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A NEW DIRECT PROOF OF THE CENTRAL
LIMIT THEOREM

VLADIMIR DOBRIĆ AND PATRICIA GARMIRIAN

Abstract. We prove the central limit theorem from the defini-
tion of weak convergence using the Haar basis, calculus, and ele-
mentary probability, and we estimate the rate of convergence off

the tails. The use of the Haar basis pinpoints the role of L2([0,1])
in the CLT as well as the assumption of finite variance.

1. Introduction

In this paper, we give an elementary proof of the central limit theorem
(CLT). The proof is elementary in the sense that it avoids the use of charac-
teristic functions and only requires knowledge of elementary probability and
calculus. The general idea of the proof is to expand the random variables in
the statement of the CLT with respect to the Haar basis and to approximate
these expansions by finite sums having m values. This allows finite sums of
independent copies of these random variables to be approximated by multino-
mial distributions. Calculations of the multinomial coefficients are then made
explicit by Stirling’s formula and Taylor series approximations. Our main re-
sult is a proof of Theorem 1.

Theorem 1. Let (Xi) be a sequence of i.i.d. random variables with mean
μ and variance σ2. Let f : R→ R be a bounded, continuous function. Then,
for each ε > 0, there exists n1 ∈N such that∣∣∣∣E

(
f

(
X1 + · · ·+Xn − nμ

σ
√
n

))
−E

(
f(Y )

)∣∣∣∣< ε
(
9‖f‖∞ + 2

)
for all n≥ n1, where Y is a standard normal random variable.
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Dobrić, and acknowledges the helpful comments of Daniel Conus, Lee Stanley, and Rob
Neel, as well as the helpful comments of the anonymous referees.

2010 Mathematics Subject Classification. Primary 60F05. Secondary 42C40, 28A33.

355

c©2018 University of Illinois

http://www.ams.org/msc/
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We provide a brief history of the CLT. The first major contribution to the
CLT was in 1733 by de Moivre. De Moivre proved a version of the CLT for
Bernoulli random variables in which the binomial coefficients were approxi-
mated via Stirling’s formula and Taylor series. In 1820, the work of Laplace
laid the groundwork for a more general CLT [2]. Our proof extends the work
of de Moivre by establishing a connection between the general CLT and the
multinomial distribution.

In 1935, both Lévy and Feller independently proved the CLT. Feller’s
method of proof was based on characteristic functions. [6] While Lévy had
championed characteristic functions in the 1920s by proving his Continuity
Theorem, Lévy favored more rigorous analytic methods for proving the CLT.
Lévy’s proof relied on a decomposition of sums of random variables and the
dispersion of these sums. Lévy believed that these analytic methods provided
more intuition about the CLT than the method of characteristic functions [7].

Later proofs of the CLT have also avoided the use of characteristic func-
tions. In [1] (1941), Berry calculates exact estimates of the supremum of the
absolute value of the difference between the cumulative distribution functions
for the i.i.d. sums of random variables and the normal distribution using
elementary calculus. In [9] (1959), Trotter restates the definition of weak con-
vergence of a sequence of random variables as the weak-� convergence of a
sequence of operators. The defined operators are contraction operators on the
space of functions having continuous second derivatives. These functions are
then expanded as second order Taylor polynomials with an error term which
is controlled by the assumption of continuous second derivative.

Our proof is similar to those in [1] and [9] as it uses calculus to obtain error
estimates. While the proof in [1] makes use of the cumulative distribution
functions for the relevant distributions, our proof (as well as the proof in [9])
uses weak-� convergence of the relevant sequence of measures. Although the
proof in [9] does not give a rate of convergence, the Berry–Esseen theorem
(which combines the results in [1] along with the work of Esseen in [5] and
[4]) gives both a rate and exact constant of convergence assuming finite third
moment. Our constant of convergence depends on ‖f‖∞ (where f is given
in the definition of weak convergence) and m (which depends on the number
of terms in the Haar expansion), however, we only assume a finite second
moment.

In [8] (1972), Stein’s method set the stage for more generalizations of the
CLT. This method establishes a normality criterion for the expectations of
differential equations of random variables for a certain class of functions. One
important advantage of Stein’s method is that it not only applies to sequences
of independent random variables but dependent random variables as well [2].

There continues to be interest in new elementary proofs of the CLT. In [3]
(2005), Dalang proved the CLT by using weak-� convergence for a sequence
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of operators on the space of bounded functions with continuous third deriva-
tives. Dalang expresses these functions as second order Taylor polynomials
and calculates their errors. He then calculates the rate of convergence in the
CLT by expressing the error as a telescoping sum of incremental errors. In
[10] (2013), Zong and Hu prove the CLT by showing that the weak-� limit
of a sequence of normalized sums of i.i.d. random variables satisfies the heat
equation.

Each of these proofs is similar to our proof due to the avoidance of charac-
teristic functions and the use of techniques from calculus. Although the proof
in [10] does not give a rate of convergence, the proof in [3] does give a rate
and constant of convergence. The constant of convergence in [3] depends on
the sup norms of the second and third derivatives of f . Although our constant
also depends on f , we use the weaker assumption that f is only a bounded,
continuous function.

The steps of our proof proceed as follows: given an i.i.d. sequence of random
variables on a probability space, we construct an i.i.d. sequence on [0,1] with
the Borel sigma algebra and Lebesgue measure having the same sequence of
distributions. As the new sequence of random variables is defined on [0,1]
and also has finite variance, we then expand this sequence with respect to the
Haar basis.

We then reduce the problem of showing weak convergence of this new
sequence of random variables to the case where the Haar expansions are trun-
cated to have only M terms, for some finite M which will be chosen to accom-
plish certain other objectives (Lemma 1). These truncated Haar expansions
each have m= 2M+1 possible outcomes. Next, we show that the sum of Haar
expansions having only M terms is in fact the projection of a multinomial
random variable.

In Lemma 2, we identify the tails of the multinomial random variable. After
cutting off these tails, we compute the probabilities for the multinomial distri-
bution using Stirlings’s formula and Taylor series approximation (Lemma 3).
The appearance of the Gaussian density on the multinomial side can be seen
in this step.

On the Gaussian side, we express a standard normal random variable as
a sum of m independent normal random variables with coefficients being the
outcomes of the truncated Haar expansion. We then apply Fubini’s theorem to
reduce by one dimension the expression for the expected value on the Gaussian
side as an integral over a hyperplane in R

m (Lemma 4). In Lemma 5, we
identify the tails of the Gaussian. After cutting off these tails, we approximate
the integral by a Riemann sum. The Riemann and the multinomial sums
match perfectly.

In Proposition 6, by bounding the function f by its sup norm, we estimate
the sum of the absolute values of the differences between the multinomial and
Gaussian probabilities. It is here that we also obtain the rate of convergence
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of n−1/2 and the constant for convergence of 2m2

3
√
2π

, off the tails. In both

instances, the restriction to “off the tails” arises since our truncations (of the
Haar expansions, the multinomial sum, and the Gaussian Riemann sum) are
based Chebyshev’s inequality, in which coarseness is the price of its generality.
Finally, in Theorem 1, we pull together the preceding results to prove the CLT.

2. Preliminary estimates

2.1. The Haar expansion and approximation. Let ε > 0. Let f :R→R

be a bounded, continuous function. Let Z be a random variable on a proba-
bility space (Ω,F , P ). We may assume that E(Z) = 0 and var(Z) = 1. Define
the quantile of Z to be the function X : [0,1]→R defined by

X(x) := inf
{
y ∈R|P (Z ≤ y)≥ x

}
.

Then, X is a random variable on the probability space ([0,1],B([0,1]), λ),
where B([0,1]) denotes the Borel sets of [0,1] and λ is Lebesgue measure.
Further, X has the same distribution as the random variable Z.

For x ∈ (0,1), let εi(x) be the ith bit in the binary expansion of x (for
dyadic rationals, choose the expansion with the tail of 0’s). We create the
following matrix of binary digits:⎛

⎜⎜⎜⎝
ε1 ε3 ε6
ε2 ε5 ε9 · · ·
ε4 ε8 ε13

...

⎞
⎟⎟⎟⎠ .

For all x ∈ (0,1), define Pi(x) to have binary expansion given by the ith
column of the matrix. Let Xi(x) :=X(Pi(x)). Then, (Xi) is an i.i.d. sequence
of random variables on [0,1] having the same distribution as X .

Let L2([0,1]) denote the space of all functions g : [0,1]→R satisfying

‖g‖22 :=
∫ 1

0

∣∣g(x)∣∣2 dλ(x)<∞.

The Haar basis is the simplest orthonormal system in L2([0,1]) and consists
of the set S = {Hj,k(x)|0≤ j <∞,0≤ k ≤ 2j − 1} ∪ {χ[0,1]}, where

Hj,k(x) :=

⎧⎪⎨
⎪⎩

2
j
2 , x ∈ [ k

2j ,
k+ 1

2

2j ),

−2
j
2 , x ∈ [

k+ 1
2

2j , k+1
2j ),

0 otherwise

and

χ[0,1](x) =

{
1, x ∈ [0,1],
0 otherwise.

Since

E(X) =

∫ 1

0

X(x)dλ(x) = 0,
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then

‖X‖22 =
∫ 1

0

∣∣X(x)
∣∣2 dλ(x) =E

(
X2

)
=Var(X) = 1<∞.

Thus, X ∈ L2([0,1]), and

X(x) =

∞∑
j=0

2j−1∑
k=0

cj,kHj,k(x),

where cj,k =
∫ 1

0
X(x)Hj,k(x)dx. Then,

X(x) =

∞∑
j=0

2j−1∑
k=0

cj,k2
j
2 (−1)εj+1(x)χ{k}

(⌊
2jx

⌋)
=

∞∑
j=0

2
j
2 cj,�2jx�(−1)εj+1(x),

where, as usual, 
x� denotes the greatest integer ≤ x, and

χ{k}(x) =

{
1, x= k,
0 otherwise.

For n≥ 1, define

Sn(x) :=

n∑
i=1

Xi(x) =

n∑
i=1

∞∑
j=0

2
j
2 cj,�2jPi(x)�(−1)εj+1(Pi(x)),

and for M ≥ 1, define

(1) Sn,M (x) :=

n∑
i=1

Xi,M (x) =

n∑
i=1

M∑
j=0

2
j
2 cj,�2jPi(x)�(−1)εj+1(Pi(x))

and

(2) σ2
M := Var(Sn,M ) =

M∑
j=0

2j−1∑
k=0

c2j,k.

Lemma 1. Let f : R → R be a bounded, continuous function. Given any
ε > 0, there exists a positive integer M0 such that for all M ≥M0:∣∣∣∣

∫ 1

0

f

(
Sn(x)√

n

)
dλ(x)−

∫ 1

0

f

(
Sn,M (x)

σM
√
n

)
dλ(x)

∣∣∣∣< ε
(
6‖f‖∞ + 1

)
.

Proof. Note that E( Sn√
n
) = 0 and Var( Sn√

n
) = 1. Let ε > 0, and define

A :=

{∣∣∣∣ Sn√
n

∣∣∣∣>L

}
and BM :=

{∣∣∣∣ Sn,M

σM
√
n

∣∣∣∣>L

}
.

By Chebyshev’s inequality,

λ(A)≤ 1

L2
< ε and λ(BM )≤ 1

L2
< ε
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for L large. Since f is uniformly continuous on [−L,L], then there ex-
ists a δ > 0 such that x, y ∈ [−L,L] satisfying |x − y| < δ implies that
|f(x)− f(y)|< ε. Now, let

CM :=

{∣∣∣∣ Sn√
n
− Sn,M

σM
√
n

∣∣∣∣≥ δ

}
.

Since σM → 1 as M → ∞, then there exists an M0 ∈ N such that for all
M ≥M0:

var

(
Sn√
n
− Sn,M

σM
√
n

)
≤
(
1− σM

2
)
+ 2(1− σM )

√
1− σ2

M + (1− σM )2 < εδ2,

and so

λ(CM )≤ εδ2

δ2
= ε.

Now, let S :=Ac ∩Bc
M ∩Cc

M . Then, λ(Sc)< 3ε. Hence,∣∣∣∣E
(
f

(
Sn√
n

))
−E

(
f

(
Sn,M

σM
√
n

))∣∣∣∣≤ 2‖f‖∞λ
(
Sc
)
+ ελ(S)≤ ε

(
6‖f‖∞ + 1

)
.

�
2.2. The multinomial random variable. Let

X0,M (x) :=
1

σM

M∑
j=0

2
j
2 cj,�2jx�(−1)εj+1(x)

for x ∈ [0,1]. Below, we investigate the properties of this random variable.
Note that X0,M is a random variable which depends on (ε1, . . . , εM+1). From
now on, we will let m := 2M+1 for notational convenience. Thus, X0,M is

constant on dyadic intervals of length 2−(M+1)(= 1
m ). Let o1, . . . , om denote

the m possible values of X0,M . It follows that
m∑
i=1

oi = 0 and

m∑
i=1

o2i =m

as E(X0,M ) = 0 and var(X0,M ) = 1.
We will now take a closer look at the random variable Sn,M of Equality (1).

Each Xi,M is a random variable with the m possible outcomes o1, . . . , om. Let
Ki be the random variable which denotes the number of times the outcome
oi is observed among n independent trials. Then,

(3) Sn,M (x) =K1(x)o1 + · · ·+Km(x)om,

where K1 + · · ·+Km = n.
Note that Sn,M is a scalar product of an m-nomial random variable and

the vector of outcomes. Since each outcome has probability 1
m and the trials

are independent,

λ
({

x ∈ (0,1) :K1(x) = k1, . . . ,Km(x) = km
})

=

(
n

k1, . . . , km

)(
1

m

)n
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and

E

(
f

(
Sn,M (x)√

n

))
=

n∑
k1=0

· · ·
n∑

km=0
k1+···+km=n

(
1

m

)n(
n

k1, . . . , km

)
f

(∑m
i=1 kioi√

n

)
.

The following lemma allows us to cut off the tails from the multino-
mial random variable. Consequently, we prepare the ground for the usage
of Taylor’s formula. The tails of the multinomial random variable consist
of all (k1, . . . , km) ∈ {0,1, . . . , n}m such that k1 + · · · + km = n and ki /∈
[
 n

m� − 
b√n�, 
 n
m�+ 
b√n�] for some 1≤ i≤m− 1.

Lemma 2. Let

q(n,k1, . . . , km) :=

(
1

m

)n(
n

k1, . . . , km

)
f

(∑m
i=1 kioi√

n

)
.

Then, there exists a b0 such that for all b≥ b0:∣∣∣∣∣
n∑

k1=1

· · ·
n∑

km=0
k1+···+km=n

q(n,k1, . . . , km)

−
� n
m �+�b√n�∑

k1=� n
m �−�b√n�

· · ·
� n
m �+�b√n�∑

km−1=� n
m �−�b√n�

k1+···+km=n

q(n,k1, . . . , km)

∣∣∣∣∣
< ε‖f‖∞.

Proof. Recall that Ki is the random variable which denotes the number
of times the outcome oi is observed, having values ki. Since each Ki is a
binomial random variable, we have E(Ki) =

n
m and var(Ki) = n( 1

m )(1− 1
m ).

By Chebyshev’s inequality,

λ

(∣∣∣∣Ki −
n

m

∣∣∣∣≥ b
√
n

)
≤

(1− 1
m )

b2m
≤ 1

b2m
.

Then, there exists a b0 such that for all b≥ b0:

λ

(∣∣∣∣Ki −
n

m

∣∣∣∣≥ b
√
n for some 1≤ i≤m− 1

)

≤
m−1∑
i=1

λ

(∣∣∣∣Ki −
n

m

∣∣∣∣≥ b
√
n

)
≤ 1

b2
< ε.

Let

Ln,m :=

� n
m �+�b√n�∑

k1=� n
m �−�b√n�

· · ·
� n
m �+�b√n�∑

km−1=� n
m �−�b√n�

k1+···+km=n

(
n

k1, . . . , km

)(
1

m

)n

.
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Thus, ∣∣∣∣∣
n∑

k1=1

· · ·
n∑

km=0
k1+···+km=n

q(n,k1, . . . , km)

−
� n
m �+�b√n�∑

k1=� n
m �−�b√n�

· · ·
� n
m �+�b√n�∑

km−1=� n
m �−�b√n�

k1+···+km=n

q(n,k1, . . . , km)

∣∣∣∣∣

≤ ‖f‖∞

∣∣∣∣∣
n∑

k1=1

· · ·
n∑

km=0
k1+···+km=n

(
n

k1, . . . , km

)(
1

m

)n

−Ln,m

∣∣∣∣∣
= ‖f‖∞λ

(∣∣∣∣Ki −
n

m

∣∣∣∣≥ b
√
n for some 1≤ i≤m− 1

)
< ‖f‖∞ε. �

In the following lemma, we will use Stirling’s formula and Taylor series to
approximate the probabilities for the multinomial distribution. For use here
and in the proof of Theorem 1, we define some functions. For n > 0, we let:

(4) dn :=
√
m

(
m

2nπ

)m−1
2

.

For n > 0 and integers, j1, . . . , jm whose sum is 0, we let:

(5) H(n, j1, . . . , jm) :=−m

2n

m∑
i=1

j2i +
m2

6n2

m∑
i=1

j3i

and

(6) p(n, j1, . . . , jm) := dne
H(n,j1,...,jm).

Lemma 3. Let ji = ki − 
 n
m�, and suppose that −
b√n� ≤ ji ≤ 
b√n� for

1≤ i≤m− 1 and jm =−j1 − · · · − jm−1 and n≥ b2m2. Then,

1

mn

(
n

k1, . . . , km

)
= p(n, j1, . . . , jm) +O

(
1

n

)
.

The proof of this lemma is given in the Appendix.

2.3. The Gaussian side. Now we consider the Gaussian side. Let Y1, . . . , Ym

be i.i.d. standard normal random variables. Then, by the properties of i.i.d.
normal random variables,

Y :=
1√
m

m∑
i=1

oiYi

is a standard normal random variable.
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Lemma 4. Define

g(z1, . . . , zm) := f

(
1√
m

m∑
i=1

oizi

)
exp

(
−1

2

m∑
i=1

z2i

)
.

Then,

E
(
f(Y )

)
=

√
m

(
√
2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
g

(
z1, . . . , zm−1,−

m−1∑
i=1

zi

)
dz1 · · ·dzm−1.

Proof. Set

o=

⎡
⎢⎣
o1
...
om

⎤
⎥⎦ , Ỹ =

⎡
⎢⎣
Y1

...
Ym

⎤
⎥⎦ , u=

⎡
⎢⎣
1
...
1

⎤
⎥⎦ .

Define the hyperplane S ⊆R
m as follows:

S :=

{
(yi)

m
i=1 ∈R

m :
m∑
i=1

yi = 0

}
.

Since the vector u is orthogonal to S, then the orthogonal projection of Ỹ
onto S is given by:

Z := Ỹ − V, where V :=

(
1√
m
Ỹ · u

)
u.

Since
∑m

i=1 oi = 0, then oTV = 0, and so

E
(
f(Y )

)
= E

(
f

(
1√
m
oT Ỹ

))
= E

(
f

(
1√
m
oTZ

))
.

As the orthogonal projection of the random variable Ỹ onto the hyperplane
S, Z is an (m− 1)-dimensional standard normal random variable with values
in S. Thus:

E
(
f(Y )

)
= E

(
f

(
1√
m
oTZ

))

=
1

(
√
2π)m−1

∫
S

f

(
1√
m

m∑
i=1

oiyi

)
exp

(
−1

2

m∑
i=1

y2i

)
dS.

Evaluating the surface integral:

E
(
f(Y )

)
=

√
m

(
√
2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
g

(
z1, . . . , zm−1,−

m−1∑
i=1

zi

)
dz1 · · ·dzm−1.

�
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For the following results, let ji = ki − 
 n
m�. Then, define the sum “off the

tails” as follows:

∑
A(n,m,b)

:=

�b√n�∑
j1=−�b√n�

· · ·
�b√n�∑

jm−1=−�b√n�
j1+j2+···+jm=0

.

Lemma 5. Let

I :=

√
m

(
√
2π)m−1

∫
· · ·
∫

y1+y2+···+ym=0

f

(
1√
m

m∑
i=1

oiyi

)
e(−

1
2

∑m
i=1 y2

i ) dy1 · · ·dym−1.

Then, there exist n0 ∈N and b1 > 0 such that for all n≥ n0 and for all b≥ b1,∣∣∣∣∣I −
∑

A(n,m,b)

f

(
1√
n

m∑
i=1

oiji

)
e−(m

2

∑m
i=1

j2i
n )

∣∣∣∣∣< ε
(
‖f‖∞ + 1

)
.

Proof. Let

C :=

{
y ∈R

m : yi ∈ [−b
√
m,b

√
m] ∀1≤ i≤m− 1 and ym =−

m−1∑
i=1

yi

}
.

We have

1

(
√
2π)m−1

∫
S

exp

(
−1

2

m∑
i=1

y2i

)
dS

=

√
m

(
√
2π)m−1

∫
· · ·
∫

y1+y2+···+ym=0

exp

(
−1

2

m∑
i=1

y2i

)
dy1 · · ·dym−1 <∞.

Let

Ib :=

√
m

(2π)
m−1

2

∫
· · ·
∫

y∈C

f

(
1√
m

m∑
i=1

oiyi

)
e(−

1
2

∑m
i=1 y2

i ) dy1 · · ·dym−1.

Then, there exists a b1 such that for all b≥ b1,
√
m

(
√
2π)m−1

(∫
· · ·

∫
y∈Cc

e−
1
2

∑m
i=1 y2

i dy1 · · ·dym−1

)
< ε,

and so

|I − Ib|< ε‖f‖∞.

Suppose that b≥ b1. Then,

Ib = lim
n→∞

m
m
2

(2πn)
m−1

2

∑
A(n,m,b)

f

(
1√
n

m∑
i=1

oiji

)
e(−

m
2

∑m
i=1

j2i
n ).
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Here Ib is a limit of Riemann sums with points of discretization (
√
mji√
n

)m−1
i=1 ,

where −
b√n� ≤ ji ≤ 
b√n�, and step size (mn )
m−1

2 . Hence, there exists an
n0 ∈N such that for all n≥ n0,∣∣∣∣∣I −

∑
A(n,m,b)

f

(
1√
n

m∑
i=1

oiji

)
e−(m

2

∑m
i=1

j2i
n )

∣∣∣∣∣< ε
(
‖f‖∞ + 1

)
.

�

3. Main results

Theorem 1 gives our proof of the CLT. The proof appeals to Proposition 6,
which provides a comparison of the multinomial and Gaussian sides; the rate

is n−1/2 and the constant of convergence is 2m2

3
√
2π

. These only hold off the tails

as we have truncated the Haar expansions, the multinomial sum, and the
Gaussian Riemann sum. From now on, let b≥max{b0, b1}, where the former
is as in Lemma 2 and the latter is as in the proof of Lemma 5.

Proposition 6. Let

Dn :=
∑

A(n,m,b)

∣∣∣∣
(

1

mn

(
n


 n
m�+ j1, . . . , 
 n

m�+ jm

)
− m

m
2

(2πn)
m−1

2

e−(m
2

∑m
i=1

j2i
n )

)∣∣∣∣.
Then,

Dn ≤ 2m2

3
√
2πn

+O
(
n−1

)
.

Proof. By Lemma 3,

Dn =
∑

A(n,m,b)

∣∣e−(m
2

∑m
i=1

j2i
n )
(
eG(n,j1,...,jm)+O(n−1) − 1

)∣∣,
where G(n, j1, . . . , jm) = (m2

4n2 )
∑m

i=1 j
2
i + (m2

6n2 − m3

6n3 )
∑m

i=1 j
3
i − m3

3n3

∑m
i=1 j

4
i .

Then,

Dn =
∑

A(n,m,b)

e−(m
2

∑m
i=1

j2i
n )
∣∣eG(n,j1,...,jm)+O(n−1) − 1

∣∣
≤

∑
A(n,m,b)

e−(m
2

∑m
i=1

j2i
n )
∣∣G(n, j1, . . . , jm) +O

(
n−1

)∣∣.
All of the terms which decay at a rate of n−1 or faster are absorbed into the
error term O(n−1). We let

En :=
m

m
2

(2πn)
m−1

2

(
m2

6n2

) ∑
A(n,m,b)

e−(m
2

∑m
i=1

j2i
n )

(
m−1∑
i=1

|ji|3
)

≤ m
m
2

(2πn)
m−1

2

(
m2

6n2

) ∑
A(n,m,b)

e−(m
2

∑m−1
i=1

j2i
n )

(
m−1∑
i=1

|ji|3
)
.
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Approximating the sum by an integral,

En < (m− 1)
√
m · m

2

6n2
·
(
n

m

)3/2

E
(
|X|3

)
+O

(
n−1

)
,

where X is a standard normal random variable. Thus,

En <
2√
2π

m(m− 1)

3
√
n

+O
(
n−1

)
.

Now, consider

Fn :=

(
m2

6n2

)
m

m
2

(2πn)
m−1

2

∑
A(n,m,b)

e−(m
2

∑m
i=1

j2i
n )|jm|3.

By maximizing e−
1
2x

2 |x|3,

Fn ≤
(
m2

6n2

)
m

m
2

(2πn)
m−1

2

(
n

m

)3/2 ∑
A(n,m,b)

e−(m
2

∑m−1
i=1

j2i
n )e−3/233/2.

Approximating the sum by an integral,

Fn <
√
m ·

(
m2

6n2

)
·
(
n

m

)3/2

e−3/233/2 +O
(
n−1

)
.

Thus,

Fn <
m

6
√
n
e−3/233/2 +O

(
n−1

)
.

Hence, we have

En + Fn <
2√
2π

· m(m− 1)

3
√
n

+
m

6
√
n
e−3/233/2 +O

(
n−1

)
<

2m2

3
√
2πn

+O
(
n−1

)
.

Since −
b√n� ≤ ji ≤ 
b√n� for 1≤ i≤m− 1, then the terms(
m2

4n2

)m−1∑
i=1

|ji|2 and

(
m3

3n3

)m−1∑
i=1

|ji|4

can be absorbed in the error term O(n−1). Maximizing e−
1
2x

2 |x|2 and

e−
1
2x

2 |x|4 and approximating the sums by integrals,

m
m
2

(2π)
m−1

2

(
m2

4n2

) ∑
A(n,m,b)

e−(m
2

∑m
i=1

j2i
n )|jm|2

≤
√
m

(
m2

4n2

)(
n

m

)
e−1 · 2 +O

(
n−1

)
=

m3/2e−1

2n
+O

(
n−1

)
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and

m
m
2

(2π)
m−1

2

(
m3

3n3

) ∑
A(n,m,b)

e−(m
2

∑m
i=1

j2i
n )|ji|4

≤
√
m

(
m3

3n3

)(
n

m

)2

e−2 · 16 +O
(
n−1

)
=

16m3/2e−2

3n
+O

(
n−1

)
.

It then follows that

Dn ≤ 2m2

3
√
2πn

+O
(
n−1

)
. �

Finally, we prove the CLT using Lemmas 1–5. Recall from Lemma 2 that

q(n,k1, . . . , km) :=

(
1

m

)n(
n

k1, . . . , km

)
f

(∑m
i=1 kioi√

n

)
.

Recall from Lemma 3 that

dn :=
√
m

(
m

2nπ

)m−1
2

.

For n > 0 and integers, j1, . . . , jm whose sum is 0:

H(n, j1, . . . , jm) :=
−m

2n

m∑
i=1

j2i +
m2

6n2

m∑
i=1

j3i

and
p(n, j1, . . . , jm) := dne

H(n,j1,...,jm).

We now give a proof of Theorem 1.

Proof of Theorem 1. Let M >M0, b > b0, b1, and n > n0. By Lemma 1, we
reduce the problem to dealing with the projection of a multinomial random
variable and we have

Δn :=

∣∣∣∣E
(
f

(
Sn√
n

))
−E

(
f(Y )

)∣∣∣∣
<

∣∣∣∣E
(
f

(
Sn,M

σM
√
n

))
−E

(
f(Y )

)∣∣∣∣+ ε
(
6‖f‖∞ + 1

)

=

∣∣∣∣∣
n∑

k1=0

· · ·
n∑

km=0
k1+···+km=n

q(n,k1, . . . , km)−E
(
f(Y )

)∣∣∣∣∣+ ε
(
6‖f‖∞ + 1

)
.

By Lemma 2, we cut off the tails of the multinomial random variable to obtain

Δn <

∣∣∣∣∣
� n
m �+�b√n�∑

k1=� n
m �−�b√n�

· · ·
� n
m �+�b√n�∑

km−1=� n
m �−�b√n�

k1+···+km=n

q(n,k1, . . . , km)−E
(
f(Y )

)∣∣∣∣∣
+ ε

(
7‖f‖∞ + 1

)
.
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By Lemma 3, we further simplify the multinomial sum to obtain

Δn <

∣∣∣∣ ∑
A(n,m,b)

p(n, j1, . . . , jm)f

(∑m
i=1 jioi√

n

)
−E

(
f(Y )

)∣∣∣∣+ ε
(
7‖f‖∞ + 1

)
.

Writing Y as a sum of m independent standard normal random variables, it

follows that 1√
m

∑m
i=1 oiYi

d
=N(0,1). By Lemma 4,

E
(
f(Y )

)
=

√
m

(
√
2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
g

(
z1, . . . , zm−1,−

m−1∑
i=1

zi

)
dz1 · · ·dzm−1,

where

g(z1, . . . , zm) := f

(
1√
m

m∑
i=1

oizi

)
exp

(
−1

2

m∑
i=1

z2i

)
.

By Lemma 5, we approximate the Gaussian integral by a Riemann sum. This
approximation allows us to match the multinomial side and the Gaussian side
and apply Proposition 6:

Δn < dn

∣∣∣∣ ∑
A(n,m,b)

f

(∑m
i=1 jioi√

n

)(
eH(n,j1,...,jm) − e−(m

2

∑m
i=1

j2i
n )
)∣∣∣∣

+ ε
(
8‖f‖∞ + 2

)
< ε

(
8‖f‖∞ + 2

)
+

2m2‖f‖∞
3
√
2πn

+O
(
n−1

)
< ε

(
9‖f‖∞ + 2

)
. �

Remark 1. The i.i.d. assumption is necessary so that sums of the approx-
imating random variables have multinomial distributions. The assumption in
the dependent case requires that sums of the random variables are sufficiently
close the multinomial distributions: In order for the proof to carry through in
the dependent case, the following is a sufficient condition:

∑
A(n,m,b)

∣∣∣∣∣ 1

mn

(
n

n
m + j1, . . . ,

n
m + jm

)
− P

(
Sn,M =

m∑
i=1

kioi

)∣∣∣∣∣≤ C√
n

for some C > 0.

Remark 2. The assumption of “off the tails” can be removed and the same
rate is attained provided that there exists a C > 0 such that∣∣∣∣f

(∑m
i=1 kioi√

n

)∣∣∣∣≤ C√
n

for all (k1, . . . , km) ∈ {0,1, . . . , n}m such that k1 + · · · + km = n and ki /∈
[
 n

m� − 
b√n�, 
 n
m�+ 
b√n�] for some 1≤ i≤m− 1.
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Appendix

In this section, we give a proof of Lemma 3.

Proof. Set

l(n,k1, . . . , km) :=
1

mn

(
n

k1, . . . , km

)
.

By Stirling’s Formula, we have

l(n,k1, . . . , km) =
(1 +O( 1n ))(2π)

1
2nn+ 1

2

(2π)
m
2 mnk

(k1+
1
2 )

1 · · ·k(km+ 1
2 )

m

.

Letting ki = 
 n
m�+ ji for 1≤ i≤m,

l(n,k1, . . . , km) =
(1 +O( 1

n
))(2π)

1
2 nn+ 1

2

(2π)
m
2 mn(� n

m
�+ j1)

(� n
m

�+j1+
1
2
) · · · (� n

m
�+ jm)(�

n
m

�+jm+ 1
2
)

=
(1+O( 1

n
))m

m
2

(2π)
m−1

2 n
m−1

2 (1 + j1�m
n
�)(� n

m
�+j1+

1
2
) · · · (1 + jm�m

n
�)(� n

m
�+jm+ 1

2
)
.

For all 1≤ i≤m, we set

a(n,m, i) :=

(
1 + ji

⌊
m

n

⌋)� n
m �+ji+

1
2

= e(�
n
m �+ji+

1
2 ) ln(1+ji�m

n �).

Using a Taylor series approximation, we have the following for n large enough
(as ji is bounded by O(

√
n)):

a(n,m, i) = exp

((
n

m
+ ji +

1

2

)(
ji
m

n
− m2j2i

2n2
+

m3j3

3n3
+O

(
n−1)))

= exp

(
ji +

mj2i
2n

+
mji
2n

− m2j3i
6n2

− m2j2i
4n2

+
m3j4i
3n3

+
m3j3i
6n3

+O
(
n−1)).

Therefore, we have(
1 + j1

⌊
m

n

⌋)� n
m �+j1+

1
2

· · ·
(
1 + jm

⌊
m

n

⌋)� n
m �+jm+ 1

2

= e−H(n,j1,...,jm),

and so

l(n, j1, . . . , jm) = p(n, j1, . . . , jm) +O

(
1

n

)
,

as required. �
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