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Conditional Limit Laws and Inference for
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Abstract: Let {Zn : n ≥ 0} denote a single type supercritical branching pro-
cess initiated by a single ancestor. This paper studies the asymptotic behavior
of the history of generation sizes conditioned on different notions of informa-
tion about the “current” population size. A “suppression property” under the
large deviation conditioning, namely that Rn ≡ Zn+1/Zn > a, is observed.
Furthermore, under a more refined conditioning, the asymptotic aposteriori
distribution of the original offspring distribution is developed. Implications of
our results to conditional consistency property of age is discussed.

1. Introduction

The purpose of this note is to provide information on the history of the generation
sizes given some “present” information concerning the branching process. We begin
with a description of the process. Let {Zn : n ≥ 1} denote a single type branch-
ing process initiated by a single ancestor. Let {pj : j ≥ 1} denote the offspring
distribution, that is P (Z1 = j) = pj . For 0 ≤ s ≤ 1, let f(s) = E(sZ1 | Z0 = 1)
denote the probability generating function. Let m = E(Z1) = f ′(1−), where f ′(·)
denotes the derivative of f(·). We denote by q the probability of extinction; then
it is well-known that q satisfies the fixed point equation f(s) = s. It is also well-
known that the process {Zn : n ≥ 1} can be defined recursively, using a collection
{ξk,j , k ≥ 1, j ≥ 1} of independent and identically distributed (i.i.d) non-negative
integer valued random variables defined on a probability space (Ω,F , P ) as follows:
Z0 = 1 and for n ≥ 0

Zn+1 =
Zn∑
j=1

ξn,j ,(1.1)

where ξn,j is interpreted as the number of children produced by the jth parent in
the nth generation; and P (ξ0,1 = j) = pj . This implies that the generating function
of the nth generation population size is given by the n-fold iteration of f(·); i.e.,
E(sZn) = fn(s) = f(f(f...(s))) , 0 ≤ s ≤ 1. Let S denote the survival set of the
process; i.e., S = {ω : Zn(ω) → ∞}. Then P (S) = 1 − q. We will assume in this
paper that the process is supercritical; that is m > 1 and for the sake of exposition,
that p0 = 0. This implies that P (S) = 1.

Let Wn = Zn/m
n. Let Gn denote the sigma field generated by the first n gener-

ation sizes, namely, {Z0, Z1, · · ·Zn}. Then it is well-known that {(Wn,Gn) : n ≥ 1}
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is a non-negative martingale sequence and hence converges with probability one to
a random variable W . By the Kesten-Stigum theorem (see [3]), a necessary and
sufficient condition for W to be non-trivial is that E(Z1 logZ1) <∞. Furthermore,
W has density w(·) and w(x) > 0 for x > 0.

Let Rn = Zn+1/Zn. The quantity Rn is called the Nagaev estimator of the mean
of the branching process and is its maximum likelihood estimator when (Zn, Zn+1)
are observed. Large deviations of Rn (which will be relevant) have been studied in
[1], [4], [12], [13], [9]. It is known from these papers that the large deviation behavior
of Rn is different depending on whether p1 + p0 > 0 or p1 + p0 = 0. The case when
p1 +p0 > 0 is called the Schröder case while p1 +p0 = 0 is called the Böttcher case.

Recent work in the area of evolutionary biology is concerned with statistically
estimating the age of the last common ancestor using the fossil record ([11] and
[15]). Such data are modeled using either discrete or continuous time branching
processes or variants thereof. In these problems, an important difference between
the age and the divergence time (to be defined below) have been observed. Fur-
thermore, in the context of branching processes, an interesting recent work of [10]
attempted to recreate the past based on the “present” observed generation size in
order to determine the age of a population. One of the motivations for our study
was to understand both these phenomena from the perspective of the conditional
limit distributions. It turns out that, when viewed from the viewpoint of conditional
limits, the difference between the age and the divergence time occurs if the popu-
lation size is “smaller than expected” (see Remark 5 in Section 2). Now, “smaller
than expected growth” is caused due to small values of Zk for various values of k.
This phenomenon is peculiar to the Schröder case. For this reason, we deal with the
Schröder case in this paper and treat the Böttcher case in a different publication.

Gibbs conditioning principle in the context of i.i.d. random variables {Xn : n ≥
1} defined on R is concerned with the asymptotic behavior of

P

(
X1 ∈ ·

∣∣∣∣ Sn

n
∈ A

)
, EX1 /∈ A,(1.2)

or more generally, of

P

{
(X1, X2, . . . , Xkn) ∈ ·

∣∣∣∣ Sn

n
∈ A

}
,(1.3)

where A is a Borel subset of R, Sn =
∑n

i=1Xi, and kn → ∞. In the context of
branching processes, one approach is to replace Sn

n by Rn; or by the joint event
{Rn ∈ (·), Zn ∈ (·)}. Now, unlike the i.i.d. case, two situations arise; namely the
large n behavior of P (Z1 ∈ (·) | Rn > a > m) and that of P (ξn,1 ∈ (·) | Rn >
a > m). We call the former case, a “global” conditional limit law while the latter a
“local” conditional limit law. This paper is concerned with the global conditional
limit laws.

The main technical tools needed in this paper are a uniform local limit theorem
in the range of Zn ∼ xmn where x belongs to a bounded interval, and rates of con-
vergence of generating functions. To facilitate our discussions in the next sections,
we introduce more notation concerning the rate of decay of generating functions.
Let, for 0 ≤ s < 1

Qn(s) =
fn(s)− q

γn
,(1.4)
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where γ = f ′(0). It is known that (see [3]) limn→∞Qn(s) = Q(s) exists, with
Q(1) = ∞. Furthermore, Q(·) admits a power series representation; that is,

Q(s) =
∑
k≥1

νks
k.(1.5)

When p0 = 0, γ reduces to p1. It follows from (1.5) that (see [3])

lim
n→∞

P (Zn = k)
γn

= νk.(1.6)

The quantities νk will show up at several places in the future sections.
The rest of the paper is organized as follows: Section 2 contains statements and

discussion of the main results while Section 3 contains proofs. Section 4 deals with
the limit laws concerning the age of a branching process.

2. Statement and Discussion of Results

We begin with the uniform local limit theorem which will be needed in the proof of
Theorem 2 below. This is a uniform version of Theorem 4.1, Chapter II of [3]. Before
we state the theorem, we need a definition. A sequence yn of real numbers is said
to be regular if ynm

n is an integer for all n ≥ 1. In the following let 0 < c < d <∞
and Pk(·) = P (· | Z0 = k).

Theorem 2.1. Assume that E(Z1 logZ1) < ∞ and that yn → ∆0 is a regular
sequence. Assume further that for every n ≥ 1 there exists an xn ∈ [c, d] such that
xnyn is an integer. Let Cn = {x ∈ [c, d] : xynis an integer}. Then the following
hold:

1. lim
n→∞

mnPk

(
Zn = mnyn

(
1 +

xn

mn

))
= w?k(∆0);(2.1)

2. lim
n→∞

mn sup
{x∈Cn}

Pk

(
Zn = mnyn

(
1 +

x

mn

))
= w?k(∆0);(2.2)

3. lim
n→∞

mn inf
{x∈Cn}

Pk

(
Zn = mnyn

(
1 +

x

mn

))
= w?k(∆0).(2.3)

Turning to conditional limits, we have

Proposition 2.1. Assume that E(exp(θZ1)) <∞ for some θ > 0 and that p1 > 0.
Then,

lim
n→∞

P (Zn = k | Rn > a > m) = γ(k) ≥ 0,(2.4)

where
∑

k≥1 γ(k) = 1.

This suggests that the main contribution to P (Rn > a) comes from “small”
values of Zn, which implies that the usual large deviation estimates and Cramer-
type rate functions do not come into the calculation of (2.4). We refer to this as
the suppression property, and it will manifest itself more subtly in future results.
This leads at once to a “degeneracy” property on the early history, namely

Proposition 2.2. Assume that E(exp(θZ1)) <∞ for some θ > 0 and that p1 > 0.
Then,

lim
n→∞

P (Z1 = k | Rn > a > m) = δ1(k).(2.5)
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Furthermore, for any k(n) →∞ and kn = o(n)

lim
n→∞

P ((Z1 = 1, . . . Zkn = 1) | Rn > a) = 1.(2.6)

Remark 2.1. The small values of Zn are caused due to p0 + p1 being positive.
Thus, the suppression property is inherent in the Schröder case.

Our next proposition is concerned with the behavior of the distribution of Zk

when conditioned on Zn ∈ vn[c, d], c > 0. In this note we consider the case where
vn ∼ mn.

Proposition 2.3. Assume that E(Z1 log+ Z1) <∞. Let, for c > 0,

πl(c, d) =

∫ dmk

cmk w?l(x)dx∫ d

c
w(x)dx

.(2.7)

Then,

lim
n→∞

P (Zk = l | Zn ∈ mn[c, d]) = πl(c, d)P (Zk = l),(2.8)

where ∑
l≥1

πl(c, d)P (Zk = l) = 1.(2.9)

Remark 2.2. Specializing when k = 1 we get from the above proposition that, for
any c > 0,

lim
n→∞

P (Z1 = l | Zn ∈ mn[c, d]) = πl(c, d)pl,(2.10)

and

lim
n→∞

P (Z1 = l | Zn = cmn) =
w?l(mc)
w(c)

plm.(2.11)

Remark 2.3. Note that the conditional limit mentioned above can be viewed as a
change of measure of P (Zk = l), which is reminiscent of the change of measure in
the classical Gibbs conditioning principle.

The more subtle and interesting result comes from the combined conditioning,
namely that Rn > a,Zn ∈ mn[c, d];

Theorem 2.2. Assume that E(exp(θZ1)) < ∞ for some θ > 0. Then, for any
c > 0,

lim
n→∞

P (Z1 = l | Rn > a,Zn ∈ mn[c, d]) =
w?l(mc)
w(c)

plm.(2.12)

Remark 2.4. Here the interaction between the events Rn > a and Zn ∈ mn[c, d]
require estimates of Rn in the large deviation range, and uniform estimates of Zn as
in Theorem 1. Note that the limits in (2.11) and (2.12) are the same even though the
conditioning sets are different. This result follows from the fact that the addition of
Rn > a to the conditioning Zn ∈ mn[c, d] and the previously mentioned suppression
property, forces the limit to be “as small as possible,” i.e., πl(cm, dm) is replaced
in (2.10) by

lim
d→c

πl(cm, dm) =
w?l(mc)
w(c)

plm.(2.13)
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Remark 2.5. The case when one conditions on Zn ∈ vn[c, d] with vn = o(mn)
leads to a different behavior. It turns out that the conditioned limit forces Z1 = . . . =
Zkn

= 1 up to kn < n − logm vn, and then Zk starts to increase for k > kn. One
refers to this time as the divergence time (this is not a random time). Thus, under
the conditioning in Propositions 1 and 2, divergence time is close to the “present,”
i.e., there is no growth until last few generations. The age of the branching process
is defined to be the number of generations of the process at the time of observation.
In Proposition 3, when the conditioning is Zn ∈ vn[c, d] with vn ∼ mn, the process
starts to grow immediately, so the age and the divergence time agree, but the growth
distribution changes according to the distribution in (2.8). In Theorem 2, when the
conditioning includes Rn > a, the age and the divergence time again agree. But
if vn = o(mn), the divergence time is of order n − logm vn. This result is treated
elsewhere. Divergence time is important in several biological and population models
as mentioned in Section 1.

Remark 2.6. If instead of assuming Z0 = 1 we take P (Z0 = k) = π(k), where∑
k≥1 π(k) = 1, then under the conditioning carried out above, the initial distri-

bution π(·) will undergo a change of measure along similar lines to Propositions 2
and 3 and Theorem 2.

3. Proofs

In this section we provide the proofs of our results in Section 2.
Proof of Proposition 1. Let Xk = k−1

∑k
j=1Xj , Xj ’s are i.i.d. with distribution

Z1. Then, using Theorem 1 of [4], and (1.5) it follows that

P (Zn = k | Rn > a) =
P (Rn > a | Zn = k)P (Zn = k)

P (Rn > a)

= P (Xk > a)
{
P (Zn = k)p−n

1

P (Rn > a)p−n
1

}
→ P (Xk > a)

νk

La
= ak,

where νk is as in (1.6), and

lim
n→∞

p−n
1 P (Rn > a) = La =

∑
k≥1

νkP (Xk > a).

Thus,
∑

k≥1 ak = 1.

Remark 3.1. The exponential moment hypothesis in Proposition 1 (or Proposition
2 below) is not necessary. If E(Zr

1) < ∞ and p1m
r > 1 then the above argument

also goes through.

Proof of Proposition 2. Let k(n) = o(n). Then using Theorem 1 of [4], it follows
that

P (Zk(n) = 1 | Rn > a) =
P (Rn > a | Zk(n)=1)P (Zk(n) = 1)

P (Rn > a)

=
P (Rn−k(n) > a)
P (Rn > a)

p
k(n)
1

=
p
−(n−k(n))
1 P (Rn−k(n) > a)

p−n
1 P (Rn > a)

p
−k(n)
1 p

k(n)
1

→ 1
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implying (2.5) and (2.6).

Proof of Proposition 3. Let Ak = mk[c, d]. Then, by Theorem II.4.1 in ([3])

P (Zk = l | Zn ∈ An) =
P (Zn ∈ An | Zk = l)P (Zk = l)

P (Zn ∈ An)

=
{
Pl(Zn−k ∈ mkAn−k)

P (Zn ∈ An)

}
P (Zk = l)

→


∫ dmk

cmk w?l(x)dx∫ d

c
w(x)dx

P (Zk = l)

= πl,k(c, d)P (Zk = l).

To complete the proof of Proposition 3, we need to show that
∑

l≥1 πl(c, d)P (Zk =
l) = 1. This follows from Lemma 1 below.

Remark 3.2. One could take c = 0 in (2.10) in Proposition 3. In this case, the
proof follows directly from the convergence in distribution of Wn to W and does not
use Theorem II.4.1 from [3].

Lemma 3.1.
∑

l≥1 P (Zk = l)
∫ bmk

amk w
?l(x)dx =

∫ b

a
w(x)dx.

Proof. Let φ(θ) = E(eiθW ). Then, by the inversion theorem ([7])

w?l(x) =
1
2π

∫
R

e−iθx(φ(θ))ldθ.(3.1)

Now, integrating the LHS of (3.1) between amk and bmk we get∫ bmk

amk

w?l(x)dx = mk

∫ b

a

w?l(ymk)dy,

where the RHS of the above equation follows from the substitution x = ymk. Now,

mk

∫ b

a

w?l(ymk)dy =
mk

2π

∫ b

a

∫
R

e−iθymk

(φ(θ))ldθdy

=
1
2π

∫ b

a

∫
R

e−iηy(φ(η/mk))ldηdy,

where the last identity follows upon setting θmk = η. Thus,∑
l≥1

∫ bmk

amk

w?l(x)dxP (Zk = l) =
∫ b

a

∑
l≥1

∫
R

e−iηy(φ(η/mk))ldηdyP (Zk = l)

=
∫ b

a

∫
R

e−iηxφ(η)dηdx

=
∫ b

a

w(x)dx,

where we used the identity (which is a consequence of the branching property)∑
l≥1

φl(η/mk)P (Zk = l) = φ(η).

This completes the proof of the lemma.
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Proof of Theorem 1. By Theorem 4.2 in Chapter II of [3], it is sufficient to establish
(ii) and (iii). We will establish (ii) as the proof of (iii) is similar. Let us set jn(x) =
mnyn(1 + xm−n) and recall that, Cn = {x ∈ [c, d] : xynis an integer}. Then, it
follows from the assumptions of the theorem that

lim
n→∞

sup
x∈Cn

|m−njn(x)−∆0| = 0.(3.2)

Since jn(x) is an integer for all n and some x ∈ [c, d], Pk(Zn = jn(x)) is not
identically zero for all x ∈ [c, d]. Now, by the inversion theorem ([7])

Pk(Zn = jn(x)) =
1
2π

∫ π

−π

(fn(eiθ))ke−ijn(x)θdθ.(3.3)

Now, integrating by parts the RHS of (3.3) and using fk
n(eiπ)e−ilπ = fk

n(e−iπ)eilπ

for all integers k and l, it follows that

Pk(Zn = jn(x)) =
1
2π

(
k

jn(x)

)
I(n, k, x),(3.4)

where

I(n, k, x) =
∫ π

−π

(fn(eiθ))k−1(f ′n(eiθ))e−i(jn(x)−1)θdθ.(3.5)

Next, making a change of variable θ = tm−n and setting ψn(t) = E(eitWn), (3.5)
reduces to

I(n, k, x) =
∫ πmn

−πmn

(ψn(t))k−1(m−nf ′n(eitm−n

))e−itm−n(jn(x)−1)dt.(3.6)

Thus,

mnPk(Zn = jn(x))− w?k(∆0) = Tn(1, x) + Tn(2, x) + Tn(3),(3.7)

where

Tn(1, x) =
k

2π
((m−njn(x))−1 −∆−1

0 )I(n, k, x),(3.8)

Tn(2, x) =
k

2π∆0
(I(n, k, x)− I(n, k, 0)),(3.9)

and

Tn(3) =
1

2π∆0
(kI(n, k, 0)− 2π∆0w

?k(∆0)).(3.10)

We will now show that supx∈Cn
|Tn(2, x)| → 0 as n→∞. To this end, note that

I(n, k, x)− I(n, k, 0)(3.11)

=
∫ πmn

−πmn

((ψn(t))k−1)(m−nf ′n(eitm−n

))(B(n, x, t)dt

=

(∫ 0

−πmn

+
∫ πmn

0

)
((ψn(t))k−1)(m−nf ′n(eitm−n

))B(n, x, t)dt

= J(n, 1)(x) + J(n, 2)(x),
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where

B(n, x, t) = e−itm−n(jn(x)−1) − e−itm−n(jn(0)−1).(3.12)

Notice that |B(n, x, t)| ≤ 2 and that

lim
n→∞

sup
x∈Cn

|B(n, x, t)| → 0.(3.13)

We now establish that J(n, 2)(x) converges uniformly to 0. Similar arguments yield
that J(n, 1)(x) converges uniformly to 0, thus establishing that supx∈Cn

|Tn(2, x)|
converges to 0.

Returning to J(n, 2)(x), we express it as

J(n, 2)(x) =

{∫ π

0

+
n∑

r=1

∫ πmr

πmr−1

}
((ψn(t))k−1(m−nf ′n(eitm−n

))B(n, x, t)dt

=
n∑

r=0

J(n, 2, r)(x),(3.14)

where

J(n, 2, 0)(x) =
∫ π

0

((ψn(t))k−1(m−nf ′n(eitm−n

))B(n, x, t)dt,(3.15)

and, for 1 ≤ r ≤ n,

J(n, 2, r)(x) =
∫ πmr

πmr−1
((ψn(t))k−1(m−nf ′n(eitm−n

))B(n, x, t)dt.(3.16)

Next, we observe that |(m−nf ′n(eitm−n

))| ≤ 1. Hence, using the bounded conver-
gence theorem it follows that

lim
n→∞

sup
x∈Cn

|J(n, 2, 0)(x)| = 0.(3.17)

Now, let 1 ≤ r ≤ n. Then for t ∈ (πm(r−1), πmr),

|m−nf ′n(eitm−n

)| = |m−rf ′r(fn−r(eitm−n

))||(m−(n−r)f ′n−r(e
itm−n

))|(3.18)

≤ |m−rf ′r(fn−r(eitm−n

))|.(3.19)

Now, since t ∈ (πm(r−1), πmr), it follows that tm−n ∈ (πm−(n−r−1), πm−(n−r);
which implies that fn−r(eitm−n

) ∈ S, where

S =
⋃
j≥0

{
fj(eium−j

) :
π

m
≤ u ≤ π

}
.(3.20)

Define

µr = sup
s∈S

f ′r(s).(3.21)

Then, for t ∈ (πm(r−1), πmr), it follows from(3.18) that

|m−nf ′n(eitm−n

)| ≤ |m−rf ′r(fn−r(eitm−n

))| ≤ m−rµr,(3.22)
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where
∑

r≥1 µr <∞, by Dubuc’s lemma (see Lemma 1, Page 80 of [3]). Also observe
that,

|J(n, 2, r)(x)| ≤ A(n, r),(3.23)

where

A(n, r) =
∫ πmr

πmr−1
|m−nf ′n(eitm−n

))(| sup
x∈Cn

|B(n, x, t)|)dt ≤ 2µr,(3.24)

where the last inequality follows from (3.18)-(3.22). Since
∑

r≥1 µr <∞, it follows
by the dominated convergence theorem that

lim
n→∞

∑
r≥1

|J(n, 2, r)(x)|I[0,n](r) =
∑
r≥1

lim
n→∞

|J(n, 2, r)(x)|.(3.25)

Now, to evaluate the limn→∞ |J(n, 2, r)(x)| we again apply the dominated conver-
gence theorem. To this end, we first use (3.22) and then use (3.23) to take the limit
inside the integral to get,

0 ≤ lim
n→∞

sup
x∈Cn

|J(n, 2, r)(x)|(3.26)

≤ lim
n→∞

∫ πmr

πmr−1
|m−nf ′n(eitm−n

))(| sup
x∈Cn

|B(n, x, t)|)dt(3.27)

=
∫ πmr

πmr−1
lim

n→∞
|m−nf ′n(eitm−n

))(| sup
x∈Cn

|B(n, x, t)|)dt = 0.(3.28)

This proves the uniform convergence of |Jn(2, x)| to 0 as n→∞. Similar arguments
yield uniform convergence of |Jn(1, x)| to 0 as n → ∞. Combining these two we
get supx∈Cn

|Tn(2, x)| → 0 as n → ∞. To complete the proof of the theorem, we
need to establish the uniform convergence of |T (n, 1, x)| to 0 and the convergence
of |Tn(3)| to 0 as n→∞. However, it also follows from the calculations (3.5)-(3.24)
that

sup
x∈Cn

|I(n, r, x)| ≤ C <∞(3.29)

where C is a positive constant. Thus, it follows from (3.2) that supx∈Cn
|T (n, 1, x)| →

0 as n → ∞. Finally, convergence of |Tn(3)| to zero follows from Theorem 2
on page 81 of [3]. This completes the proof of (2). In fact, we have proved that
supx∈Cn

|mnPk(Zn = jn(x)) − w?k(∆0)| → 0. This then also implies, with some
further analysis, that infx∈Cn

[mnPk(Zn = jn(x))−w?k(∆0)] → 0, which is (3).

Proof of Theorem 2. Let Xn = 1
n

∑n
k=1 Z1,k, where {Z1,k, k ≥ 1} are i.i.d. with

distribution same as that of Z1. Let Λ(θ) = logE(exp(θZ1)) denote the cumulant
generating function and Λ?(a) = supθ[θa − Λ(θ)] denote the Legendre–Fenchel
transform of Λ(θ). By the Bahadur–Rao theorem (see [5]),

lim
l→∞

√
lelΛ?(a)P (X l > a) = ca.(3.30)

Let us set

B(l, a) =
√
lelΛ?(a)P (X l > a)− ca.(3.31)
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Since a is fixed, we will suppress the dependence on a and write B(l) for B(l, a).
Now, by definition of conditional probability,

P (Z1 = k | Rn > a,Zn ∈ mn[c, d]) = pk


∑ln,2

l=ln,1
P (X l > a)Pk(Zn−1 = l)∑ln,2

l=ln,1
P (X l > a)P (Zn = l)


≡ In
Jn
,(3.32)

where ln,1 = bcmnc+1 and ln,2 = bdmnc. Let us set η(n, k, l) = Pk(Zn = l), h(l) =
(1/

√
l) exp(−lΛ?(a)), and dn = ln,2 − ln,1. Hence, we can express In = In,1 + In,2,

where

In,1 = pkh(ln,1)
dn∑
t=0

B(t+ ln,1)θ(n, t)η(n− 1, k, t+ ln,1)(3.33)

and

In,2 = pkcah(ln,1)
dn∑
t=0

θ(n, t)η(n− 1, k, t+ ln,1);(3.34)

and where θ(n, t) = (1+t/ln,1)
−1
2 e−tΛ?(a), l = t+ln,1, and B is as in 3.31. Similarly,

one can express Jn as a sum of Jn,1 and Jn,2 where

Jn,1 = h(ln,1)
dn∑
t=0

B(t+ ln,1)θ(n, t)η(n, 1, t+ ln,1),(3.35)

and

Jn,2 = cah(ln,1)
dn∑
t=0

θ(n, t)η(n, 1, t+ ln,1).(3.36)

Thus the conditional probability in question becomes

P (Z1 = k | Rn > a,Zn ∈ mn[c, d]) =
In,1

Jn,1

(
1 +

Jn,2

Jn,1

)−1

+
In,2

Jn,2

(
1 +

Jn,1

Jn,2

)−1

.

We will now establish the following:

1. limn→∞ Jn,1/Jn,2 = 0,
2. lim supn→∞ In,1/Jn,1 ≤ C <∞,
3. limn→∞ In,2/Jn,2 = mw?k(mc)

w(c) pk.

These facts will imply the theorem. We start with the proof of (3). Consider,

Ĩn,2 = mn−1(pkcah(ln,1))−1In,2 = mn−1
dn∑
t=0

θ(n, t)η(n− 1, t+ ln,1).

By the local limit theorem (see Chapter 2, Section 4.1 in [3]), if vn → ∆ then

lim
n→∞

mnPk(Zn = mnvn) = w?k(∆).
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Using this we get that

lim
n→∞

mn−1η(n− 1, t+ ln,1) = lim
n→∞

mn−1Pk

(
Zn−1 = mn−1 ln,1

mn−1

(
1 +

t

ln,1

))
= w?k(cm),

since ln,1
mn−1 → cm. Now applying the uniform bound in Theorem 1 to mn−1η(n −

1, k, t+ ln,1), and noting that θ(n, t) ≤ exp(−tΛ?(a)), it follows from the dominated
convergence theorem that

lim
n→∞

Ĩn,2 = w?k(cm)Γ,

where Γ = exp(Λ?(a))/(exp(Λ?(a))− 1). In a similar manner, one can show that

lim
n→∞

J̃n,2 ≡ lim
n→∞

mn(cah(ln,1))−1Jn,2

= lim
n→∞

mn
dn∑
t=1

θ(n, t)η(n, 1, t+ ln,1)

= w(c)Γ.

Finally,

lim
n→∞

In,2

Jn,2
= lim

n→∞

m−(n−1)(pkcah(ln,1))−1Ĩn,2

m−n(cah(ln,1))−1J̃n,2

=
mpkw

?k(cm)Γ
w(c)Γ

yielding (3).
Turning to the proof of (1), note that

Jn,1

Jn,2
=
∑dn

t=1B(t+ ln,1)θ(n, t)η(n, 1, t+ ln,1)

ca
∑dn

t=0 θ(n, t)η(n, 1, t+ ln,1)
.

Now, using sup1≤t≤dn
|B(t+ ln,1)| → 0 as n→∞ we have that

lim
n→∞

Jn,1

Jn,2
= 0.

Finally, turning to (2), by Theorem 1,

In,1

Jn,1
=
mpk

∑dn

t=0B(t+ ln,1)θ(n, t)mn−1η(n− 1, k, t+ ln,1)∑dn

t=0B(t+ ln,1)θ(n, t)mnη(n, 1, t+ ln,1)

≤ mpk
max0≤t≤dn

mn−1η(n− 1, k, t+ ln,1)
min0≤t≤dn

mnη(n, 1, t+ ln,1)
≤ C <∞,

where C is a constant. This completes the proof of Theorem 2.
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4. Age of a Branching Process

As explained in the introduction, statistical estimation of the age of a simple branch-
ing process is an important problem arising in several scientific contexts. It was first
studied by Stigler ([14]) who estimated the age using maximum likelihood methods,
i.e., by maximizing P (Zt = N(t) | Zt > 0) with respect to t. In this context, the
population age t is treated as an unknown parameter and is estimated using the
current population size N(t). Stigler derived the estimator T1(N) in (4.1) for off-
spring distributions with fractional linear generating functions, and suggested this
as an estimator of the age for general offspring distributions. Stigler’s estimate is
given by

T1(N) =
logN(t)
logm

.(4.1)

Stigler established that T1(N(t)) is β-consistent for t in the sense that T1N(t)−t
tβ → 0

a.s. for every β > 0 as t → ∞. More recently, [10] studied age by constructing a
backward process Xj and defined the estimate of age as

T2(N) = inf{r : Xr = 1}.(4.2)

In this formulation, if the offspring distribution is geometric then the reverse process
is a Galton-Watson process with immigration starting with N ancestors. Using the
duality between the forward and the backward process, [10] obtained detailed results
concerning T2(N)− T1(N) as N →∞. The bias in the estimate of age is given by

B(t) = t− T1(N(t)).(4.3)

Our next result shows that the bias B(t) conditioned on Rt > a > m diverges to
infinity and is a corollary to Proposition 1.

Corollary 4.1. Let k(t) be a sequence of constants converging to infinity such that
k(t) = o(t) as t→∞. Then,

lim
t→∞

P (B(t) ≥ k(t) | Rt > a > m) = 1.(4.4)

Proof. Let ε > 0; then by Proposition 1, there exists k0(ε) such that
∑

j≤k0
γ(j) >

1 − ε. Now we observe, by simplifying, that [B(t) ≥ k(t)] = [Wt ≤ m−k(t)]. Since
k(t) = o(t), it follows that mtm−k(t) diverges to ∞. Thus,

P (B(t) ≥ k(t) | Rt > a) = P (Wt ≤ m−k(t) | Rt > a)(4.5)
= P (Zt ≤ mt−k(t) | Rt > a)(4.6)
≥ P (Zt ≤ k0 | Rt > a)(4.7)

→
k0∑

j=1

γ(j) > 1− ε,(4.8)

by the choice of k0. Thus, lim inft→∞ P (B(t) ≥ k(t) | Rt > a) ≥ 1 − ε. Since ε is
arbitrary, the corollary follows.
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5. Concluding Remarks

In this paper, we studied the evolutionary structure of a branching process through
the behavior of conditional limits under various notions of “information” about the
current population size. We observed a “suppression property” which is a conse-
quence of the assumption p0 + p1 > 0. This implies that conditionally on the large
deviation type information, the bias in the estimate of the age diverges to infinity; or
in other words, the estimator is conditionally inconsistent. A natural next question
concerns the conditional consistency of the estimator of age under other notions of
“information.” These and other related issues are studied in a subsequent paper.
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