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SOME COMBINATORIAL NUMBER THEORY PROBLEMS
OVER FINITE VALUATION RINGS

THANG PHAM AND LE ANH VINH

Abstract. LetR be a finite valuation ring of order qr. In this pa-
per, we generalize and improve several well-known results, which

were studied over finite fields Fq and finite cyclic rings Z/prZ, in
the setting of finite valuation rings.

1. Introduction

1.1. Dot-product congruence classes of simplices. Let Fq be a finite
field of order q with q = pn for some prime p and positive integer n. We say
that two k-simplices in F

d
q with vertices (x1, . . . ,xk+1), (y1, . . . ,yk+1) are in

a congruence class if the following condition satisfies

(1) ‖xi − xj‖= ‖yi − yj‖, 1≤ i, j ≤ k+ 1.

Hart and Iosevich [6] made the first investigation on counting the number
of congruence classes of simplices determined by a point set in F

d
q . More

precisely, they proved that if |E| � q
kd
k+1+

k
2 with d ≥

(
k+1
2

)
, then E contains

a copy of all k-simplices with non-zero edges. Several progress on improving
this exponent have been made in recent years, for instance, Chapman et al.
[3] indicated that one can get a positive proportion of all k-simplices in F

d
q

under the condition |E| � q
d+k
2 , and Bennett et al. [2] improved this condition

to qd−
d−1
k+1 . Here, and throughout, X � Y means that there exists C > 0 such

that X ≤ CY , and X = o(Y ) means that X/Y → 0 as q →∞, where X , Y
are viewed as functions in q.

A variant of this problem was studied by the second listed author [16] with
the condition (1) replaced by

(2) xi · xj = yi · yj , 1≤ i, j ≤ k+ 1.
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In this case, we say that two k-simplices (x1, . . . ,xk+1) and (y1, . . . ,yk+1)
are in a dot-product congruence class.

In [16], the second listed author proved that if |E| � q
d+k
2 , then the

number of dot-product congruence classes of k-simplices in E is at least

(1 − o(1))q(
k+1
2 ). This is also an extension of [6, Theorem 1.4], and is the

best known result so far. We remark here that the condition (1) is equivalent
to the fact that there exist θ ∈O(d,Fq) (orthogonal group in F

d
q) and z ∈ F

d
q

so that z+ θ(xi) = yi for i= 1,2, . . . , k+1. From this fact, the authors of [2]
used ingenious arguments by combining elementary results from group action

theory and Fourier analytic methods to get the threshold qd−
d−1
k+1 . However,

this approach does not work for the case of dot-product congruence classes of
simplices, since we cannot guarantee that there exist θ ∈O(d,Fq) and z ∈ F

d
q

so that z+ θ(xi) = yi for i= 1,2, . . . , k + 1 when two simplices are in a dot-
product congruence class.

For the case k = 1 and d = 2, it has been shown that if |E| � q4/3, then
the number of congruence classes of 1-simplices in E (distinct distances) is at
least � q. However, for the dot-product case, the best known exponent on
the cardinality of E to get � q dot-product congruence classes of 1-simplices
in E (distinct dot product values) is q3/2. If we assume that any line passing
through the origin contains at most |E|1/2 points, then the exponent q4/3 also
holds for the dot-product problem, see [7], [8] for more details. For general
cases, improving the threshold q3/2 to q4/3 is still an open question.

Let R be a finite valuation ring of order qr, where q = pn is an odd prime
power. Throughout, R is assumed to be commutative, and to have an identity.
Let us denote the set of units, non-units in R by R∗, R0, respectively. Note
that finite fields and finite cyclic rings are special cases of finite valuation
rings.

The initial result on the dot product problem in the setting of finite valu-
ation rings was given by Nica in [10]. The precise statement is as follows.

Theorem 1 (Nica, [10]). Let E , F be two sets in Rd. For any λ ∈R∗, let
Nλ(E ,F) be the number of pairs (a,b) ∈ E ×F satisfying a · b= λ. Then we
have the following estimate∣∣∣∣Nλ(E ,F)− |E||F|

qr

∣∣∣∣≤ q(d−1)(r−1/2)
√

|E||F|.

Theorem 1 implies that if |E||F| ≥ qd(2r−1)+1, then for any λ ∈ R∗, the
equation a · b= λ is solvable with a ∈ E , b ∈ F .

Motivated by this result, in this paper we prove the following result on the
number of dot-product congruence classes of k-simplices over finite valuation
rings.
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Theorem 2. Let R be a finite valuation ring of order qr. Given a set
E ⊆Rd. Suppose that

|E| � q
(d−1)(2r−1)+r(k+1)

2 .

Then the number of dot-product congruence classes of k-simplices in E is at

least (1− o(1))qr(
k+1
2 ).

1.2. An improvement on the number of triangle areas. For E ⊆ F
d
q ,

we define

(3) Vd(E) :=
{
det

(
x1 − xd+1, . . . ,xd − xd+1

)
: xi ∈ E ,1≤ i≤ d+ 1

}
as the set of d-dimensional volumes determined by E , and the set of pinned
volumes at a point z ∈ E

(4) V z
d (E) :=

{
det

(
x1 − z, . . . ,xd − z

)
: xi ∈ E ,1≤ i≤ d

}
.

In [9], Iosevich, Rudnev, and Zhai showed that if |E| ≥ 64q log q, then there
exists a point z ∈ E such that |V z

2 (E)| ≥ q/2. Note that if we take E being a
set of all points on a line, then there is no non-zero triangle area determined
by points in E . Thus this result is sharp up to a factor of 64 log q.

Note that a construction in Corollary 2.4 in [8] implies that if |E|= o(q3/2),
then there exists z ∈ E such that |V z

2 (E)|= o(q). Thus, Iosevich et al.’s result
cannot be improved to say that one gets a positive proportion of the areas
from any fixed vertex. The interested reader can find more related discussions
in [9].

The finite cyclic ring analogue of this problem is recently investigated by
Yazici [17]. In particular, she proved that for E ⊆ Z/prZ, if |E| ≥ p2r−(1/2)

then |V2(E)| ≥ pr

4
1+p
p − 1. This implies that if r = 1, Yazici’s bound is weaker

than that of [9]. In this section, we will give an improvement of this result in
the setting of finite valuation rings.

Theorem 3. Let R be a finite valuation ring of order qr. Let E be a set of
points in R2. If |E| � q2r−1, then there exists z ∈ E such that |V z

2 (E)| � qr.

Theorem 3 implies that when R is a finite field, that is, r = 1, in order
to get (1− o(1))q distinct areas we only need the condition q = o(|E|). This
means that we can chop off the logarithmic term in Iosevich et al.’s result.
When R is a finite cyclic ring, that is, q is a prime p, the bound p2r−

1
2 in [17]

is decreased to p2r−1.
We remark here that if E = {(x, y) : x, y ∈ R0}, then |E| = q2r−2. One

can check that V2(E) ⊆ R0, therefore |V2(E)| = o(qr). Thus, there is a gap
between q2r−2 and q2r−1 for r ≥ 2. From this construction, we conjecture
that the condition on the size of E can be improved to q2r−2+ε for any ε > 0.

By using inductive arguments, one can obtain a similar result for higher
dimensional cases, which is also a generalization of the main result in [14].
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Theorem 4. Let R be a finite valuation ring of order qr, and let E be a
set of points in Rd. If |E| � qr−1 · qr(d−1), then then there exists a point z ∈ E
such that |V z

d (E)| � qr.

1.3. An improvement on permanents of matrices. Let M be an k× k
matrix. The permanent of M is defined by

Per(M) :=
∑
σ∈Sk

k∏
i=1

aiσ(i).

For E ⊆ F
k
q , let Mk(E) denote the set of k × k matrices with rows in E , and

Pk(E) = {Per(M) : M ∈ Mk(E)}. In the setting of finite fields, the second
listed author [13] proved that for E ⊆ F

k
q , if |E| � kqk−1, then Fq \{0} ⊆ Pk(E).

He also indicated that this result is sharp up to a factor of k, for instance,
|{x ∈ F

k
q : x1 = 0}|= qk−1, and Pk({x ∈ F

k
q : x1 = 0}) = {0}. In the case when

E is the Cartesian product of sets, the author of [13] obtained an improvement.

Namely, he showed that for A⊆ Fq , if |A| � q
1
2+

1
2k then Fq \ {0} ⊂ Pk(Ak).

The author of [13] also made a conjecture that the exponent q
1
2+

1
2k can be

decreased to q
1
2+ε for any ε > 0, when k is sufficiently large.

By employing the same techniques, a similar result was obtained in the
setting of finite cyclic rings Z/prZ in [15]. The author of [15] showed that for
any A⊆ Z/prZ, if

|A|� rpr−
1
2+

1
2k ,

then (Z/prZ)∗ ⊆ Pk(Ak) with gcd(k, pr) = 1, where (Z/prZ)∗ is the set of all
units in Z/prZ

In this paper, we are able to improve the threshold qr−
1
2+

1
2k to q

(k−1)(2r−1)+r
2k−1

to get a positive proportion of permanents in a more general setting.

Theorem 5. Let R be a finite valuation rings of order qr, and k be an
integer with gcd(k, qr) = 1. For any A⊂R, if

|A|� q
(k−1)(2r−1)+r

2k−1 ,

then |Pk(Ak)| � qr.

1.4. Monochromatic sum-product. For A1,A2 ⊂ Fp, where p is a prime,
Shkredov [11] showed that |A1||A2| ≥ 20p, then there exist x, y ∈ Fp such that
x + y ∈ A1, x · y ∈ A2. Cilleruelo [4] extended this result to arbitrary finite
fields Fq of q elements using Sidon sets as follows.

Theorem 6 ([4]). For any X1,X2 ⊆ Fq of cardinality |X1||X2|> 2q, there
exist x, y ∈ Fq such that x+ y ∈X1, x · y ∈X2.

In this section, we extend Theorem 6 to the setting of finite valuation rings.
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Theorem 7. Let R be a finite valuation ring of order qr. For any X1,X2 ⊆
R∗ of cardinality

|X1||X2|>
q4r−1

(qr − qr−1)2
,

there exist x, y ∈R∗ such that x+ y ∈X1 and x · y ∈X2.

The rest of this paper is organized as follows: in Section 2, we recall the
definition and some properties of finite valuation rings from [10]. Some tools
from spectral graph theory are mentions in Section 3. The proofs of Theo-
rems 2, 3, 5, and 7 are given in Sections 4–7.

2. Preliminaries

We say that a ring R is local if R has a unique maximal ideal that contains
every proper ideal of R. R is principal if every ideal in R is principal. The
following is the definition of finite valuation rings taken from [10].

Definition 8. Finite valuation rings (FVR) are finite rings that are local
and principal.

Throughout, rings are assumed to be commutative, and to have an iden-
tity. Let R be a finite valuation ring, then R has a unique maximal ideal
that contains every proper ideals of R. This implies that there exists a
non-unit z called uniformizer in R such that the maximal ideal is gener-
ated by z. Throughout this paper, we denote the maximal ideal of R by
(z). Moreover, we also note that the uniformizer z is defined up to a unit
of R.

There are two structural parameters associated to R as follows: the cardi-
nality of the residue field F =R/(z), and the nilpotency degree of z, where
the nilpotency degree of z is the smallest integer r such that zr = 0. Let us
denote the cardinality of F by q. In this note, q is assumed to be odd, then
2 is a unit in R.

If R is a finite valuation ring, and r is the nilpotency degree of z, then we
have a natural valuation

ν : R→{0,1, . . . , r}
defined as follows: ν(0) = r, for x �= 0, ν(x) = k if x ∈ (zk) \ (zk+1). We also
note that ν(x) = k if and only if x= uzk for some unit u in R. Each Abelian
group (zk)/(zk+1) is a one-dimensional linear space over the residue field
F =R/(z), thus its size is q. This implies that |(zk)|= qr−k, k = 0,1, . . . , r.
In particular, |(z)| = qr−1, |R| = qr and |R∗| = |R| − |(z)| = qr − qr−1. The
following are some examples of finite valuation rings:

(1) Finite fields Fq , q = pn for some n > 0.
(2) Finite rings Z/prZ, where p is a prime.
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(3) O/(pr) where O is the ring of integers in a number field and p ∈ O is
a prime.

(4) Fq[x]/(f
r), where f ∈ Fq[x] is an irreducible polynomial.

3. Tools from spectral graph theory

We say that a bipartite graph G= (A ∪B,E) is biregular if in both of its
two parts, all vertices have the same degree. If A is one of the two parts of a
bipartite graph, we write deg(A) for the common degree of the vertices in A.
Label the eigenvalues so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Note that in a bipartite
graph, we have λ2 =−λ1. In this paper, we denote the adjacency matrix of
G by M . The following is the expander mixing lemma for bipartite graphs.
The reader can find a detailed proof in [5].

Lemma 9. Suppose G is a bipartite graph with parts A, B such that the
vertices in A all have degree a and the vertices in B all have degree b. For any
two sets X ⊂A, and Y ⊂B, the number of edges between X and Y , e(X,Y ),
satisfies ∣∣∣∣e(X,Y )− a

|B| |X||Y |
∣∣∣∣≤ λ3

√
|X||Y |,

where λ3 is the third eigenvalue of G.

The following theorem is an analogue of [1, Theorem 9.2.4].

Theorem 10. Let G= (A∪B,E) be a bipartite graph as in Lemma 9, and
U , V two subsets in A, B, respectively. Then we have the following estimate

∑
u∈U

(
NV (u)−

a

|B| |V |
)2

≤ λ2
3|V |,

where NV (u) =N(u)∩ V , and N(u) is the set of all neighbors of u.

Proof. Let denote c= |V |/|B|, and x be a vector, where xi = Ii∈V − c1B .

We note that
√
a1A ±

√
b1B are eigenvectors corresponding to λ1, λn. It

follows from the definition of x that 〈x,1A〉= 0 and 〈x,1B〉= 0. Then x ∈W ,
and ‖Mx‖2 ≤ λ2

3‖x‖2. We note that

〈Mx,Mx〉=
∑
u∈A

(
NV (u)−

a|V |
|B|

)2

,

and ‖x‖2 = (1 − c)2|V | + (|B| − |V |)c2 = (1 − c)|V | < |V |, then the lemma
follows from the fact that

∑
u∈U

(
NV (u)−

a|V |
|B|

)2

≤
∑
u∈A

(
NV (u)−

a|V |
|B|

)2

.
�
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3.1. Product graphs over finite valuation rings. We define the product
graphs Pq,r(R) = (A∪B,E) over finite valuation rings R as follows: A=B =
Rd \ (R0)d, and there is an edge between x ∈ A and y ∈ B if and only if
x · y= 1. The spectrum of this graph was given by Nica [10].

Theorem 11 (Nica, [10]). The cardinality of each vertex part of Pq,r(R)

is qdr − qd(r−1) = (1 − o(1))qdr , and deg(A) = deg(B) = q(d−1)r. The third

eigenvalue of Pq,r(R) is at most
√
q(d−1)(2r−1).

3.2. Erdős–Rényi graphs over FVR. For any x in Rd\(R0)d, we denote
[x] the equivalence class of x in Rd\(R0)d, where x,y ∈Rd\(R0)d are equiva-
lent if and only if x= ty for some t ∈R∗. Let Eq,d(R) denote the Erdős–Rényi
bipartite graph Eq,d(R) = (A∪B,E) whose vertices in each part are the points
of the projective space over R, where two vertices [x] and [y] are connected
if and only if x · y = 0. We have the following theorem on the spectrum of
Eq,d(R).

Theorem 12 (Nica, [10]). The cardinality of each vertex part of Eq,d(R)

is q(d−1)(r−1)(qd − 1)/(q − 1), and deg(A) = deg(B) = q(d−2)(r−1)(qd−1 − 1)/

(q− 1). The third eigenvalue of Eq,d(R) is at most
√

q(d−2)(2r−1).

As an application of the Erdős–Rényi graph Eq,2d(R), we obtain the fol-
lowing theorem which is a generalization of [9, Theorem 9]. Some of its
applications over finite fields can be found in [8], [9].

Theorem 13. Let F and G be subsets in Rd. Suppose that F ∩ (R0)d = ∅.
Let, for t ∈R,

ν(t) :=
∣∣{(x,y) ∈ F ×G : x · y= t

}∣∣,
where x · y= x1y1 + · · ·+ xdyd. Then∑

t∈R
ν(t)2 ≤ |F |2|G|2

qr
+ q(d−1)(2r−1)|F ||G| · max

x∈Rd\(R0)d
|F ∩ lx|,

where
lx :=

{
sx : s ∈R∗},

with x ∈Rd \ (R0)d.

Proof. For any pair of points (a,b) ∈Rd ×Rd, we define

pa,b := (a1, . . . , ad, b1, . . . , bd),

and

U :=
{
px,−t : (x, t) ∈ F ×G

}
⊆R2d,

V :=
{
py,z : (y,z) ∈G× F

}
⊆R2d.

Since F ∩(R0)d = ∅, U and V are sets of points inR2d\(R0)2d. It follows from
the definition of ν(t) that

∑
t∈R ν(t)2 is the number of quadruples (x,y,z, t) ∈



250 T. PHAM AND L. A. VINH

F ×G×F ×G satisfying x ·y= z · t. It is clear that if x ·y= z · t, then there
is an edge between two vertices [px,−t] and [py,z] in the Erdős–Rényi graph
Eq,2d(R). However, we cannot make sure that the number of edges between
[U ] := {[u] : u ∈ U} and [V ] := {[v] : v ∈ V } in the Erdős–Rényi graph Eq,2d(R)
is an upper bound for the sum

∑
t∈R ν(t)2, since there might exist two points

in U determining the same congruence class, that is, the same vertex in the
Erdős–Rényi graph Eq,2d(R), for example, u ∈ U and λu ∈ U with λ ∈R∗\{1}.

Thus, we will partition U and V to subsets such that no two points in each
subset determine the same vertex in the Erdős–Rényi graph.

Since m = maxx∈Rd\(R0)d |F ∩ lx|, we can partition U into m subsets
U1, . . . ,Um of distinct vertices of the Erdős–Rényi graph ERq,2d(R). Simi-
larly, we also can partition V into m subsets V1, . . . , Vm of distinct vertices of
the Erdős–Rényi graph ERq,2d(R). Then, it is clear that

∑
t∈R

ν(t)2 ≤
∑
i,j

e(Ui, Vj) =

m∑
j=1

e(U1, Vj) + · · ·+
m∑
j=1

e(Um, Vj).

On the other hand, for each 1≤ i≤m, it follows from Lemma 9 and The-
orem 12 that

m∑
j=1

e(Ui, Vj) ≤
|Ui||V |

qr
+ q(d−1)(2r−1)

√
|Ui

(√
|V1|+ · · ·+

√
|Vm|

)

≤ |Ui||V |
qr

+
√
mq(d−1)(2r−1)

√
|Ui|V |,

where the second inequality follows from the Cauchy–Schwarz inequality.
Thus ∑

t∈R
ν(t)2 ≤ |U ||V |

qr
+ q(d−1)(2r−1)m

√
|U ||V |.

From the definitions of U and V , we get |U |= |F ||G| and |V |= |F ||G|. There-
fore, the theorem follows. �

Now we prove the following theorem that will be used many times in this
paper.

Theorem 14. Let F and G be subsets in Rd. Suppose that

m= max
x∈Rd\(R0)d

|F ∩ lx|,

then we have ∣∣{x · y : x ∈ F,y ∈G}
∣∣� qr,

when |F ||G| �mq(d−1)(2r−1)+r.

Proof. We first have∣∣{x · y : x ∈ F,y ∈G}
∣∣= ∣∣{t : ν(t)> 0

}∣∣,
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and ∑
t∈R

ν(t) = |F ||G|.

On the other hand, let

T =
∣∣{(x1,y1,x2,y2) ∈ F ×G× F ×G : x1 · y1 = x2 · y2

}∣∣,
which implies that

T =
∑
t∈R

ν(t)2.

It follows from the Cauchy–Schwarz inequality that

∣∣{t : ν(t)> 0
}∣∣∑

t∈R
ν(t)2 ≥

(∑
t∈R

ν(t)

)2

.

Therefore, we obtain

(5)
∣∣{t : ν(t)> 0

}∣∣≥ |F |2|G|2
T

.

On the other hand, it follows from Theorem 13 that

(6) T ≤ |F |2|G|2
qr

+mq(d−1)(2r−1)|F ||G|.

Putting (5) and (6) together gives us∣∣{x · y : x ∈ F,y ∈G}
∣∣� qr,

when |F ||G| �mq(d−1)(2r−1)+r. This concludes the proof of the theorem. �

4. Proof of Theorem 2

A graph G = (V,E) is called an (n,d,λ)-graph if it is d-regular, has n
vertices, and the second eigenvalue of G is at most λ. Suppose that a graph
G is edge-colored by a set of finite colors. We say that G is an (n,d,λ)-colored
graph if the induced subgraph of G on each color is an (n,d(1+o(1)), λ)-graph.
In [16], the second listed author proved that any large induced subgraph of an
(n,d,λ)-colored graph contains almost all possible colorings of small complete
subgraphs.

Theorem 15 ([16, Theorem 2.7]). For any t ≥ 2. Let G = (V,E) be an
(n,d,λ)-colored graph, and let m< n such that m� λ(n/d)t/2. Suppose that
the color set of C has cardinality |C| = (1 − o(1))n/d, then for every subset
U ⊂ V with cardinality m, the induced subgraph G on U contains at least

(1− o(1))|C|(
t
2) possible colorings of Kt.



252 T. PHAM AND L. A. VINH

Let C =R∗, we now define a graph G(R) as follows: the vertex set of G(R)
is Rd and the edge between x and y is colored by the β-color with β ∈ C, if
and only of x · y= β.

One can follow the proof of [16, Theorem 2.7] step by step by using
Lemma 9, Theorem 10, and Theorem 11 to get a version of Theorem 15
for G(R) as follows.

Theorem 16. For any t ≥ 2, and for every subset U ⊂ V (G(R)) of car-

dinality m� q
(d−1)(2r−1)+rt

2 , the induced subgraph of G(R) on U contains at

least (1− o(1))qr(
t
2) possible colorings of Kt.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since |E| � q
(d−1)(2r−1)+r(k+1)

2 , it follows from Theo-

rem 16 that the induced subgraph G(R) on E contains at least (1−o(1))qr(
k+1
2 )

possible colorings of Kk+1. Moreover, each coloring is corresponding to a dot-
product congruence class, thus the number of dot-product congruence classes

of k-simplices in E is at least (1 − o(1))qr(
k+1
2 ). This ends the proof of the

theorem. �

5. Proofs of Theorems 3 and 4

Before giving a proof of Theorem 3, we have the following observation:
Since the area of triangle is invariant under translations, we can assume that
0 ∈ E , and the formula of area of the triangle formed by three vertices 0,
a = (a1, a2) and b = (b1, b2) is a1b2 − a2b1. Let S be the set of triangles in
E which share a common vertex at 0. Then the number of distinct areas of
triangles in S is at least the cardinality of

E · E ′ :=
{
x · y : x ∈ E ,y ∈ E ′},

where E ′ = {(y,−x) : (x, y) ∈ E}.
A result of Nica in [10], that is, Theorem 1, states that if |E||E ′|> q4r−1,

then |E · E ′| � qr − qr−1. It is clear that |E|= |E ′|. Thus if |E|> q2r−
1
2 , then

the number of distinct areas of triangles in E is at least qr − qr−1. In fact, the
result of Nica [10] gives us even more information, for instance, the number

of triangles of area t ∈R∗ is at least (1− o(1)) |E|
2

qr when q2r−
1
2 = o(|E|).

However, in order to decrease from the exponent q2r−
1
2 to q2r−1, we need

to use more complicated and tricky arguments. First, we need to prove the
following lemma.

Lemma 17. Let R be a finite valuation ring of order qr, and let E be a
set of 8q2r−1 points in R2. Then there exists a point z of E such that z is
contained in at least qr/8 lines, and each of these lines passes through at least
qr−1 + 1 points from E .
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Proof of Lemma 17. To prove Lemma 17, we make use of the following theorem
on the number of incidences between points and lines in R2, where a line in
R2 is of the form ax+ by + c = 0 with (a, b, c) ∈ R3 \ (R0)3. We will follow
the argument of Solymosi [12] in its proof.

Theorem 18. Let R be a finite valuation ring of order qr, E be a set of
points in R2 and L be a set of lines in R2. Then the number of incidences
between the point set E and the line set L, denoted by I(E ,L), satisfies∣∣∣∣I(E ,L)− |E||L|

qr

∣∣∣∣≤ q(2r−1)/2
√
|E||L|.

Proof. We identify each point (x1, x2) ∈ E with a vertex [x1, x2,1] of the
Erdős–Rényi graph Eq,3(R). Let E ′ be the set of corresponding vertices. Sim-
ilarly, we identify each line ax+ by = c in L, (a, b, c) /∈ (R0)3, with a vertex
[a, b,−c] of the Erdős–Rényi graph Eq,3(R). Let L′ be the set of correspond-
ing vertices. Then E ′ and L′ are sets of distinct vertices with |E ′|= |E| and
|L′|= |L|.

It is easy to see that the number of incidences between E and L equals
the number of edges between E ′ and L′ in the Erdős–Rényi graph Eq,3(R). It
follows from Lemma 9 and Theorem 12 that∣∣∣∣I(E ,L)− |E||L|

qr

∣∣∣∣≤ q(2r−1)/2
√
|E||L|.

This concludes the proof of the theorem. �

The following is a corollary of Theorem 18.

Corollary 19. Let R be a finite valuation ring of order qr, and let E be
a set of 3q2r−1 points in R2. Then the number of distinct lines spanned by E
containing at least qr−1 + 1 points from E is at least q2r/4.

Proof. Let L1 be the set of lines in R2 such that each line contains at most
qr−1 points from E . We now show that |L1| ≤ 3q2r/4. Indeed, we first have
I(E ,L1)≤ qr−1|L1|, and it follows from Theorem 18 that

I(E ,L1)≥
|E||L1|
qr

− q(2r−1)/2
√

|E||L1| ≥ 3qr−1|L1| −
√
3q2r−1

√
|L1|.

This implies that

2qr−1|L1| ≤
√
3q2r−1

√
|L1|.

Thus, we obtain

|L1| ≤
3q2r

4
.

On the other hand, the number of lines of the form y = ax+ b in R2 is q2r,
then the number of lines of the form y = ax+ b containing at least qr−1 + 1
points from E is at least q2r/4. Since any two lines in R2 have at most qr−1
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points in common, these lines are distinct. This completes the proof of the
corollary. �

We are ready to give a proof of Lemma 17.

Proof of Lemma 17. Let L be the set of lines in R2 such that each line in
L contains at least qr−1 + 1 points from E . It follows from Corollary 19 that
|L| ≥ q2r/4. From the lower bound of Theorem 18, we have if |E||L| ≥ 2q4r−1,
then I(E ,L)≥ |E||L|/qr. Thus, it implies that I(E ,L)≥ q3r−1. Therefore, by
the pigeon-hole principle, there exists a point z ∈ E such that z is contained
in at least qr/8 lines from L, and each of these lines contains at least qr−1+1
points from E . �

Proofs of Theorems 3 and 4.

Proof of Theorem 3. Since |E| � q2r−1, we may suppose that |E| ≥ 8q2r−1.
We have |(R0)2|= o(|E ∩R2 \ (R0)2|), thus without loss of generality, we can
assume that E ⊆R2 \ (R0)2. Lemma 17 implies that there exists a point z ∈ E
such that z is contained in at least qr/8 lines, and each of these lines passes
through least qr−1 +1 points from E . We denote the set of these lines by L′.

We now consider the set of triangles in E which share a common vertex
at z. Since the area of a triangle is invariant under translations, we assume
that z= 0, and all lines in L′ are of the form lk := {y = kx} with k ∈ R. It
is easy to see that for a fixed a ∈ R, the points (x,ax) /∈ lb for all b �= a and
x ∈R∗. Thus, we can choose qr/8 points of E from the lines in L′ such that
no two points belong to the same line. Let F be the set of such points, and
G := {(−p2, p1) : (p1, p2) ∈ E}. Then the number of distinct areas of triangles
formed by three vertices (0,a,b) ∈ {0} × F ×G is the cardinality of the set
F ·G= {a · b : a ∈ F,b ∈G}.

Applying Theorem 14 with |F |= qr/8, |G|= 8q2r−1, d= 2, and m= 1, we
get

|F ·G| � qr.

This implies that the number of distinct areas determined by E is at least
� qr. This concludes the proof of the theorem. �

Proof of Theorem 4. We prove Theorem 4 by induction on d. The base
case d = 2 follows from Theorem 3. Suppose that the statement is true for
all 2 < i ≤ d − 1, we now show that it also holds for d. Indeed, suppose
|E| ≥ 8qr−1qr(d−1), there exists a hyperplane Ht := {x ∈Rd : xd = t} such that
|E ∩Ht| ≥ 8qr−1qr(d−2). By induction hypothesis, we have |Vd−1(E ∩Ht)| ≥
qr/2.

Since Vd(E) is invariant under translations, we can assume that t= 0. More-
over, the number of points of E satisfying xd ∈ R0 is at most qr−1 · qr(d−1).
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Thus, there exists a point z ∈ E such that zd ∈R∗. On the other hand, V z
d (E)

are determinants of size d+ 1 of the form

det

⎛
⎜⎜⎜⎜⎜⎝

1 . . . 1 1
x1
1 . . . xd

1 z1
...

. . .
...

...
x1
d−1 . . . xd

d−1 zd−1

0 . . . 0 zd

⎞
⎟⎟⎟⎟⎟⎠

= zd · det

⎛
⎜⎜⎜⎝

1 . . . 1
x1
1 . . . xd

1
... · · ·

...
x1
d−1 . . . xd

d−1

⎞
⎟⎟⎟⎠ .

This completes the proof of the Theorem 4. �

6. Proof of Theorem 5

Since |A| � q
(k−1)(2r−1)+r

2k−1 > qr−1 = |R0|, there exists a unit u ∈ A ∩ R∗.
Let 1 := (1, . . . ,1) ∈Rk, u= (u, . . . , u) ∈Rk. For any two points x and y in
Ak, let M(u,x,y) denote the matrix whose rows are x, y and (k− 2) u’s.

We have

(7) Per
(
M(u,x,y)

)
= ukPer

(
M(1,x/u,y/u)

)
= uk

k∑
i=1

xi

u

∑
j �=i

yj
u
.

Thus, we are able to reduce the permanent problem to the dot product
problem of two following sets:

F :=

{(
x1

u
, . . . ,

xk

u

)
: (x1, . . . , xk) ∈Ak

}
,

G :=

{(∑
j �=1

yj
u
, . . . ,

∑
j �=k

yj
u

)
: (y1, . . . , yk) ∈Ak

}
.

It is clear that |F |= |A|k and |G|= |A|k since gcd(k, qr) = 1. From (7) we
get ∣∣Per(M(u,x,y)

)∣∣= |F ·G|,
then the theorem follows immediately from Theorem 14 with m= |A|.

7. Proof of Theorem 7

The proof of Theorem 7 is based on the study of the equation (x1/2 −
z)(x1/2 + z) = x2 where x1 ∈X1, x2 ∈X2 and z ∈X3. Here, X3 ≡R∗. This
equation is equivalent to the equation (x1/2)

2 − x2 = z2. We set

A1 =
{
(x1/2)

2 | x1 ∈X1

}
, A2 = {−x2 | x2 ∈X2},

A3 =
{
z2 | z ∈X3

}
, A4 =

{
z2 | z ∈X3

}
.

Note that the equation x2 = a2 has at most two solutions in R for any a ∈R∗.
Thus, we have

|A1| ≥ |X1|/2, |A2|= |X2|, |A3| ≥ |X3|/2, |A4| ≥ |X3|/2.
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The equation (x1/2)
2 − x2 = z2 has a solution x1 ∈X1, x2 ∈X2, z ∈X3 if and

only if there exists an edge between two vertex sets

U :=
{
[a3,1, a1] : (a3,1, a1) ∈A3 × {1} ×A1

}
,

and

V :=
{
[a4,1, a2] : (a4,1, a2) ∈A4 × {1} ×A2

}
in the Erdős–Rényi graph Eq,3(R). Therefore, from Lemma 9 and Lemma 12
that

e(U,V )≥ |A1||A2||A3||A4|
qr

− q(2r−1)/2
√

|A1||A2||A3||A4|.

Thus, if

|X1||X2|>
q4r−1

(qr − qr−1)2
,

then e(U,V )> 0, and the theorem follows.
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