the cotangent bundle and, given any chart (ct, r, p0,p)
of this bundle, the restriction Π of f to the mass-shell, defined by

(3.12) Π(t, r,p) =
∫

2p0f(t, r, p0,p)δ(p.p + m2c2)θ(−p0)dp0
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represents the density of the stochastic process with respect to the volume measure
d3rd3p associated with the chart (the symbol θ in (3.12) denotes the Heaviside step
function). The definitions of the deterministic 4-force Fd and of the tensors λ and
K are formally identical to the flat space-time definitions (3.7), (3.8) and (3.10).
The curved space-time definition of the projector Δ reads:

(3.13) Δμν = gμν − UμUν

and the operator Dμ is defined by:

(3.14) Dμ = ∇μ + Γα
μνpα

∂

∂pν
,

where ∇μ stands for the usual covariant derivative operator with respect to space-
time degrees of freedom. The operator D is usually called the horizontal derivative
at momentum p covariantly constant. The so-called vertical derivative is simply
∂/∂p.

The processes defined by (3.11) describe the diffusion of a relativistic point mass
immersed in a fluid characterized by a 4-velocity field U , a friction coefficient α and
a diffusion coefficient D in momentum space; these processes also take into account
through the metric g the action of a possible gravitational field on the point mass.
Given a base manifold, these processes thus depend on α, D, U and g; note that the
choices for U and g are not completely independent since the condition U.U = −1
must be satisfied.

3.2.2. An H-theorem on curved Lorentzian manifolds

Keep U and g arbitrary but impose that α and D are both constant. The corre-
sponding processes satisfy a very simple H-theorem. Let f and h be two solutions
of the extended transport equation (3.11). Let (x, p) be a chart of the extended
8-D phase space. The current Sf/h of conditional entropy of f with respect to h is
defined by:

(3.15) Sf/h(x) = −2
∫

X

pf ln
(

f

h

)
D4p,

where D4p is defined by:

(3.16) D4p =
1√

detgμν

δ(p.p + m2c2)θ(−p0)dp0d
3p,

and X is the region of the 4-D space-time accessible to the particle [12, 37]. Note
that the measure D4p is invariant under a change of chart, so that Sf/g is a vector
field cotangent to the space-time manifold. It has been proven [37] that ∇·Sf/h ≥ 0
for all f ’s and h’s and for all possible choices of U and g. This constitutes an H-
theorem for the processes under consideration. It seems quite remarkable that this
theorem is true, even if the metric g allows for the existence of closed time-like
curves [26] on the space-time manifold, and even if the velocity field U of the fluid
surrounding the diffusing particle is tangent to one of those curves 2. In other words,
the irreversibility of the considered stochastic processes is always stronger than any
possible acausal behaviour generated by the geometry of the space-time itself.

2Think for example of a particle diffusing in the Gödel universe [25]
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3.2.3. Fluctuation-Dissipation relations in an expanding universe

Keep now α and D arbitrary, but choose for g the standard Friedman-Robertson-
Walker (FRW) metric of a spatially flat, homogeneous isotropic cosmological model
[36, 39] and take as U the large-scale 4-velocity field of the matter in this universe.
One can then find a chart (ct, r) of the space-time where ds2 = −c2dt2 + a2(t)dr2

and (Uμ) = (1, 0); the function a(t), which is called the expansion factor, increases
with t if the universe is expanding. The range of the time coordinate t is R+ and
the range of r is R

3. The large-scale flow of matter is further characterized by a
time-dependent thermal equilibrium at temperature T (t) [31]. In accordance with
the homogeneity and isotropy of the cosmological model, we require that α and D
do not depend on the coordinates r and depend on p only through | p |. The most
practical choice which implements these requirements is to consider both α and D

as functions of t and γ(t,p) =
√

1 + p2

a2(t)m2c2 .
The forward Kolmogorov equation for the density Π(t, r,p) then reads:

(3.17) ∂tΠ =
1

a2(t)
∂r.

(
p

m γ(t,p)
Π

)
+ ∂p.

(
α(t, γ)

p
γ

Π + D(t, γ) a2(t)∂pΠ
)

,

where · denotes the standard Euclidean scalar product in (p1, p2, p3)-space. The
stochastic differential equations associated to equation (3.17) are:

dr =
1

a2(t)
p

m γ(t,p)
dt(3.18)

dp = −αI(t, γ)
p

γ(t,p)
dt +

√
2 D(t, γ) a(t)dBt,(3.19)

where αI(t, γ) = α(t, γ) − ∂γD
m2c2 .

The Jüttner distribution at the time-dependent temperature T (t) is imposed as
a solution to (3.17). This leads to the following differential equation [5, 7]:

(3.20) ∂γΔ + f(t, γ) Δ = g(t, γ);

where Δ is defined by: Δ(t, γ) = α(t, γ)− β(t)D(t,γ)
m2c2 , and the functions f and g read:

f(t, γ) = 3 γ
γ2−1 − β(t) − 1

γ , g(t, γ) = γ2

γ2−1

(
−3 ȧ

a + β̇
β − β̇

K′
2(β)

K2(β) − β̇γ + β ȧ
a

γ2−1
γ

)
,

with β(t) = mc2/(kBT (t)). Equation (3.20) constitutes a fluctuation-dissipation
theorem in differential form, valid for diffusions in an homogeneous and isotropic
expanding universe. For vanishing expansion factor a and constant temperature T ,
one recovers the special relativistic fluctuation-dissipation theorem given by (3.4).
It is actually possible to solve (3.20) exactly in Δ(t, γ) for arbitrary a(t) and β(t)
and, thus, to obtain an integral form of the fluctuation-dissipation theorem. The
obtained expression for Δ is the sum of two contributions [5]; the first one is a
time-dependent entire series in 1/γ and the second one involves the exponential
integral function Ei taken at point mc2/kBT (t).

Standard cosmological models suppose that a(t) is proportional to β(t) [31]; we
have solved equation (3.20) numerically in this case (see Figure (1)).

One can see that Δ∗ = H−1Δ, where H−1 = a/ȧ, is always negative. This can
be interpreted as follows: in an expanding universe (H−1 < 0), the amplitude of the
noise D(t) which, when associated to a certain friction coefficient α(t), ensures that
the time-dependent thermal equilibrium at temperature T (t) is a possible measure
of the process is, at any time t0, superior to the amplitude of the noise which would
have to be associated to α(t0) in flat space-time to ensure that the time-independent
thermal equilibrium at temperature T (t0) is an invariant measure of the ROUP.
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Figure 1. Evolution of Δ∗ = H−1Δ with γ, for β = 1.

3.2.4. Franchi and LeJan’s relativistic Brownian motion

J. Franchi and Y. LeJan have constructed a stochastic process on 4-D general
relativistic space-times and studied this new process on various manifolds, including
a Schwarzschild black hole [1, 13, 23, 24]. This process is actually a diffusion in the
one particle phase-space P, as are all processes presented in Section 3.1 of this
contribution. But the only structure which enters the definition of this process is
the Lorentzian space-time metric; in particular, no velocity field U is used to define
the diffusion. It follows that the process constructed by Franchi and LeJan cannot
be considered as modeling the motion of a relativistic particle diffusing through its
interaction with a surrounding fluid. It has been suggested that the Franchi-LeJan
process models the stochastic motion of a relativistic point mass diffusing through
its interaction with the quantum degrees of freedom of the gravitational field [17].

J. Dunkel and P. Hänggi [13, 20, 21] have used Franchi and LeJan’s process to
construct another, physically realistic process modeling the relativistic diffusion of
a special relativistic particle immersed in a fluid in a state of thermal equilibrium.
It has been shown recently [8, 9] that the ROUP, its general relativistic extensions
introduced in Section 3.2.1, the Franchi-LeJan and the Dunkel-Hänggi processes
are particular members of a very general class characterized by a simple property
of the noise used in stochastic equations of motion. All processes in this class satisfy
an H-theorem [9] which extends the one described in Section 3.2.2.

4. Conclusion

Let us now conclude by mentioning a few possible extensions of the work presented
in this contribution. We think a proper study of the effects that metric fluctuations
have on both classical and quantum diffusions is now long overdue. This problem
is rich in new, non trivial mathematical issues, and offers an incredibly large field
of applications, which range from biophysics to cosmology. In a different direction,
the notion of hydrodynamical limit is still poorly understood mathematically, and a
physical apprehension of its applications on Lorentzian manifolds is certainly partial
at best [16, 28]. Of particular interest are also stochastic processes on general rela-
tivistic space-times with horizons. Finally, one should try and construct stochastic
geometries i.e. stochastic metrics defined on fixed base manifolds and, ultimately,
stochastic manifolds.
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