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SUM OF TOEPLITZ PRODUCTS ON THE HARDY SPACE
OVER THE POLYDISK

TAO YU

Abstract. In this paper, we obtain several sufficient and neces-
sary conditions for a finite sum of Toeplitz products with form∑M

m=1 TfmTgm on the Hardy space over the polydisk to be zero.

The methods used in this note are Berezin transform and the
essential fiber dimension.

1. Introduction

Let D denote the open unit disk in the complex plane C. Its boundary
is the unit circle T. Throughout this paper, let N denote a fixed positive
integer, and let DN and T

N denote the Cartesian products of N copies of D
and T, respectively. For 1≤ p≤∞ let Lp(TN ) be the usual Lebesgue space
on T

N with respect to dσ, the Haar measure on T
N . Hardy space Hp(DN ) is

the closure of the analytic polynomials in Lp(TN ). Let P be the orthogonal
projection from L2(TN ) onto H2(DN ). The Toeplitz operator Tu with symbol
u in L∞(TN ) is defined by

Tu(f) = P (uf)

for all f ∈H2(DN ). It is clear that Tu is a bounded linear operator on the
H2(DN ).

On the Hardy space of the unit disk, Brown and Halmos [4] firstly showed
that two Toeplitz operators Tf and Tg commute with each other if and only if
either both f and g are analytic, or both f and g are coanalytic, or a nontrivial
linear combination of f and g is constant. They also proved that a Toeplitz
product TfTg equals some Toeplitz operator if and only if either g is analytic
or f is co-analytic. In the case of the Bergman space, this problem is more
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subtle. Axler and C̆uc̆ković [3] characterized commuting Toeplitz operators
with bounded harmonic symbols on the Bergman space over the unit disk.
After that, there were many subsequent works about algebraic properties of
Toeplitz operators. Ahern and C̆uc̆kovic̆ [1] discuss when a product of two
Toeplitz operators with bounded harmonic symbols on the Bergman space
equals some Toeplitz operator with a symbol such that some restrictions. On
the Dirichlet space of the unit disk, Lee in [12] studied the commutativity of
two Toeplitz operators with harmonic symbols. Then, Chen and Dieu [6] and
Yu [15] extended, respectively, Lee’s result to more general case.

For the function spaces of several variables, Zheng [17] characterized com-
muting Toeplitz operators with parahormonic symbols on Bergman space over
the unit ball. Choe, Koo and Lee [5] characterized commuting Toeplitz op-
erators with pluriharmonic symbols on the Bergman space over the polydisk.
On the Hardy space over the polydisk, Lee [13] studied the commutativity of
two Toeplitz operators of which one symbol is an arbitrarily bounded function
and the other is a pluriharmonic function.

In the setting of several variables, even for Hardy space, it is interesting
when two Toeplitz operators with general symbols are commuting. Gu and
Zheng [9] obtained a condition for a product of two Toeplitz operators on
the Hardy space over the bidisk equals a Toeplitz operator. They proved the
following theorem.

Theorem 1.1 (See [9]). Let f, g ∈ L∞(T2). The semi-commutator TfTg −
Tfg equals zero on H2(D2) if and only if , for each i (i= 1,2), either f̄ or g
is analytic in the ith variable.

Ding, Sun and Zheng [8] completely characterized the commuting Toeplitz
operators on the Hardy space over the bidisk. In [8], the symbols f++ and
f−− represent P1P2f and (I − P1)(I − P2)f , respectively, where Pi (i= 1,2)
denotes the Szegö projection for the ith variable (their definitions can be seen
later).

Theorem 1.2 (See [8]). Let f, g ∈ L∞(T2). The Toeplitz operator Tf com-
mutes with the Toeplitz operator Tg on H2(D2) if and only if the following
conditions hold.

(a) for almost all ξ2 ∈ T,
(a1) f(z1, ξ2) and g(z1, ξ2) are both analytic in variable z1 on D, or
(a2) f(z1, ξ2) and g(z1, ξ2) are both co-analytic in variable z1 on D, or
(a3) there are a1(ξ2) and b1(ξ2), not both zero, such that

a1(ξ2)f(z1, ξ2) + b1(ξ2)g(z1, ξ2)

is a constant in variable z1 on D.
(b) for almost all ξ1 ∈ T,

(b1) f(ξ1, z2) and g(ξ1, z2) are both analytic in variable z2 on D, or
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(b2) f(ξ1, z2) and g(ξ1, z2) are both co-analytic in variable z2 on D, or
(b3) there are a2(ξ1) and b2(ξ1), not both zero, such that

a2(ξ1)f(ξ1, z2) + b2(ξ1)g(ξ1, z2)

is a constant in variable z2 on D.
(c) One of the following conditions holds:

(c1)
f++(z1, z2) = f1(z1) + f2(z2),

g++(z1, z2) = g1(z1) + g2(z2),

where f1, f2, g1 and g2 are in Hq(D) for every q > 1.
(c2)

f−−(z1, z2) = f̄1(z1) + f̄2(z2),

g−−(z1, z2) = ḡ1(z1) + ḡ2(z2),

where f1, f2, g1 and g2 are in Hq(D) for every q > 1.
(c3) There exist constants a, b, not both zero, such that

af++(z1, z2) + bg++(z1, z2) = h̄1(z1) + h̄2(z2),

af−−(z1, z2) + bg−−(z1, z2) = r̄1(z1) + r̄2(z2),

where h1, h2, r1 and r2 are in Hq(D) for every q > 1.

Motivated by the above results, we discuss the algebraic properties of
Toeplitz operators on the Hardy space over the polydisk, and get the con-

ditions for a finite sum of Toeplitz products with the form
∑M

m=1 TfmTgm

to be zero. It is clear that this will generalize the cases of commutator and
semi-commutator of Toeplitz operators.

Let Kz(ζ) =
1

1−zζ denote the reproducing kernel of Hardy space H2(D)

at the point z ∈ D and kz(ζ) = Kz(ζ)/‖Kz‖ =

√
1−|z|2
1−zζ the normalized re-

producing kernel of H2(D). Then, for z = (z1, z2, . . . , zN ) ∈ D
N and ζ =

(ζ1, ζ2, . . . , ζN ) ∈ T
N , the normalized reproducing kernel of H2(DN ) is given

by

kz(ζ) =

N∏
i=1

kzi(ζi).

For a bounded linear operator S on H2(DN ) the Berezin transform S̃ of S
is defined by

S̃(z) = 〈Skz, kz〉=
∫
TN

(Skz)(ζ)kz(ζ)dσ(ζ).

For a Toeplitz operator Tf on H2(DN ) the Berezin transform of Tf is

T̃f (z) = 〈Tfkz, kz〉=
∫
TN

f(ζ)
∣∣kz(ζ)∣∣2 dσ(ζ),

which is exactly the Poisson extension to the polydisk of f .
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For 1≤ i≤N write ∂i and ∂̄i instead of ∂
∂zi

and ∂
∂z̄i

, respectively. Suppose

f is a twice differentiable function in a open set of C
N . Then f is called

N -harmonic if ∂i∂̄if = 0 for each 1≤ i≤N .
With these notations we state the following result.

Theorem 1.3. Let fm, gm ∈ L∞(TN ) for 1≤m≤M . Then
∑M

m=1 Tfm ×
Tgm = 0 on H2(DN ) if and only if the Berezin transform of

∑M
m=1 TfmTgm is

N -harmonic in D
N and, for almost all ξ ∈ T

N ,
∑M

m=1 fm(ξ)gm(ξ) = 0.

The equivalence between that a Toeplitz operator Tf commutes with Tg

and that the Berezin transform of the commutator TfTg−TgTf is N -harmonic
was proved in [10]. In fact this equivalence was also contained in the proof
of [8] and [16] for the cases of bidisk and polydisk, respectively. The proof in
this note is different from those and will be used to the proof of Theorem 1.5.

Let N̂ denote the set {1,2, . . . ,N}. For a subset I = {i1, i2, . . . , ik} of N̂ ,

let Ic = N̂ \ I , and
zI = (zi1 , zi2 , . . . , zik)

and

(zI , zIc) = (z1, z2, . . . , zN ).

The normalized partial reproducing kernel of H2(DN ) at the point zI ∈D
k is

defined by

kzI (ζI) =
∏
i∈I

kzi(ζi).

Definition 1.4. For f ∈ L1(TN ) the partial harmonic extension of f with
respect to I is defined by

f̃I(zI , ξIc) =

∫
Tn

f(ξI , ξIc)
∏
i∈I

1− |zi|2
|1− ziξ̄i|2

dσ(ξI)

=

∫
Tn

f(ξI , ξIc)
∣∣kzI (ξI)∣∣2 dσ(ξI)

=
〈
f(ξIc , ·)kzI , kzI

〉
.

It is clear that f̃I(zI , ξIc) is k-harmonic in zI for almost all ξIc ∈ T
N−k. In

what follows, the partial harmonic extension f̂I of f will also be denoted by
f for short.

For a nonempty subset I = {i1, i2, . . . , ik} of N̂ let ∂I = ∂i1∂i2 · · ·∂ik . If
I = ∅, let ∂∅f = f .

Let |I| denote the cardinal number of a set I .
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Theorem 1.5. Let fm, gm ∈ L∞(TN ), 1≤m≤M . Then
∑M

m=1 TfmTgm =

0 on H2(DN ) if and only if for all I ⊂ N̂ ,

(1.1)
M∑

m=1

∂Ifm(zI , ξIc)∂̄Igm(zI , ξIc) = 0

for all zI ∈D|I| and for almost all ξIc ∈ TN−|I|.

Remark 1.6. When N =M = 2, if putting f2 = f1g1 and g2 =−1 in The-
orem 1.5, then we obtain Theorem 1.3 in [8], and if putting f2 = g1 and
g2 =−f1, then Theorem 1.4 of [8] follows.

Given f ∈ L1(TN ) and 1≤ i≤N , the Szegö projection Pi is defined by

(1.2) (Pif)(zi, ξN̂\{i}) =

∫
T

f(ξ)
1

1− ziξ̄i
dσ(ξi),

where zi ∈ D, ξ ∈ T
N . It is well known that Pi is bounded on Lp(TN ) (1 <

p<∞), and Pi commutes with Pj for i, j ∈ N̂ , see, for example, [8].

Definition 1.7. For I = {i1, i2, . . . , ik} ⊂ N̂ , let PI = Pi1 · · ·Pik . For I ,

J ⊂ N̂ , I ∩ J = ∅ and f ∈ L∞(TN ), let f(I,J) denote (1− PI)PJf .

It is clear that f(I,J) ∈
⋂

1<q<∞Lq(TN ) and f(I,J)(zI , zJ , ξN̂\(I∪J)) is co-

analytic in zI ∈ D
|I| and analytic in zJ ∈ D

|J| for almost all ξN̂\(I∪J) ∈
T
N−|I|−|J|.

Theorem 1.8. Let f = (f1, f2, . . . , fM ), g = (g1, g2, . . . , gM ) ∈ L∞(TN ) ⊗
C

M . Then
∑M

m=1 TfmTgm = 0 on H2(DN ) if and only if

(1.3)

M∑
m=1

fm(ξ)gm(ξ) = 0

for almost all ξ ∈ TN . And for every nonempty set I = {n1, n2, . . . , n|I|} ⊂ N̂
the following condition holds.

(CIk) for almost all ξIc ∈ TN−|I|, there exists a natural number k(ξIc) (0≤
k(ξIc)≤M ) and an orthonormal bases {e1(ξIc), e2(ξIc), . . . , eM (ξIc)} of CM

such that

(1.4)
〈
f(∅,I)(zI , ξIc), ei(ξIc)

〉
CM =

|I|∑
j=1

f I
ij(zI\{nj}, ξIc), 1≤ i≤ k(ξIc)

and

(1.5)
〈
ḡ(I,∅)(zI , ξIc), ei(ξIc)

〉
CM =

|I|∑
j=1

gIij(zI\{nj}, ξIc), k(ξIc) + 1≤ i≤M
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for zI ∈D
|I|, where all functions f I

ij(zI\{nj}, ξIc) and gIij(zI\{nj}, ξIc) are an-

alytic in zI\{nj}.

Moreover, if j ∈ Ic, then for almost all given ξIc\{j} ∈ T
N−|I|−1, k(ξIc) can

be chosen independent to ξj .

In Section 2, we introduce several notations as the partial harmonic exten-

sion and the essential fiber dimension. Theorems 1.3 and 1.5 will be proved

in the Section 3. In Section 4, we give the proof of Theorems 1.8 and 4.4.

2. Preliminaries

2.1. Partial harmonic extension. In this section, we discuss the rela-

tionship of a function in Lp(TN ) and its partial harmonic extensions (see

Definition 1.4).

Lemma 2.1. If 1≤ p <∞, f ∈ Lp(TN ) and I ⊂ N̂ , then

(a)
∫
TN |f(rξI , ξIc)|p dσ(ξ)≤ ‖f‖pp for 0< r < 1;

(b)
∫
TN |f(rξI , ξIc)− f(ξI , ξIc)|p dσ(ξ)→ 0 as r→ 1−;

If furthermore f, g ∈ L2p(TN ), then

(c) 〈f(rξI , ·)g(rξI , ·)krξIc , krξIc 〉 → f(ξ)g(ξ) as r → 1− in the norm of
Lp(TN ).

Proof. The proof of (a) and (b) is similar to that of Theorem 2.1.3 in [14].

(a) By Jesen’s inequality, we have

∫
TN

∣∣f(rξI , ξIc)
∣∣p dσ(ξ) = ∫

TN

∣∣∣∣∫
T|I|

f(ζI , ξIc)
∣∣krξI (ζI)∣∣2 dσ(ζI)∣∣∣∣p dσ(ξ)

≤
∫
TN

∫
T|I|

∣∣f(ζI , ξIc)
∣∣p∣∣krξI (ζI)∣∣2 dσ(ζI)dσ(ξ).

Since
∫
Tk |krξI (ζI)|2 dσ(ξI) = 1, we get

∫
TN

∣∣f(rξI , ξIc)
∣∣p dσ(ξ)≤ ‖f‖pp.

(a) implies (b) since C(TN ) is dense in Lp(TN ) if 1≤ p <∞.
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(c) Applying (a) and (b), we have that∫
TN

∣∣〈f(rξI , ·)g(rξI , ·)krξIc , krξIc 〉− (fg)(ξI , rξIc)
∣∣p dσ(ξ)

=

∫
TN

∣∣〈[f(rξI , ·)g(rξI , ·)− f(ξI , ·)g(ξI , ·)
]
krξIc , krξIc

〉∣∣p dσ(ξ)
≤
∫
TN

∫
TN−|I|

∣∣f(rξI , ζIc)g(rξI , ζIc)

− f(ξI , ζIc)g(ξI , ζIc)
∣∣p∣∣krξIc (ζIc)

∣∣2 dσ(ζIc)dσ(ξ)

=

∫
TN−|I|

∫
T|I|

∣∣f(rξI , ζIc)g(rξI , ζIc)− f(ξI , ζIc)g(ξI , ζIc)
∣∣p dσ(ξI)dσ(ζIc)

≤ 2p
∫
TN

(∣∣f(rξI , ξIc)
∣∣p∣∣g(rξI , ξIc)− g(ξ)

∣∣p
+
∣∣f(rξI , ξIc)− f(ξ)

∣∣p∣∣g(ξ)∣∣p)dσ(ξ)
≤ 2p

(∫
TN

∣∣f(rξI , ξIc)
∣∣2p dσ(ξ))1/2(∫

TN

∣∣g(rξI , ξIc)− g(ξ)
∣∣2p dσ(ξ))1/2

+ 2p‖g‖p2p
(∫

TN

∣∣f(rξI , ξIc)− f(ξ)
∣∣2p dσ(ξ))1/2

→ 0 as r→ 1.

Applying (b) again, we have that 〈f(rξI , ·)g(rξI , ·)krξIc , krξIc 〉 tends to
f(ξ)g(ξ) in the norm of Lp(TN ) as r→ 1−. �

2.2. Essential fiber dimension. For to obtain concrete forms of f and g
when Tf commutes with Tg , we need to discuss the dimension of the space
generated by the range of a vector-valued function. So we introduce a notation
of essential fiber dimension which will be used in the proof of Theorem 1.8.

Let n be a positive integer, H2(D) ⊗ C
n the vector-valued Hardy space.

For a subspace M of H2(D)⊗Cn and z ∈ D, the fiber M(z) at z is defined
by

M(z) =
{
f(z) : f ∈M

}
⊂C

n,

and the fiber dimension fdD(M) by

fdD(M) = sup
z∈D

dimM(z).

The fiber dimension fdD(M) is achieved for all z ∈D except possibly a discrete
subset. For the notation and applications of fiber dimension we refer to see
[2], [7] for examples.

In following, we introduce the definition of essential fiber dimension at the
unit circle. Suppose A is countable subset of H2(D)⊗ C

n. Taking a repre-
sentative f for every element in A, then for every ξ ∈ T, f(ξ) is a determined
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vector in C
n. So for a given choice of representatives of A, the fiber A(ξ) at

ξ is defined by
A(ξ) = span

{
f(ξ) : f ∈A

}
⊂C

n.

Note that for a given point ξ ∈ T the space A(ξ) perhaps changes with respect
to the different choices of representatives of A.

Definition 2.2. The essential fiber dimension fdT(A) of A is defined by

fdT(A) = inf
E0

sup
ξ

{
dimA(ξ) : ξ ∈ T \E0, σ(E0) = 0

}
for a choice of representatives of A.

For two choices of representatives of A, since A is countable set, this two
choices is complete consistent except some subset of T with measure zero. So
the essential fiber dimension fdT(M) is well defined.

Lemma 2.3. If A is a countable subset of H2(D)⊗C
n, then, for every choice

of representatives of A, the essential fiber dimension fdT(A) is achieved for
almost all ξ ∈ T, that is,

(2.1) fdT(A) = dimA(ξ) a.e. ξ ∈ T.

Moreover, fdT(A) = fdD(A).

Proof. Fix a choice of representatives of A. Let d denote the essential fiber
dimension fdT(A). By the definition of fdT(A), there exists a subset E of T
with positive measure such that

dimA(ξ) = d

for all ξ ∈ E. So there exist f1,ξ, f2,ξ, . . . , fd,ξ in A and i1,ξ, i2,ξ, . . . , id,ξ in
{1,2, . . . , n} such that

det

⎛⎜⎜⎜⎜⎜⎝
f1,ξ
i1,ξ

(ξ) f2,ξ
i2,ξ

(ξ) · · · fd,ξ
id,ξ

(ξ)

f2,ξ
i1,ξ

(ξ) f2,ξ
i2,ξ

(ξ) · · · f2,ξ
id,ξ

(ξ)
...

... · · ·
...

fd,ξ
i1,ξ

(ξ) fd,ξ
i2,ξ

(ξ) · · · fd,ξ
id,ξ

(ξ)

⎞⎟⎟⎟⎟⎟⎠ �= 0

for all ξ ∈E. Because of A is countable, so is the set{
f1,ξ, f2,ξ, . . . , fd,ξ, i1,ξ, i2,ξ, . . . , id,ξ : ξ ∈E

}
.

Therefore, there exist f1, f2, . . . , fd in A, i1, i2, . . . , id in {1,2, . . . , n} and E′ ⊂
E with σ(E′)> 0 such that

F (ξ) := det

⎛⎜⎜⎜⎜⎝
f1
i1
(ξ) f2

i2
(ξ) · · · fd

id
(ξ)

f2
i1
(ξ) f2

i2
(ξ) · · · f2

id
(ξ)

...
... · · ·

...
fd
i1
(ξ) fd

i2
(ξ) · · · fd

id
(ξ)

⎞⎟⎟⎟⎟⎠ �= 0
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for all ξ ∈E′. Let

F (z) = det

⎛⎜⎜⎜⎜⎝
f1
i1
(z) f2

i2
(z) · · · fd

id
(z)

f2
i1
(z) f2

i2
(z) · · · f2id(z)

...
... · · ·

...
fd
i1
(z) fd

i2
(z) · · · fd

id
(z)

⎞⎟⎟⎟⎟⎠ , z ∈D.

Then F is a analytic function on D and, for almost all ξ ∈ T,

F (z)→ F (ξ)

as z → ξ non-tangentially. By Privalov’s uniqueness theorem [11, III:D],
F (ξ) �= 0 for almost all ξ ∈ T. So the conclusion (2.1) holds and fdT(A) ≤
fdD(A). The converse inequality is obvious and so fdT(A) = fdD(A). �

For a vector-valued function f = (f1, f2, . . . , fm) on D
n × T and ξ ∈ T, let∨

ξ(f) denote the subspace span{(f1(z, ξ), f2(z, ξ), . . . , fm(z, ξ)) : z ∈ D
n} of

C
m. The dimension of

∨
ξ(f) is denoted by vdξ(f).

Lemma 2.4. Suppose f = (f1, f2, . . . , fm) is a vector-valued function on
D

n×T. If for i= 1,2, . . . ,m fi(z, ξ) is analytic in z ∈D
n for almost all ξ ∈ T,

and is in H2(T) for all z ∈D
n and z �→ f(z, ·) define a continuous map from

D
n to H2(T). Then vdξ(f) is constant for almost all ξ ∈ T.

Proof. For i= 1,2, . . . ,m and almost all ξ ∈ T express fi as a power-series

fi(z, ξ) =
∑
k∈Zn

+

a
(i)
k (ξ)zk,

where Z+ denote the set of nonnegative integers, k = (k1, k2, . . . , kn) a multi-

index and zk := zk1
1 zk2

2 · · ·zkn
n . Then, for 0< r < 1 and k ∈ Z

n
+, we have∫

Tn

fi(rζ, ξ)ζ̄
k dσ(ζ) = r|k|a

(i)
k (ξ),

where |k| := k1 + k2 + · · ·+ kn. The function a
(i)
k is in H2(T) since the map

z �→ f(z, ·) is continuous from Dn to H2(T). Let ak denote the vector-valued

function (a
(1)
k , a

(2)
k , . . . , a

(m)
k ) ∈H2(T)⊗C

m for k ∈ Z
n
+.

For given ξ ∈ T and a vector e= (e1, e2, . . . , em) ∈Cm it is clear that〈
f(z, ξ), e

〉
=

m∑
i=1

ēi
∑
k∈Zn

+

a
(i)
k (ξ)zk = 0

for all z ∈D
n is equivalent to that 〈ak(ξ), e〉= 0 for all k ∈ Z

n
+. So∨

ξ
(f) =A(ξ),

where A= {ak : k ∈ Z
n
+}. It follows from Lemma 2.3 that vdξ(f) is constant

for almost all ξ ∈ T. �
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3. The proof of Theorems 1.3 and 1.5

Recall Definition 1.7, for f ∈ L∞(TN ), one can have a decomposition as
following

(3.1) f =
∑
I⊂N̂

f(I,Ic).

The following is a well-known fact.

(3.2) Tf(I,Ic)
kz = f(I,Ic)(zI , ·)kz.

Proof of Theorem 1.3. The necessity is trivial. For the sufficiency, suppose

the Berezin transform of
∑M

m=1 TfmTgm is N -harmonic in D
N and, for almost

all ξ ∈ T
N ,
∑M

m=1 fm(ξ)gm(ξ) = 0.
By equations (3.1) and (3.2), we have〈(

M∑
m=1

TfmTgm

)
kz, kz

〉
=

M∑
m=1

∑
I⊂N̂

〈TfmTgm(I,Ic)
kz, kz〉(3.3)

=

M∑
m=1

∑
I⊂N̂

〈
Tfm

[
gm(I,Ic)(zI , ·)kz

]
, kz
〉

=

M∑
m=1

∑
I⊂N̂

〈
fm(zI , ·)gm(I,Ic)(zI , ·)kzIc , kzIc

〉
.

Applying Lemma 2.1, for 1≤ p <∞,〈(
M∑

m=1

TfmTgm

)
krξ, krξ

〉
tends to

M∑
m=1

∑
I⊂N̂

fm(ξ)gm(I,Ic)(ξ) =

M∑
m=1

fm(ξ)gm(ξ)

as r→ 1− in the norm of Lp(TN ). Thus〈(
M∑

m=1

TfmTgm

)
kz, kz

〉
= 0, z ∈D

N .

Since the Berezin transform is one-to-one,
∑M

m=1 TfmTgm = 0. This completes
the proof. �

Proof of Theorem 1.5. For the necessity, by Theorem 1.3, suppose that the

Berezin transform of
∑M

m=1 TfmTgm is N -harmonic in DN and, for almost all

ξ ∈ T
N ,
∑M

m=1 fm(ξ)gm(ξ) = 0.
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Note that if i ∈ Ic, then 〈fm(zI , ·)gm(I,Ic)(zI , ·)kzIc , kzIc 〉 is harmonic in zi.

Differentiating under the integral sign, it follows from formula (3.3) that for

a set I ⊂ N̂

(3.4)
M∑

m=1

∑
I⊂J⊂N̂

〈
∂Ifm(zJ , ·)∂̄Igm(J,Jc)(zJ , ·)kzJc , kzJc

〉
= 0.

For a function f ∈
⋂

1<q<∞Lq(TN ) and a set I ⊂ N̂ , we have

∂If(zI , ξIc) =

∫
T|I|

f(ξI , ξIc)∂I
(∣∣kzI (ξI)∣∣2)dσ(ξI)(3.5)

=

∫
T|I|

f(ξ)
∏
i∈I

ξ̄i − z̄i
(1− z̄iξi)(1− ziξ̄i)2

dσ(ξI)

for almost all ξIc ∈ T
|Ic|. For given zI ∈D

|I|, it is clear that

(3.6) ∂If(zI , ξIc) ∈
⋂

1<q<∞
Lq
(
T
N−|I|).

For I ⊂ J ⊂ N̂ by differentiating under the integral sign it is easy to see

∂If(zJ , ξJc) = ∂I
〈
f(zI , ·, ξJc)kzJ\I , kzJ\I

〉
(3.7)

=
〈
∂If(zI , ·, ξJc)kzJ\I , kzJ\I

〉
.

Using the polar coordinates zIc = rξIc in the left hand side of formula (3.4)
and taking limit as r → 1−, by formulas (3.6) and (3.7) and Lemma 2.1, we
get

0 =

M∑
m=1

∑
I⊂J⊂N̂

∂Ifm(zI , ξIc)∂̄Igm(J,Jc)(zI , ξIc)

=

M∑
m=1

∂Ifm(zI , ξIc)∂̄Igm(I,∅)(zI , ξIc)

=

M∑
m=1

∂Ifm(zI , ξIc)∂̄Igm(zI , ξIc)

for almost all ξIc ∈ T
|Ic|.

Sufficiency. Suppose equation (1.1) hold for all I ⊂ N̂ . Taking I = ∅, we
have

∑M
m=1 fm(ξ)gm(ξ) = 0 for almost all ξ ∈ T

N . By Theorem 1.3, we need

to prove that the Berezin transform of
∑M

m=1 TfmTgm is N -harmonic in D
N ,

by formula (3.3), which is equivalent to

(3.8)

M∑
m=1

∑
i∈I⊂N̂

〈
∂ifm(zI , ·)∂̄igm(I,Ic)(zI , ·)kzIc , kzIc

〉
= 0, 1≤ i≤N.
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We will prove it by induction. If N = 1, taking I = {1} in formula (1.1), then∑M
m=1 ∂1fm(z1)∂̄1gm(z1) = 0 which is equivalent to formula (3.8).

Fix i ∈ N̂ . By formula (1.1), for all J ⊂ N̂ \ {i}, we have

M∑
m=1

∂J∂ifm(zi, zJ , ξN̂\(J∪{i}))∂̄J ∂̄igm(zi, zJ , ξN̂\(J∪{i})) = 0

for almost all ξN̂\(J∪{i}) ∈ T
N−|J|−1. By induction, for given zi ∈D, we have

therefore
M∑

m=1

T∂ifm(zi,·)T∂̄igm(zi,·) = 0.

It follows from formula (3.3) that

0 =

M∑
m=1

∑
J⊂N̂\{i}

〈
∂ifm(zi, zJ , ·)∂̄igm(J,N̂\(J∪{i}))(zi, zJ , ·)kzN̂\(J∪{i})

,

kzN̂\(J∪{i})

〉
=

M∑
m=1

∑
i∈I⊂N̂

〈
∂ifm(zI , ·)∂̄igm(I,Ic)(zI , ·)kzIc , kzIc

〉
.

This completes the proof. �

4. Proof of Theorem 1.8

Lemma 4.1. Suppose f = (f1, f2, . . . , fn), g = (g1, g2, . . . , gn) ∈H(Dm)⊗Cn

such that

(4.1)
〈
f(z), g(z)

〉
Cn = 0

for all z ∈ D
m. Then there exist a natural number k (0 ≤ k ≤ n) and an

orthonormal base {e1, e2, . . . , en} in C
n such that〈

f(z), ei
〉
Cn = 0, 1≤ i≤ k

and 〈
g(z), ei

〉
Cn = 0, k+ 1≤ i≤ n

for all z ∈D
m.

Proof. As in [1, Lemma 2] “complexifying” formula (4.1), we have〈
f(z), g(w)

〉
Cn = 0

for all z,w ∈D
m. Hence,

span
{
f(z) : z ∈D

m
}
⊥ span

{
g(z) : z ∈D

m
}
.

So the conclusion follows. �
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Proof of Theorem 1.8. By Theorem 1.5,
∑M

m=1 TfmTgm = 0 on H2(DN ) if

and only if for all I ⊂ N̂ ,

(4.2)
M∑

m=1

∂Ifm(zI , ξIc)∂̄Igm(zI , ξIc) = 0

for zI ∈D
|I| and almost all ξIc ∈ T

N−|I|. When I = ∅, formula (4.2) is equiv-
alent to

M∑
m=1

fm(ξ)gm(ξ) = 0.

When I ⊂ N̂ and I �= ∅, Lemma 4.1 implies that formula (4.2) is equivalent
to that, for almost all ξIc ∈ T

N−|I|, there exist a natural number k(ξIc) (0≤
k(ξIc) ≤ M ) and an orthonormal base {e1(ξIc), e2(ξIc), . . . , eM (ξIc)} of CM

such that

(4.3)
〈
∂If(∅,I)(zI , ξIc), ei(ξIc)

〉
CM = 0, 1≤ i≤ k(ξIc)

and

(4.4)
〈
∂Ig(I,∅)(zI , ξIc), ei(ξIc)

〉
CM = 0, k(ξIc) + 1≤ i≤M

for zI ∈ D
|I|. It is easy to see that conditions (4.3) and (4.4) are equivalent

to the conditions (1.4) and (1.5) in Theorem 1.8, respectively.
Now suppose j ∈ Ic. Let J = I ∪ {j}. The condition (CIk) implies, for

almost all given ξJc ∈ T
N−|J|, there exist k(ξJc) (0 ≤ k ≤ M ) and an or-

thonormal base {e1(ξJc), e2(ξJc), . . . , eM (ξJc)} of CM such that〈
∂Jf(zJ , ξJc), ei(ξJc)

〉
CM = 0, 1≤ i≤ k(ξJc)

and 〈
∂J ḡ(zJ , ξJc), ei(ξJc)

〉
CM = 0, k(ξJc) + 1≤ i≤M

for zJ ∈ D
|J|. Therefore, there exists a unitary matrix U of degree M ×M

such that
U∂Jf(zJ , ξJc) ∈C

M �E

and
U∂J ḡ(zJ , ξJc) ∈E

for zJ ∈ D
|J|, where E denotes the subspace of C

M consisting of all vec-
tors vanish at the coordinates after the k(ξJc)th item. Let F and G denote
Uf(·, ξJc) and Uḡ(·, ξJc), respectively. It is clear that

(4.5)
〈
∂IF (zI , ξj), ∂IG(zI , ξj)

〉
CM = 0

for zI ∈D
|I| and almost all ξj ∈ T, and

(4.6) PE∂JF (zJ ) = 0 and PCM�E∂JG(zJ ) = 0

for zJ ∈D
|J|, where PE denote the orthonormal projection from C

M onto E.
Formula (4.6) implies that PE∂IF (zI , ξj) is a vector-valued function on D

|I|×
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T with which entries are analytic in zI ∈ D
|I| for almost all ξj ∈ T, and in

H2(T) for all zI ∈ D
|I|. By formula (3.5), it is easy to see that the map

zI �→ PE∂IF (zI , ·) is continuous from D
|I| to H2(T)⊗E. By Lemma 2.4, we

have that the dimension of
∨

ξj
(PE∂IF ) is constant, say k1, for almost all

ξj ∈ T. Similarly the dimension of
∨

ξj
(PCM�E∂IG) is constant, say k2, for

almost all ξj ∈ T.
Fix a point ξj ∈ T such that vdξj (PE∂IF ) = k1, vdξj (PCM�E∂IG) = k2 and

formula (4.5) holds. Let E1 and E2 denote
∨

ξj
(PE∂IF ) and

∨
ξj
(PCM�E∂IG),

respectively. Then we have that

(4.7) ∂IF (zI , ξj) = PE1⊕E2∂IF (zI , ξj) + PCM�(E⊕E2)∂IF (zI , ξj)

and

(4.8) ∂IG(zI , ξj) = PE1⊕E2∂IG(zI , ξj) + PE�E1∂IG(zI , ξj).

By “complexifying” formula (4.5), we have

0 =
〈
∂IF (zI , ξj), ∂IG(wI , ξj)

〉
CM

=
〈
PE1⊕E2∂IF (zI , ξj), PE1⊕E2∂IG(wI , ξj)

〉
CM .

It follows that

(4.9)
∨

ξj
(PE1⊕E2∂IF )⊥

∨
ξj
(PE1⊕E2∂IG).

Since

dim
∨

ξj
(PE1⊕E2∂IF )≥ dim

∨
ξj
(PE1∂IF ) = k1

and dim
∨

ξj
(PE1⊕E2∂IG)≥ k2, formula (4.9) implies that

vdξj (PE1⊕E2∂IF ) = k1 and dξj (PE1⊕E2∂IG) = k2.

Applying formulas (4.7) and (4.8), we have

vdξj (∂IF )≤ vdξj (PE1⊕E2∂IF ) + vdξj (PCM�(E⊕E2)∂IF )

= k1 +M − k(ξJc)− k2

and

vdξj (∂IG)≤ vdξj (PE1⊕E2∂IG) + vdξj (PE�E1∂IG) = k2 + k(ξJc)− k1.

Let k = k2 + k(ξJc)− k1. Then we can choose k which is independent to ξj
excepting a set of measure zero as for k(ξIc) in the condition (CIk). This
completes the proof. �

Corollary 4.2. Let f and g are in ∈ L∞(TN ). Then TfTg = TgTf on

H2(DN ) if and only if for all nonempty subset I = {n1, n2, . . . , n|I|} of N̂ and

almost all ξIc ∈ T
N−|I|, one of the following conditions holds.
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(aI)

f(∅,I)(zI , ξIc) =

|I|∑
k=1

f I
k (zI\{nk}, ξIc)

and

g(∅,I)(zI , ξIc) =

|I|∑
k=1

gIk(zI\{nk}, ξIc),

where all of f I
k (zI\{nk}, ξIc) and gIk(zI\{nk}, ξIc) are analytic in zI\{nk}.

(bI)

f(I,∅)(zI , ξIc) =

|I|∑
k=1

f̄ I
k (zI\{nk}, ξIc)

and

g(I,∅)(zI , ξIc) =

|I|∑
k=1

ḡIk(zI\{nk}, ξIc),

where all of f I
k (zI\{nk}, ξIc) and gIk(zI\{nk}, ξIc) are analytic in zI\{nk}.

(cI) There exist two function a(ξIc) and b(ξIc) with |a(ξIc)|2 + |b(ξIc)|2 = 1
such that

a(ξIc)f(∅,I)(zI , ξIc) + b(ξIc)g(∅,I)(zI , ξIc) =

|I|∑
k=1

hI
k(zI\{nk}, ξIc)

and

a(ξIc)f(I,∅)(zI , ξIc) + b(ξIc)g(I,∅)(zI , ξIc) =

|I|∑
k=1

r̄Ik(zI\{nk}, ξIc),

where all of hI
k(zI\{nk}, ξIc) and rIk(zI\{nk}, ξIc) are analytic in zI\{nk}.

Moreover, if j ∈ Ic, then for almost all given ξIc\{j} ∈ T
N−|I|−1, one of

three conditions above holds for almost all ξj ∈ T.

Remark 4.3. If let N = 2, then the above corollary implies Theorem 1.2.

Theorem 4.4. Let f and g are in ∈ L∞(TN ). Then TfTg = Tfg on

H2(DN ) if and only if for each i ∈ N̂ , either f(z) is co-analytic in zi or
g(z) is analytic in zi for all zN̂\{i} ∈D

N−1.

Proof. Sufficiency. Suppose I ⊂ N̂ such that f(z) is co-analytic in zI and
g(z) is analytic in zN̂\I . We have

〈TfTgkz, kz〉= 〈Tgkz, f̄kz〉=
〈
PI(gkz), f̄kz

〉
= 〈gkz, f̄kz〉= 〈Tfgkz, kz〉.

Since the Berezin transform is one-to-one, the equation TfTg = Tfg holds.
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Necessary. Suppose that the conclusion fails for some i ∈ N̂ . Then there
exist two subset E1 and F1 of TN−1 with positive measure such that

∂if(zi, ξN̂\{i}) �= 0

for ξN̂\{i} ∈E1 and almost all zi ∈D, and

∂̄ig(zi, ξN̂\{i}) �= 0

for ξN̂\{i} ∈ F1 and almost all zi ∈D. If there exists some j ∈ N̂ \{i} such that

both ∂if(zi, ξN̂\{i}) is not co-analytic and ∂̄ig(zi, ξN̂\{i}) is not analytic in the

variable ξj . Then there exist two subset E2 and F2 of TN−2 with positive
measure such that

∂j∂if(z{i,j}, ξN̂\{i,j}) �= 0

for ξN̂\{i,j} ∈E2 and almost all z{i,j} ∈D
2, and

∂̄j ∂̄ig(z{i,j}, ξN̂\{i,j}) �= 0

for ξN̂\{i,j} ∈ F2 and almost all z{i,j} ∈D
2. By induction, we can find a subset

I of N̂ and two subset E and F of TN−|I| with positive measure such that

(4.10) ∂If(zI , ξIc) �= 0

for ξIc ∈E and almost all zI ∈D|I|, and

∂̄Ig(zI , ξIc) �= 0

for ξIc ∈ F and almost all zI ∈ D
|I|, and either ∂If(zI , ξIc) is co-analytic or

∂̄Ig(zI , ξIc) is analytic in the variable ξj for each j ∈ Ic.

Let J , K be two subset of N̂ \ I such that J ∪K = Ic, J ∩K = ∅ and
∂If(zI , ξIc) is co-analytic in ξj for j ∈ J and ∂̄Ig(zI , ξIc) is analytic in the

variable ξk for k ∈K. By formula (4.10), there exist a subset E′ of T|K| with
positive measure such that

∂If(zI , ξJ , ξK) �= 0

for ξJ in a subset of T|J| with positive measure and each ξK ∈E′ and almost
all zI ∈D

|I|. Therefore we have that ∂If(zI , ·, ξK) �= 0 for almost all (ξJ , ξK) ∈
T
|J| × E′ and almost all zI ∈ D

|I|. Similarly there exist a subset F ′ of T|J|

with positive measure such that ∂̄Ig(zI , ξJ , ξK) �= 0 for almost all (ξJ , ξK) ∈
F ′ ×T

|K| and almost all zI ∈D
|I|. So we have

∂If(zI , ξJ , ξK)∂̄Ig(zI , ξJ , ξK) �= 0

for almost all (ξJ , ξK) ∈ F ′ ×E′ and almost all zI ∈D
|I|. This contradicts to

Theorem 1.5 and completes the proof. �

Remark 4.5. If let N = 2, then the above theorem implies Theorem 1.1.
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