ULTRAPRODUCTS OF CROSSED PRODUCT VON NEUMANN ALGEBRAS

REIJI TOMATSU

ABSTRACT. We study a relationship between the ultraproduct of a crossed product von Neumann algebra and the crossed product of an ultraproduct von Neumann algebra. As an application, the continuous core of an ultraproduct von Neumann algebra is described.

1. Preliminary

1.1. Ultraproduct. Our references are [1], [7]. In this paper, we denote by ω a fixed free ultrafilter on $\mathbb{N} = \{1, 2, ...\}$. By M, we always denote a von Neumann algebra with separable predual. The automorphism group of a von Neumann algebra N is denoted by Aut(N), and the center of N is by Z(N).

Denote by $\ell^{\infty}(M)$ the unital C*-algebra which consists of all norm bounded sequences $(x^{\nu}) = (x^1, x^2, ...), x^{\nu} \in M$. An element $(x^{\nu}) \in \ell^{\infty}(M)$ is said to be ω -trivial when x^{ν} converges to 0 in the strong* topology as $\nu \to \omega$. By $\mathscr{I}_{\omega}(M)$, we denote the set of all ω -trivial sequences. It is known that $\mathscr{I}_{\omega}(M)$ is a C*-subalgebra of $\ell^{\infty}(M)$, but it is not an ideal when M is infinite. Hence, we consider its normalizer $\mathscr{M}^{\omega}(M)$ defined by

$$\mathscr{M}^{\omega}(M) := \left\{ x \in \ell^{\infty}(M) \mid x\mathscr{I}_{\omega}(M) + \mathscr{I}_{\omega}(M)x \subset \mathscr{I}_{\omega}(M) \right\}.$$

Then the quotient C*-algebra $M^{\omega} := \mathscr{M}^{\omega}(M)/\mathscr{I}_{\omega}(M)$ is in fact a W*-algebra that is called an *ultraproduct von Neumann algebra*. We denote by $(x^{\nu})^{\omega}$ the equivalence class $(x^{\nu}) + \mathscr{I}_{\omega}(M)$ for $(x^{\nu}) \in \mathscr{M}^{\omega}(M)$.

Note that M is regarded as a von Neumann subalgebra of M^{ω} by mapping $x \in M$ to its constant sequence $(x, x, \dots)^{\omega} =: x^{\omega}$. Since the norm unit

©2018 University of Illinois

Received May 17, 2017; received in final form January 23, 2018.

The author is grateful to Yoshimichi Ueda for various advice and valuable comments on this paper.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L10. Secondary 46L40.

ball of M is σ -weakly compact, each $(x^{\nu}) \in \ell^{\infty}(M)$ has the σ -weak ultralimit $\lim_{\nu \to \omega} x^{\nu}$. This gives us a well-defined map $E_M : M^{\omega} \to M$ defined by $E_M((x^{\nu})) := \lim_{\nu \to \omega} x^{\nu}$. Then E_M is actually a faithful normal conditional expectation. For a weight φ on M, we denote by φ^{ω} the ultraproduct weight of φ on M^{ω} , that is, $\varphi^{\omega} := \varphi \circ E_M$.

An element $(x^{\nu}) \in \ell^{\infty}(M)$ is said to be ω -central if $x^{\nu}\varphi - \varphi x^{\nu} \in M_*$ converges to 0 in norm as $\nu \to \omega$ for all $\varphi \in M_*$, where we use the usual notation $a\varphi(x) := \varphi(xa)$ and $\varphi a(x) := \varphi(ax)$ for $a, x \in M$ and $\varphi \in M_*$. Then $\mathscr{C}_{\omega}(M)$, the set of all ω -central sequences, is a unital C*-subalgebra of $\ell^{\infty}(M)$ and contains $\mathscr{I}_{\omega}(M)$. We denote by M_{ω} the quotient C*-algebra $\mathscr{C}_{\omega}(M)/\mathscr{I}_{\omega}(M)$ that is a W*-subalgebra of M^{ω} . We will call M_{ω} the asymptotic centralizer of M.

1.2. Action and crossed product. Let G be a locally compact Hausdorff group that is always assumed to be second countable. We use the usual notation $C_c(G)$ and $L^2(G)$ for the set of compactly supported continuous functions on G and the Hilbert space associated with a fixed left invariant Haar measure on G. The *-algebra operations of $C_c(G)$ are defined as usual $f * g(s) := \int_G f(t)g(t^{-1}s) dt$ and $f^*(s) := \Delta(s)^{-1}\overline{f(s^{-1})}$ for $f, g \in C_c(G)$ and $s \in G$, where Δ denotes the modular function of G and dt the left invariant Haar measure.

An action of G on M means a group homomorphism $\alpha: G \ni s \mapsto \alpha_s \in$ Aut(M) such that $\|\varphi \circ \alpha_s - \varphi\|_{M_*} \to 0$ for all $\varphi \in M_*$ if $s \to e$ in G, where e denotes the neutral element of G. The fixed point algebra M^{α} means the collection of all $x \in M$ such that $\alpha_s(x) = x$ for all $s \in G$. We next introduce the crossed product von Neumann algebra $M \rtimes_{\alpha} G$ as follows. Suppose M is acting on a Hilbert space H. We define the operators $\pi_{\alpha}(x)$ and $\lambda^{\alpha}(s)$ on the tensor product Hilbert space $H \otimes L^2(G) = L^2(G, H)$ as follows: for $x \in M$, $s, t \in G$ and $\xi \in L^2(G, H)$,

$$\left(\pi_{\alpha}(x)\xi \right)(t) := \alpha_{t^{-1}}(x)\xi(t), \qquad \left(\lambda^{\alpha}(s)\xi \right)(t) := \xi \left(s^{-1}t \right).$$

We can also write $\lambda^{\alpha}(s) = 1 \otimes \lambda(s)$ for $s \in G$, where λ denotes the left regular representation on $L^2(G)$. Then $M \rtimes_{\alpha} G$ denotes the von Neumann algebra generated by $\pi_{\alpha}(M)$ and $\lambda^{\alpha}(G)$. For $f \in C_c(G)$, we denote $\lambda^{\alpha}(f) := \int_G f(s)\lambda^{\alpha}(s) \, ds$. Note that λ^{α} is a *-representation of $C_c(G)$ on $H \otimes L^2(G)$.

For Abelian G, $M \rtimes_{\alpha} G$ admits the dual action $\hat{\alpha}$ of the dual group \hat{G} satisfying

$$\widehat{\alpha}_p(\pi_\alpha(x)) = \pi_\alpha(x), \qquad \widehat{\alpha}_p(\lambda^\alpha(s)) = \overline{\langle s, p \rangle} \lambda^\alpha(s), \quad x \in M, s \in G, p \in \widehat{G},$$

where $\langle \cdot, \cdot \rangle$ denotes the dual coupling of G and \widehat{G} . By Takesaki duality, we have an isomorphism Γ_{α} from $(M \rtimes_{\alpha} G) \rtimes_{\widehat{\alpha}} \widehat{G}$ onto $M \otimes B(L^2(G))$ such that

$$\Gamma_{\alpha}\big(\pi_{\widehat{\alpha}}\big(\pi_{\alpha}(x)\big)\big) = \pi_{\alpha}(x), \qquad \Gamma_{\alpha}\big(\pi_{\widehat{\alpha}}\big(\lambda^{\alpha}(s)\big)\big) = 1 \otimes \lambda(s)$$

$$\Gamma_{\alpha}\big(\lambda^{\widehat{\alpha}}(p)\big) = 1 \otimes \overline{\langle p, \cdot \rangle}$$

for $x \in M$, $s \in G$ and $p \in \widehat{G}$. As for the bidual action $\widehat{\widehat{\alpha}}$, we have $\Gamma_{\alpha} \circ \widehat{\widehat{\alpha}}_s = \alpha_s \otimes \operatorname{Ad} \rho(s)$ for $s \in G$, where ρ denotes the right regular representation on $L^2(G)$.

2. Main result

2.1. Equicontinuous parts. Readers are referred to [5, Chapter 3]. Note that basic results introduced there are concerned with \mathbb{R} , but they also hold for a general locally compact Hausdorff groups.

DEFINITION 2.1. Let α be an action of a locally compact Hausdorff group G on a von Neumann algebra M. A norm bounded sequence $(x^{\nu}), x^{\nu} \in M$, is said to be (α, ω) -equicontinuous when the following holds: for every σ -strong* neighbourhood V of $0 \in M$, there exist a neighbourhood U of the neutral element $e \in G$ and $A \in \omega$ such that $\alpha_s(x^{\nu}) - x^{\nu} \in V$ for all $s \in U$ and $\nu \in A$.

Denote by $\mathscr{E}^{\omega}_{\alpha}(M)$ the collection of all (α, ω) -equicontinuous sequences. Set

$$M^{\omega}_{\alpha} := \left(\mathscr{E}^{\omega}_{\alpha}(M) \cap \mathscr{M}^{\omega}(M) \right) / \mathscr{I}_{\omega}(M)$$

and

$$M_{\omega,\alpha} := \left(\mathscr{E}^{\omega}_{\alpha}(M) \cap \mathscr{C}^{\omega}(M) \right) / \mathscr{I}_{\omega}(M),$$

which we will call the *equicontinuous parts* of M^{ω} and M_{ω} , respectively. Note that $M_{\omega,\alpha} \subset M_{\alpha}^{\omega}$, $M \subset M_{\alpha}^{\omega}$ and they are von Neumann subalgebras which admit the *G*-action α^{ω} defined by $\alpha_s^{\omega}((x^{\nu})^{\omega}) := (\alpha_s(x^{\nu}))^{\omega}$ for $s \in G$ and $(x^{\nu})^{\omega} \in M_{\alpha}^{\omega}$.

Note the crucial fact that $\mathscr{M}^{\omega}(M)$ coincides with $\mathscr{E}^{\omega}_{\alpha}(M)$ for $\alpha := \sigma^{\varphi}$, the modular automorphism group of a given faithful normal state φ on M. (See [1, Proposition 4.11] and [6, Theorem 1.5] for its proof.)

A useful tool to construct an equicontinuous sequence is to average a norm bounded sequence by L^1 -function. To be precise, we let $f \in L^1(G)$ and $(x^{\nu}) \in \ell^{\infty}(M)$. Then $(\alpha_f(x^{\nu}))$ is (α, ω) -equicontinuous, where $\alpha_f(y) = \int_G f(s)\alpha_s(y) ds$ for $y \in M$. Note that the averaging and the ultraproduct of an equicontinuous sequence are commutative operations, that is, for $x := (x^{\nu})^{\omega} \in M^{\omega}_{\alpha}$, we have $\alpha^{\omega}_f(x) = (\alpha_f(x^{\nu}))^{\omega}$. In particular, the set which consists of $(\alpha_f(x^{\nu}))^{\omega}$, $f \in L^1(G)$ and $(x^{\nu}) \in \mathscr{M}^{\omega}(M)$ is σ -weakly dense in M^{ω}_{α} .

EXAMPLE 2.2. Consider the action α of G on $M := L^{\infty}(G)$ by left translation. Then M^{ω}_{α} is actually nothing but M. This fact tells us that equicontinuous parts could be small. We need the following claim to show this: if a uniformly norm bounded net $\{f_n\}_{n \in I}$ in M converges to 0 in the σ -weak topology, then the convolution $g * f_n$ converges to 0 compact uniformly for all $g \in L^1(G)$. Then for $t \in G$

$$g * f_n(t) = \int_G g(ts) f_n(s^{-1}) ds = \langle g_{t^{-1}}, \tilde{f}_n \rangle,$$

where $g_r(s) := g(r^{-1}s)$, $\tilde{f}_n(s) := f_n(s^{-1})$, and $\langle \cdot, \cdot \rangle$ denotes the pairing of $L^1(G)$ and $L^{\infty}(G)$. It is trivial that $\tilde{f}_n \to 0$ σ -weakly, and $g * f_n$ converges to 0 pointwise.

Let $K \subset G$ be a compact set. The map $K \ni t \mapsto g_{t^{-1}} \in L^1(G)$ is normcontinuous. Thus for $\varepsilon > 0$, there exist $t_1, \ldots, t_k \in K$ such that for any $t \in K$, $\|g_{t^{-1}} - g_{t_i^{-1}}\| < \varepsilon$ for some t_i . Take $n_0 \in I$ so that $|\langle g_{t_i^{-1}}, \tilde{f}_n \rangle| < \varepsilon$ for all $i = 1, \ldots, k$ and $n \ge n_0$. For $t \in K$, take t_i so that $\|g_{t^{-1}} - g_{t_i^{-1}}\| < \varepsilon$. When $n \ge n_0$, we have

$$\begin{aligned} \left|g*f_{n}(t)\right| &\leq \left|\langle g_{t^{-1}} - g_{t_{i}^{-1}}, \tilde{f}_{n}\rangle\right| + \left|\langle g_{t_{i}^{-1}}, \tilde{f}_{n}\rangle\right| \\ &\leq \varepsilon \|f_{n}\|_{\infty} + \left|\langle g_{t_{i}^{-1}}, \tilde{f}_{n}\rangle\right| < \left(\|f_{n}\|_{\infty} + 1\right)\varepsilon. \end{aligned}$$

So, we have proved the claim.

Recall that M^{ω}_{α} has the σ -weakly total set which consists of $(\alpha_g(f^{\nu}))$, $g \in L^1(G)$ and $(f^{\nu}) \in \ell^{\infty}(M)$. Putting $f := \lim_{\nu \to \omega} f^{\nu}$, we see $\alpha_g(f^{\nu}) = g * f^{\nu} \to g * f$ compact uniformly. In particular, $(\alpha_g(f^{\nu}))^{\omega}$ equals the constant sequence $\alpha_g(f)^{\omega}$.

LEMMA 2.3. There exists a unique faithful normal conditional expectation E_{α} from M^{ω} onto M^{ω}_{α} such that for an arbitrary faithful normal semifinite weight φ on M, one has $\varphi^{\omega} = \varphi^{\omega} \circ E_{\alpha}$.

Proof. Since M^{ω}_{α} contains M, φ^{ω} is semifinite on M^{ω}_{α} . We will show that M^{ω}_{α} is globally invariant by $\sigma^{\varphi^{\omega}}$. By [1, Theorem 4.1], [3, Proposition 2.1] or [8, Theorem 2.1], we obtain $\sigma^{\varphi^{\omega}}_t((x^{\nu})^{\omega}) = (\sigma^{\varphi}_t(x^{\nu}))^{\omega}$ for $(x^{\nu})^{\omega} \in M^{\omega}$. Then for $t \in \mathbb{R}$, $s \in G$, $(x^{\nu})^{\omega} \in M^{\omega}_{\alpha}$ and $\nu \in \mathbb{N}$, we have

$$\begin{aligned} \alpha_s(\sigma_t^{\varphi}(x^{\nu})) &= \sigma_t^{\varphi \circ \alpha_{s^{-1}}}(\alpha_s(x^{\nu})) \\ &= [D\varphi \circ \alpha_{s^{-1}} : D\varphi]_t \sigma_t^{\varphi}(\alpha_s(x^{\nu})) [D\varphi \circ \alpha_{s^{-1}} : D\varphi]_t^*. \end{aligned}$$

This implies that $(\sigma_t^{\varphi}(x^{\nu}))$ is (α, ω) -equicontinuous for each $t \in \mathbb{R}$ since (x^{ν}) is an element of $\mathscr{M}^{\omega}(M)$. (See [5, Lemma 3.6].) Hence, M_{α}^{ω} is globally invariant by $\sigma^{\varphi^{\omega}}$. Thanks to Takesaki's criterion [10, p. 309], we can take a faithful normal conditional expectation E_{α} from \mathcal{M}^{ω} onto $\mathcal{M}_{\alpha}^{\omega}$ so that $\varphi^{\omega} = \varphi^{\omega} \circ E_{\alpha}$. This equality implies that $E_M = E_M \circ E_{\alpha}$, and E_{α} is unique.

2.2. Main results. The canonical embedding π_{α} of M into $M \rtimes_{\alpha} G$ induces $\pi_{\alpha}^{\infty} : \mathscr{E}_{\alpha}^{\omega}(M) \cap \mathscr{M}^{\omega}(M) \to \ell^{\infty}(M \rtimes_{\alpha} G)$ by putting $\pi_{\alpha}^{\infty}((x^{\nu})) := (\pi_{\alpha}(x^{\nu})).$

LEMMA 2.4. If $(x^{\nu}) \in \mathscr{E}^{\omega}_{\alpha}(M) \cap \mathscr{M}^{\omega}(M)$, then $\pi^{\infty}_{\alpha}((x^{\nu})) \in \mathscr{M}^{\omega}(M \rtimes_{\alpha} G)$.

Proof. Let (y^{ν}) be an ω -trivial sequence in $M \rtimes_{\alpha} G$ with $||y^{\nu}|| \leq 1$ for all ν . It suffices to show that $||y^{\nu}\pi_{\alpha}(x^{\nu})(\xi \otimes f)|| \to 0$ as $\nu \to \omega$ for $\xi \in H$ and $f \in C_c(G)$ with compact support $K \subset G$.

Let $\varepsilon > 0$. Since (x^{ν}) is (α, ω) -equicontinuous, we can take $W \in \omega$ and a open neighborhood V of $e \in G$ so that if $t^{-1}s \in V$, $s, t \in K$ and $\nu \in W$, then $\|\alpha_{s^{-1}}(x^{\nu})\xi - \alpha_{t^{-1}}(x^{\nu})\xi\| < \varepsilon$.

Take $s_1, \ldots, s_N \in K$ so that $K \subset s_1 V \cup \cdots \cup s_N V$. Let $\{h_1, \ldots, h_N\}$ be a partition of unity on K subordinate to the cover $\{s_1 V, \ldots, s_N V\}$. (See [9, Theorem 2.13].) Then for $\nu \in W$, we obtain the following:

$$\begin{split} \left\| \left(\pi_{\alpha}(x^{\nu}) - \sum_{j=1}^{N} (\alpha_{s_{j}^{-1}}(x^{\nu}) \otimes h_{j}) \right) (\xi \otimes f) \right\|^{2} \\ &= \int_{K} \left\| \left(\alpha_{s^{-1}}(x^{\nu}) - \sum_{j=1}^{N} \alpha_{s_{j}^{-1}}(x^{\nu}) h_{j}(s) \right) \xi \right\|^{2} |f(s)|^{2} ds \\ &= \int_{K} \left\| \sum_{j=1}^{N} h_{j}(s) (\alpha_{s^{-1}}(x^{\nu}) - \alpha_{s_{j}^{-1}}(x^{\nu})) \xi \right\|^{2} |f(s)|^{2} ds \\ &\leq \int_{K} \left(\sum_{j=1}^{N} h_{j}(s) \| \alpha_{s^{-1}}(x^{\nu}) - \alpha_{s_{j}^{-1}}(x^{\nu}) \xi \| \right)^{2} |f(s)|^{2} ds \\ &\leq \varepsilon^{2} \|f\|_{2}^{2}. \end{split}$$

Thus for all $\nu \in W$, we have

$$\left\|y^{\nu}\pi_{\alpha}(x^{\nu})(\xi\otimes f)\right\|\leq\varepsilon\|f\|_{2}+\left\|y^{\nu}\sum_{j=0}^{N-1}\left(\alpha_{s_{j}^{-1}}(x^{\nu})\otimes h_{j}\right)(\xi\otimes f)\right\|.$$

In the last term, we know that $(\alpha_{s_j^{-1}}(x^{\nu}) \otimes 1)$ belongs to $\mathscr{M}^{\omega}(M \otimes B(L^2(G)))$ by the proof of [5, Lemma 2.8]. In particular, the last term converges to 0 in the strong topology as $\nu \to \omega$. Hence, the above inequality implies that

$$\lim_{\nu \to \omega} \left\| y^{\nu} \pi_{\alpha} (x^{\nu}) (\xi \otimes f) \right\| \leq \varepsilon \|f\|_{2}.$$

Thus, we are done.

The map π_{α}^{∞} induces a well-defined map π_{α}^{ω} from M_{α}^{ω} into $(M \rtimes_{\alpha} G)^{\omega}$ such that $\pi_{\alpha}^{\omega}((x^{\nu})^{\omega}) := (\pi_{\alpha}(x^{\nu}))^{\omega}$ for $(x^{\nu})^{\omega} \in M_{\alpha}^{\omega}$. In the proof of Lemma 2.4, we have shown π_{α}^{ω} is actually a map from M_{α}^{ω} into $(M \otimes B(L^2(G)))^{\omega}$. Recall the isomorphism Ψ from $(M \otimes B(L^2(G)))^{\omega}$ onto $M^{\omega} \otimes B(L^2(G))$ that is given in the proof of [5, Lemma 2.8]. Note that the map Ψ is naturally defined so that for $f, g \in L^2(G)$ and $x = (x^{\nu})^{\omega} \in (M \otimes B(L^2(G)))^{\omega}$, we have $(\mathrm{id} \otimes \phi_{f,g})(\Psi(x)) = ((\mathrm{id} \otimes \phi_{f,g})(x^{\nu}))^{\omega}$, where $\phi_{f,g}$ denotes the normal functional $\langle \cdot f, g \rangle$ on $B(L^2(G))$.

LEMMA 2.5. For any $x \in M^{\omega}_{\alpha}$, one has $\Psi(\pi^{\omega}_{\alpha}(x)) = \pi_{\alpha^{\omega}}(x)$.

Proof. Let $f, g \in L^2(G)$ and $x = (x^{\nu})^{\omega} \in M^{\omega}_{\alpha}$. On the one hand, we have $(\mathrm{id} \otimes \phi_{f,g})(\Psi(\pi^{\omega}_{\alpha}(x))) = ((\mathrm{id} \otimes \phi_{f,g})(\pi_{\alpha}(x^{\nu})))^{\omega}$.

On the other hand, using the equicontinuity (cf. [5, Lemma 3.15]), we have

$$(\mathrm{id}\otimes\phi_{f,g})\big(\pi_{\alpha^{\omega}}(x)\big) = \int_{G} f(s)\overline{g(s)}\alpha_{s^{-1}}^{\omega}(x)\,ds = \left(\int_{G} f(s)\overline{g(s)}\alpha_{s^{-1}}(x^{\nu})\,ds\right)^{\omega} = \left((\mathrm{id}\otimes\phi_{f,g})\big(\pi_{\alpha}(x^{\nu})\big)\big)^{\omega}.$$

Thus, we are done.

We now prove the main result of this paper which strengthens [6, Theorem 1.10]. Note that a generalization of Example 2.2 to the crossed product for G being Abelian.

THEOREM 2.6. Let α be an action of a second countable locally compact Hausdorff group G on a von Neumann algebra M with separable predual. Then the following statements hold:

- (1) There exists a canonical embedding Φ_{α} of $M^{\omega}_{\alpha} \rtimes_{\alpha^{\omega}} G$ into $(M \rtimes_{\alpha} G)^{\omega}$ such that $\Phi_{\alpha}(\pi_{\alpha^{\omega}}(x)) = \pi^{\omega}_{\alpha}(x)$ and $\Phi_{\alpha}(\lambda^{\alpha^{\omega}}(s)) = \lambda^{\alpha}(s)^{\omega}$, respectively, for all $x \in M^{\omega}_{\alpha}$ and $s \in G$.
- (2) If G is Abelian, the map Φ_{α} induces the isomorphism from $M^{\omega}_{\alpha} \rtimes_{\alpha^{\omega}} G$ onto $(M \rtimes_{\alpha} G)^{\omega}_{\widehat{\alpha}}$.

Proof. (1) Put $N := \pi^{\omega}_{\alpha}(M^{\omega}_{\alpha}) \vee \{\lambda^{\alpha}(t)^{\omega} \mid t \in G\}''$ that is a von Neumann subalgebra of $(M \rtimes_{\alpha} G)^{\omega}_{\widehat{\alpha}}$. We will show that there exists a canonical isomorphism from $M^{\omega}_{\alpha} \rtimes_{\alpha^{\omega}} G$ onto N.

Let φ be a faithful normal semifinite weight on M and ψ the dual weight of φ on $M \rtimes_{\alpha} G$. It is obvious that ψ^{ω} is semifinite on N since N contains $M \rtimes_{\alpha} G$. Then for $(x^{\nu})^{\omega} \in M^{\omega}_{\alpha}, s \in G$ and $t \in \mathbb{R}$, we have

$$\sigma_t^{\psi^{\omega}} \left(\lambda^{\alpha}(s)^{\omega} \right) = \left(\sigma_t^{\psi} \left(\lambda^{\alpha}(s) \right) \right)^{\omega} = \Delta_G(s)^{it} \lambda^{\alpha}(s)^{\omega} \pi_{\alpha} \left([D\varphi \circ \alpha_s : D\varphi]_t \right)^{\omega}$$

and

$$\sigma_t^{\psi^{\omega}}(\pi_{\alpha}^{\omega}((x^{\nu})^{\omega})) = \sigma_t^{\psi^{\omega}}((\pi_{\alpha}(x^{\nu}))^{\omega}) = (\sigma_t^{\psi}(\pi_{\alpha}(x^{\nu})))^{\omega} = (\pi_{\alpha}(\sigma_t^{\varphi}(x^{\nu})))^{\omega} = \pi_{\alpha}^{\omega}((\sigma_t^{\varphi}(x^{\nu}))^{\omega}),$$

where we note that the last term is well-defined from the proof of Lemma 2.3. This observation implies N is globally invariant under $\sigma^{\psi^{\omega}}$. Thanks to Takesaki's theorem, we can take a faithful normal conditional expectation from $(M \rtimes_{\alpha} G)^{\omega}$ onto N. In particular, the restriction of the modular conjugation $J_{\psi^{\omega}}$ on $L^2(N, \psi^{\omega})$ gives the modular conjugation associated with $\psi^{\omega} \upharpoonright_N$.

Let χ be the dual weight of $\varphi^{\omega} \upharpoonright_{M_{\alpha}^{\omega}}$ on $P := M_{\alpha}^{\omega} \rtimes_{\alpha^{\omega}} G$. We will compare the GNS Hilbert spaces $L^{2}(P,\chi)$ and $L^{2}(N,\psi^{\omega})$. The definition left ideals are as

usual denoted by n_{χ} and $n_{\psi^{\omega}}$, respectively. (See [11, Lemma VII.1.2].) Denote by $\Lambda_{\chi} : n_{\chi} \to L^2(P, \chi)$ and $\Lambda_{\psi^{\omega}} : n_{\psi^{\omega}} \to L^2(N, \psi^{\omega})$ the canonical embeddings.

Let us introduce a map V which maps $\Lambda_{\chi}(\lambda^{\alpha^{\omega}}(f)\pi_{\alpha^{\omega}}(x))$ to $\Lambda_{\psi^{\omega}}(\lambda^{\alpha}(f)^{\omega}\pi_{\alpha}^{\omega}(x))$ for $f \in C_c(G)$ and $x \in M_{\alpha}^{\omega}$. We claim that V extends to an isometry from $L^2(P,\chi)$ into $L^2(N,\psi^{\omega})$. Take $f,g \in C_c(G)$ and $x, y \in M_{\alpha}^{\omega}$. Then we have

$$\begin{split} \left\langle \Lambda_{\psi^{\omega}} \left(\lambda^{\alpha}(f)^{\omega} \pi^{\omega}_{\alpha}(x) \right), \Lambda_{\psi^{\omega}} \left(\lambda^{\alpha}(g)^{\omega} \pi^{\omega}_{\alpha}(y) \right) \right\rangle &= \psi^{\omega} \left(\pi^{\omega}_{\alpha} \left(y^{*} \right) \lambda^{\alpha} \left(g^{*} * f \right)^{\omega} \pi^{\omega}_{\alpha}(x) \right) \\ &= \psi \Big(\lim_{\nu \to \omega} \pi_{\alpha} \left(\left(y^{\nu} \right)^{*} \right) \lambda^{\alpha}(h) \pi_{\alpha} \left(x^{\nu} \right) \Big), \end{split}$$

where $h := g^* * f$. Let F be the support of h. Then for each $\nu \in \mathbb{N}$, we have

$$\pi_{\alpha}((y^{\nu})^{*})\lambda^{\alpha}(h)\pi_{\alpha}(x^{\nu}) = \int_{F} h(s)\pi_{\alpha}((y^{\nu})^{*}\alpha_{s}(x^{\nu}))\lambda^{\alpha}(s)\,ds$$

Using [5, Lemma 3.3], we know that

$$\lim_{\nu \to \omega} \pi_{\alpha} \left(\left(y^{\nu} \right)^{*} \right) \lambda^{\alpha}(h) \pi_{\alpha} \left(x^{\nu} \right) = \int_{F} h(s) \pi_{\alpha} \left(\lim_{\nu \to \omega} y^{\nu} \alpha_{s} \left(x^{\nu} \right) \right) \lambda^{\alpha}(s) \, ds.$$

Hence it follows from the definition of the dual weight ψ the following:

$$\left\langle \Lambda_{\psi^{\omega}} \left(\lambda^{\alpha}(f)^{\omega} \pi^{\omega}_{\alpha}(x) \right), \Lambda_{\psi^{\omega}} \left(\lambda^{\alpha}(g)^{\omega} \pi^{\omega}_{\alpha}(y) \right) \right\rangle = h(e) \varphi \left(\lim_{\nu \to \omega} \left(y^{\nu} \right)^{*} x^{\nu} \right)$$
$$= h(e) \varphi^{\omega} \left(y^{*} x \right),$$

which equals to $\langle \Lambda_{\chi}(\lambda^{\alpha^{\omega}}(f)\pi_{\alpha^{\omega}}(x)), \Lambda_{\chi}(\lambda^{\alpha^{\omega}}(g)\pi_{\alpha^{\omega}}(y)) \rangle$ again by the definition of the dual weight χ . Thus, we have proved the existence of the isometry V.

We next claim that K, the image of V, is N'-invariant. For a $\sigma^{\varphi^{\omega}}$ -analytic $y \in M^{\omega}_{\alpha}$ and $t \in G$, we obtain the followings for all $f \in C_c(G)$ and $x \in M^{\omega}_{\alpha}$:

$$J_{\psi^{\omega}}\sigma_{i/2}^{\psi^{\omega}}(\pi_{\alpha}^{\omega}(y))^{*}J_{\psi^{\omega}}\Lambda_{\psi^{\omega}}(\lambda^{\alpha}(f)^{\omega}\pi_{\alpha}^{\omega}(x)) = \Lambda_{\psi^{\omega}}(\lambda^{\alpha}(f)^{\omega}\pi_{\alpha}^{\omega}(xy)) \in K$$

and

$$J_{\psi^{\omega}}\sigma_{i/2}^{\psi^{\omega}}(\lambda^{\alpha}(t)^{\omega})^{*}J_{\psi^{\omega}}\Lambda_{\psi^{\omega}}(\lambda^{\alpha}(f)^{\omega}\pi_{\alpha}^{\omega}(x)) = \Lambda_{\psi^{\omega}}(\lambda^{\alpha}(g)^{\omega}\pi_{\alpha}^{\omega}(\alpha_{t-1}^{\omega}(x))) \in K,$$

where $g(s) := \Delta_G(t)^{-1} f(st^{-1})$. Hence, K is N'-invariant.

Now let us take a $\sigma^{\psi^{\omega}}$ -analytic $y \in n_{\psi^{\omega}}$. Then

$$J_{\psi^{\omega}}\sigma_{i/2}^{\psi^{\omega}}(y)^*J_{\psi^{\omega}}\Lambda_{\psi^{\omega}}\left(\lambda^{\alpha}(f)^{\omega}\pi_{\alpha}^{\omega}(x)\right) = \lambda^{\alpha}(f)^{\omega}\pi_{\alpha}^{\omega}(x)\Lambda_{\psi^{\omega}}(y).$$

This implies that $\Lambda_{\psi^{\omega}}(y)$ is contained in the closure of N'K. Since $N'K \subset K$, $\Lambda_{\psi^{\omega}}(y)$ belongs to K. Thus, $K = L^2(N, \psi^{\omega}) \subset L^2((M \rtimes_{\alpha} G)^{\omega}, \psi^{\omega})$. Then the map $N \ni x \mapsto V^* x V$ provides us with the isomorphism from N onto $M^{\omega}_{\alpha} \rtimes_{\alpha^{\omega}} G$. More precisely, we can check $V^* \pi^{\omega}_{\alpha}(x) V = \pi_{\alpha^{\omega}}(x)$ and $V^* \lambda^{\alpha}(s)^{\omega} V = \lambda^{\alpha^{\omega}}(s)$ for $x \in M^{\omega}_{\alpha}$ and $s \in G$. Denote by Φ_{α} its inverse map. (2) Suppose that G is Abelian. Then the image of Φ_{α} is clearly contained in $(M \rtimes_{\alpha} G)^{\omega}_{\alpha}$. Let us apply the statement of (1) to the dual action $\beta := \widehat{\alpha}$ on $R := M \rtimes_{\alpha} G$. Then we have the embedding Φ_{β} of $R^{\omega}_{\beta} \rtimes_{\beta^{\omega}} \widehat{G}$ into $(R \rtimes_{\beta} \widehat{G})^{\omega}_{\widehat{\alpha}}$.

Recall the isomorphism Ψ from $(M \otimes B(L^2(G)))^{\omega}$ onto $M^{\omega} \otimes B(L^2(G))$ that is introduced in the remark before Lemma 2.5. Then Ψ induces an isomorphism from $(M \otimes B(L^2(G)))^{\omega}_{\alpha \otimes \operatorname{Ad} \rho}$ onto $M^{\omega}_{\alpha} \otimes B(L^2(G))$. This fact can be directly proved or deduced from [5, Lemma 3.12] for general groups. In summary, we have the following diagram:

where $(\Gamma_{\alpha})^{\omega}$ is defined by $(\Gamma_{\alpha})^{\omega}((x^{\nu})^{\omega}) := (\Gamma_{\alpha}(x^{\nu}))^{\omega}$ for $(x^{\nu})^{\omega} \in (R \rtimes_{\beta} \widehat{G})^{\omega}$ and f denotes the composition of all of them.

We will show f actually equals the identity map. This implies the surjectivity of $\Phi_{\alpha} \otimes id$ in the diagram above, and we obtain $\Phi_{\alpha}(P) = R^{\omega}_{\beta}$ by taking the fixed point algebra of the dual action of β^{ω} . Recall that $M^{\omega}_{\alpha} \otimes B(L^2(G))$ is generated by $\pi_{\alpha^{\omega}}(M^{\omega}_{\alpha})$, $1 \otimes \lambda(G)$ and $1 \otimes L^{\infty}(G)$. We can directly check that f identically maps $1 \otimes \lambda(G)$ and $1 \otimes L^{\infty}(G)$. For $x \in M^{\omega}_{\alpha}$, it is not difficult to show $\pi_{\alpha^{\omega}}(x)$ is mapped to $\pi^{\omega}_{\alpha}(x)$ in $(M \otimes B(L^2(G)))^{\omega}_{\alpha \otimes \mathrm{Ad}\,\rho}$, and it turns out from Lemma 2.5 that $f(\pi_{\alpha^{\omega}}(x)) = \pi_{\alpha^{\omega}}(x)$.

It would be interesting to generalize the previous theorem to a locally compact Hausdorff group or quantum group by introducing the equicontinuity of their actions.

3. Applications

3.1. Continuous or discrete crossed product decomposition of M^{ω} . Let $M = N \rtimes_{\theta} \mathbb{R}$ be the continuous crossed product decomposition of a properly infinite von Neumann algebra M, that is, N is a semifinite von Neumann algebra that is endowed with the \mathbb{R} -action θ and a faithful normal tracial weight τ satisfying $\tau \circ \theta_s = e^{-s}\tau$ for $s \in \mathbb{R}$. Let φ be the dual weight of τ . Since the dual action $\hat{\theta}$ is nothing but the modular automorphism σ^{φ} , the following result follows from Theorem 2.6, [1, Proposition 4.11] and [6, Theorem 1.5].

THEOREM 3.1. Let $M = N \rtimes_{\theta} \mathbb{R}$ be the continuous crossed product decomposition of a properly infinite von Neumann algebra M. Then the continuous crossed product decomposition of M^{ω} is given by $M^{\omega} = N^{\omega}_{\theta} \rtimes_{\theta^{\omega}} \mathbb{R}$. In particular, the flow of weights of M^{ω} is given by the restriction of θ^{ω} on $Z(N^{\omega}_{\theta})$. The following result on a discrete crossed product decomposition is proved first by Ando-Haagerup in [1]. We will present another proof using Theorem 2.6.

THEOREM 3.2 (Ando-Haagerup). Let M be a type III_{λ} factor with $0 \leq \lambda < 1$. Let $M = N \rtimes_{\theta} \mathbb{Z}$ be the discrete crossed product decomposition. Then the discrete crossed product decomposition of M^{ω} is given by $M^{\omega} = N^{\omega} \rtimes_{\theta^{\omega}} \mathbb{Z}$. In particular, if $0 < \lambda < 1$, then M^{ω} is a type III_{λ} factor.

Proof. The dual action $\hat{\theta}$ of $\widehat{\mathbb{Z}}$ on M satisfies $\hat{\theta}_t(x\lambda^{\theta}(m)) = e^{-imt}x\lambda^{\theta}(m)$ for $t \in \widehat{\mathbb{Z}}$, $x \in N$ and $m \in \mathbb{Z}$, where the usual coordinate $\widehat{\mathbb{Z}} = [0, 2\pi)$ is used. It turns out from Theorem 2.6 that $M^{\omega}_{\hat{\theta}} = N^{\omega} \rtimes_{\theta} \mathbb{Z}$. Hence, it suffices to show that $M^{\omega}_{\hat{\theta}} = M^{\omega}$. For $\lambda \neq 0$, $\hat{\theta}$ is nothing but the modular automorphism $\sigma^{\hat{\tau}}$, where τ denotes a faithful normal tracial weight on N with $\tau \circ \theta = \lambda \tau$. Hence, we are done.

Suppose next that $\lambda = 0$. Take a faithful normal tracial weight τ on N such that $\tau \circ \theta \leq \mu \tau$ with $0 < \mu < 1$. Let H_n be the selfadjoint operator affiliated with Z(N) such that $\tau \circ \theta^n = \tau_{\exp(H_n)}$ for $n \in \mathbb{Z}$. Then the spectrum of H_n is contained in $(-\infty, n \log \mu]$ and $[n \log \mu^{-1}, \infty)$ when $n \geq 1$ and $n \leq -1$, respectively.

Let $\varphi := \hat{\tau}$ and $g_{\beta}(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)$ for $\beta > 0$ and $t \in \mathbb{R}$ and $U_{\beta} := \widehat{g_{\beta}}(-\log \Delta_{\varphi}) = \int_{\mathbb{R}} g_{\beta}(t) \Delta_{\varphi}^{it} dt$, where $\widehat{g_{\beta}}(p) := \int_{\mathbb{R}} g_{\beta}(t) e^{-ipt} dt = \exp(-p^2/(4\beta)), \ p \in \mathbb{R}$. Then $U_{\beta} \to 1$ in the strong topology as $\beta \to \infty$.

Now we will show $M^{\omega} = M^{\omega}_{\hat{\theta}}$. Take $x = (x^{\nu})^{\omega} \in M^{\omega}$. It suffices to show that $\sigma^{\varphi^{\omega}}_{g_{\beta}}(x)$ is contained in $M_{\hat{\theta}}$ since $\sigma^{\varphi^{\omega}}_{g_{\beta}}(x)$ converges to x as $\beta \to \infty$ in the strong* topology. Note that $\sigma^{\varphi^{\omega}}_{g_{\beta}}(x) = (\sigma^{\varphi}_{g_{\beta}}(x^{\nu}))^{\omega}$.

Let $y = \sum_{m \in \mathbb{Z}} y(m) \lambda^{\theta}(m)$ with $y(m) \in N$ be the formal decomposition of $y \in M$. Namely, we set $y(m) := \frac{1}{2\pi} \int_0^{2\pi} e^{imt} \hat{\theta}_t(y) \lambda^{\theta}(m)^* dt$ which we will call the Fourier coefficients of y. Note that y = 0 if and only if y(m) = 0 for all $m \in \mathbb{Z}$. By direct computation, we have the formal decomposition of $\sigma_{g_{\beta}}^{\varphi}(y)$ as follows:

$$\sigma_{g_{\beta}}^{\varphi}(y) = \sum_{m \in \mathbb{Z}} y(m) \lambda^{\theta}(m) \widehat{g_{\beta}}(-H_m).$$

Note the series in the right-hand side actually converges in the norm topology since $\|\widehat{g}_{\beta}(-H_m)\|_{\infty} \leq \exp(-m^2 |\log \mu|^2/(4\beta))$ for all $m \in \mathbb{Z}$. Hence, the series in the right-hand side defines an element $z \in M$. By definition of z, all Fourier coefficients of z equal those of $\sigma_{g_{\beta}}^{\varphi}(y)$, and the formal decomposition above is actually a genuine equality.

Now we fix $k \in \mathbb{N}$ and take a faithful state $\chi \in N_*$. Let $\hat{\chi}$ be the dual state of χ on M. Then for all $y \in M$, we have

$$\left\|\sigma_{g_{\beta}}^{\varphi}(y) - \sum_{|m| \le k} y(m)\lambda^{\theta}(m)\widehat{g_{\beta}}(-H_m)\right\|_{\hat{\chi}} \le \|y\| \sum_{|m| > k} \exp\left(-m^2 |\log \mu|^2/(4\beta)\right).$$

Hence for $x = (x^{\nu})^{\omega} \in M^{\omega}$ and $\beta > 0$, we have

$$\left\| \sigma_{g_{\beta}}^{\varphi^{\omega}}(x) - \sum_{|m| \le k} \left(x^{\nu}(m) \lambda^{\theta}(m) \widehat{g_{\beta}}(-H_m) \right)^{\omega} \right\|_{\hat{\chi}}$$
$$\leq \|x\| \sum_{|m| > k} \exp\left(-m^2 |\log \mu|^2 / (4\beta)\right).$$

It is clear that $(x^{\nu}(m)\lambda^{\theta}(m)\widehat{g_{\beta}}(-H_m))^{\omega}$ is contained in $M^{\omega}_{\hat{\theta}}$, and so is $\sigma^{\varphi^{\omega}}_{g_{\beta}}(x)$.

Thanks to [1, Theorem 6.11], we know M^{ω} is actually a type III₁ factor when M is. Hence, N_{θ}^{ω} is a type II_{∞} factor in this situation, but we could not directly prove this without appealing Ando–Haagerup's result.

3.2. Description of M_{ω} and fullness of M. Let M be an infinite type III factor with separable predual and $M = N \rtimes_{\theta} \mathbb{R}$ be the continuous crossed product decomposition of M as before. Then the following result holds.

LEMMA 3.3. The asymptotic centralizer M_{ω} is isomorphic to $(N_{\omega,\theta})^{\theta^{\omega}}$.

Proof. Let τ be a faithful normal tracial weight on N satisfying $\tau \circ \theta_s = e^{-s}\tau$ for $s \in \mathbb{R}$ and φ the dual weight of τ . Then by Theorem 3.1, we have $M^{\omega} = N^{\omega}_{\theta} \rtimes_{\theta^{\omega}} \mathbb{R}$. We will compute $(M' \cap M^{\omega})^{\sigma^{\varphi^{\omega}}}$ which equals M_{ω} . (Use [1, Proposition 4.35] and the Connes cocycle derivative.) Using $\lambda^{\theta}(t) \in M$, $t \in \mathbb{R}$, we have

(3.1)
$$M' \cap M^{\omega} \subset \pi_{\theta^{\omega}} \left(\left(N_{\theta}^{\omega} \right)^{\theta^{\omega}} \right) \vee \left\{ \lambda^{\theta^{\omega}}(t) \mid t \in \mathbb{R} \right\}''.$$

This implies that $(M' \cap M^{\omega})^{\sigma^{\varphi^{\omega}}} \subset \pi_{\theta^{\omega}}(N' \cap (N^{\omega}_{\theta})^{\theta^{\omega}})$. Since the converse inclusion trivially holds and $N' \cap N^{\omega} = N_{\omega}$, we obtain $M_{\omega} = \pi_{\theta^{\omega}}((N_{\omega,\theta})^{\theta^{\omega}})$.

A separable factor M is said to be *full* when $M_{\omega} = \mathbb{C}$. The fullness of M has been studied by several researchers in terms of the continuous core. See references cited in [4], [12]. Also see [2] for recent progress in study of fullness. Among them, Marrakchi in [4] shows that N is full if and only if M is a full type III₁ factor with τ -invariant being the usual topology of \mathbb{R} . The following theorem would suggest that the τ -invariant could measure how continuously θ^{ω} is acting on N_{ω} . Our proof is similar to that of [12, Lemma 3].

THEOREM 3.4. Let M be a type III_1 factor with the continuous crossed product decomposition $M = N \rtimes_{\theta} \mathbb{R}$ as before. Then M is full if and only if $N_{\omega,\theta} = \mathbb{C}$.

Proof. The "if" part is trivial from the previous lemma or [6, Corollary 1.9]. Suppose that M is full. Let $p \in \mathbb{R}$ be an element of the Arveson spectrum of θ^{ω} on $N_{\omega,\theta}$. By [5, Theorem 7.7], we can take a unitary $u \in N_{\omega,\theta}$ such that $\theta_t^{\omega}(u) = e^{ipt}u$ for all $t \in \mathbb{R}$. Let $(u^{\nu}) \in \ell^{\infty}(N)$ be a unitary representing sequence of u. Then $\operatorname{Ad} \pi_{\theta}(u^{\nu})$ converges to $\hat{\theta}_p$ in $\operatorname{Aut}(M)$. The fullness of Mimplies the innerness of $\hat{\theta}_p$, and it turns out that p = 0. Namely, θ^{ω} is trivial on $N_{\omega,\theta}$, and the previous lemma implies $N_{\omega,\theta} = \mathbb{C}$.

REMARK 3.5. Ueda's problem asks if $M' \cap M^{\omega} = \mathbb{C}$ holds for any full factor M. This is affirmatively solved by Ando-Haagerup in [1, Theorem 5.2]. We would like to deduce this result by strengthening (3.1), but this approach has not been successful yet. Instead, let us present a short proof of the problem. Put $R := M' \cap M^{\omega}$. Suppose R were non-trivial. Let φ be a faithful normal state on M. Since $R_{\omega} = M_{\omega} = \mathbb{C}$, R would be a type III₁ factor. We claim that for any $\varepsilon > 0$, there exists $\delta > 0$ such that if $x \in R$ with $||x|| \leq 1$ satisfies $||x\varphi^{\omega} - \varphi^{\omega}x||_{(M^{\omega})_*} < \delta$, then $||x - \varphi^{\omega}(x)||_{\varphi^{\omega}} < \varepsilon$. By usual diagonal argument, we can show this claim by contradiction. Readers are referred to [7, Chapter 5] for this. Also note that $\|x\varphi^{\omega}-\varphi^{\omega}x\|_{(M^{\omega})_{*}}=$ $\lim_{\nu\to\omega} \|x^{\nu}\varphi - \varphi x^{\nu}\|$ for all $x = (x^{\nu})^{\omega} \in M^{\omega}$. For proof of this fact, see [1, Lemma 4.36] or [5, Lemma 9.3]. However, since R is a type III₁ factor, there exist many non-trivial norm bounded sequences $(y^k) \in \ell^{\infty}(R)$ such that $\|y^k \varphi^\omega - \varphi^\omega y^k\| \to 0$ as $k \to \infty$, and we have a contradiction. The last claim is implied by the fact that $(R^{\omega})_{\psi^{\omega}}$ is a type II₁ factor, where $\psi := \varphi^{\omega}$ [1, Proposition 4.24].

References

- H. Ando and U. Haagerup, Ultraproducts of von Neumann algebras, J. Funct. Anal. 266 (2014), 6842–6913. MR 3198856
- [2] C. Houdayer, A. Marrakchi and P. Verraedt, Fullness and Connes' τ invariant of type III tensor product factors, available at arXiv:1611.07914.
- [3] E. Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of exactness, J. Reine Angew. Math. 452 (1994), 39–77. MR 1282196
- [4] A. Marrakchi, Spectral gap characterization of full type III factors, to appear in J. Reine Angew. Math.
- [5] T. Masuda and R. Tomatsu, Rohlin flows on von Neumann algebras, Mem. Amer. Math. Soc. 244 (2016), no. 1153, ix + 111 pp. MR 3545107
- [6] T. Masuda and R. Tomatsu, Classification of actions of discrete Kac algebras on injective factors, Mem. Amer. Math. Soc. 245 (2017), no. 1160, ix + 118 pp. MR 3592229
- [7] A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 0807949
- [8] Y. Raynaud, On ultrapowers of non commutative L_p spaces, J. Operator Theory 48 (2002), no. 1, 41–68. MR 1926043
- [9] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987. MR 0924157
- [10] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 (1972), 306–321. MR 0303307
- [11] M. Takesaki, *Theory of operator algebras. II*, Encyclopaedia of Mathematical Sciences, vol. 125, Operator Algebras and Non-commutative Geometry, vol. 6, Springer-Verlag, Berlin, 2003. MR 1943006

[12] R. Tomatsu and Y. Ueda, A characterization of fullness of continuous cores of type III₁ free product factors, Kyoto J. Math. 56 (2016), 599–610. MR 3542777

Reiji Tomatsu, Department of Mathematics, Hokkaido University, Hokkaido 060-0810, Japan

E-mail address: tomatsu@math.sci.hokudai.ac.jp