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THE EXPECTED NUMBER OF COMPLEX ZEROS OF
COMPLEX RANDOM POLYNOMIALS
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HUONG TRAN

Abstract. By using the technique introduced in 1995 by Shepp
and Vanderbei, we derive an exact formula for the expected num-
ber of complex zeros of a complex random polynomial due to Kac.

The explicit evaluation of the average intensity function is ob-
tained in closed form in the case of standard normal coefficients.
In addition, we provide the limiting expressions for the intensity

function and the expected number of zeros in open circular disks
in the complex plane.

1. Introduction and statement of results

In 1943, after the brilliant work of Littlewood and Offord [13], Kac [10],
[11] studied the distribution of the real zeros of a random polynomial whose
coefficients are independent and identically distributed real standard normal
random variables and obtained an explicit formula for the expected value of
the number of its zeros in any measurable subset of the real numbers. Specif-
ically, let z be the complex variable x+ iy, let {ηj}n−1

j=0 be a sequence of in-
dependent and identically distributed real standard normal random variables
defined on the probability space (Ω,A ,Pr), and let Pn denote the random
polynomial of degree n− 1 given by its Taylor series at the origin

Pn(z) =
n−1∑
j=0

ηjz
j .

Kac showed, that for any measurable subset Λ of the real numbers and any
integer n > 1, the expected number of real zeros in Λ of Pn, denoted by
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E[νn(Λ)], is given by

E
[
νn(Λ)

]
=

4

π

ˆ 1

0

(
1

(1− x2)2
− (n+ 1)2x2n

(1− x2n+2)2

) 1
2

dx,

where νn(Λ) stands for the number of real zeros in Λ of Pn. (A short and
elegant proof of this result was later provided in 1995 by Edelman and Kostlan
[3], [4].) In addition, Kac obtained the asymptotic expansion

E
[
νn(Λ)

]
∼ 2

π
logn, n→∞,

and the estimate

E
[
νn(Λ)

]
≤ logn+

14

π
, n≥ 2.

(See [2], Section 1.3, pp. 11–14.)
Fifty-two years later, in a beautiful paper Shepp and Vanderbei [14] devel-

oped a method based on the argument principle for deriving explicit formulas
for the expected number of complex zeros in any measurable subset Λ of
the complex plane, when the coefficients are independent and identically dis-
tributed real standard normal random variables. They showed, that if now
νn(Λ) denotes the number of complex zeros in Λ of Pn, then for any measur-
able region Λ of the complex plane and any integer n > 1,

E
[
νn(Λ)

]
=

ˆ
Λ

hn(x, y)dxdy+

ˆ
Λ∩R

gn(x)dx,

where the intensity function hn is given by

hn =
B2D

2
0 −B0(B

2
1 − |A1|2) +B1(A0Ā1 − Ā0A1)

π|z|2(B2
0 − |A0|2)

3
2

and the intensity function gn is due to Kac and given by

gn =
(B0B2 −B2

1)
1
2

π|z|B0
,

where the complex-valued functions Ak are defined by

Ak =

n−1∑
j=0

jkz2j , k = 0,1,

and the real-valued functions Bk are defined on the complex plane by

Bk =

n−1∑
j=0

jk|z|2j , k = 0,1,2.

Ancillary to extending Kac’s famous result, Shepp and Vanderebei designed
an innovative robust zero-finding numerical algorithm that produces com-
pelling computer plots of hn and hundreds of thousands of zeros from ran-
domly generated polynomials. The computer plots are able to demonstrate



THE COMPLEX ZEROS OF COMPLEX RANDOM POLYNOMIALS 213

the striking phenomenon that, as the degrees of these random polynomials
become large, their zeros tend to lie very close to the unit circle. The zeros
appear to be approximately uniformly distributed around the circle, when the
real zeros are ignored.

The authors also obtained asymptotics of hn and gn confirming the classical
result due to Hammersley [7], and pointed out that the same methods can be
applied if the coefficients are assumed to be independent complex Gaussians.
In this case, the intensity function does not have mass concentrated on the
real axis (that is, gn = 0) and is rotationally invariant. As remarked by Shepp
and Vanderebei and as follows from performing the calculations, one finds
that, in this case, the intensity function is

hn =
B0B2 −B2

1

π|z|2B2
0

,

which equals the square of Kac’s intensity function, but it has a different lead
constant.

In the same vein, the aim of this paper is to apply these familiar and
well-known methods to present anew the Shepp and Vanderbei result above
for the expected number of complex zeros of a complex random polynomial
whose formula permits an explicit evaluation of hn in closed form. We can
summarize our main result as follows.

Theorem 1. Let {αj}n−1
j=0 and {βj}n−1

j=0 be sequences of independent and

identically distributed real standard normal random variables defined on the
probability space (Ω,A ,Pr). Suppose that the coefficients ηj of the random
polynomial Pn are defined by ηj = αj + iβj for j = 0, . . . , n− 1. Then for any
measurable region Λ of the complex plane and any integer n > 1,

E
[
νn(Λ)

]
=

ˆ
Λ

hn(x, y)dxdy,

where the intensity function hn is given by

hn =
1

π

(
1

(1− |z|2)2 − n2|z|2n−2

(1− |z|2n)2
)
.

This theorem leads to the fact that hn has a well defined limit as n→∞.

Corollary. For any z �=±1,

lim
n→∞

hn =
1

π(1− |z|2)2 ;

for z =±1,

hn =
n2 − 1

12π
.
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As further applications, on the basis of the preceding theorem we derive
limiting expressions for the expected number of zeros in open circular disks in
the complex plane, starting with the disk D(0, r) with radius r centered at 0.

Theorem 2. For each disk D(0, r) with radius r < 1 centered at the origin,

lim
n→∞

E
[
νn

(
D(0, r)

)]
=

r2

1− r2
.

In addition, for each disk D(0, e−
s
2n ) with radius e−

s
2n , where s > 0, centered

at the origin,

lim
n→∞

E

[
1

n
νn

(
D
(
0, e−

s
2n

))]
= 1+

1

s
− 1

1− e−s
.

2. Proof of Theorem 1

Without loss of generality, we may consider regions that are either regions
that do not intersect the real axis or polar rectangles that do intersect the
real axis. We commence by taking a region Λ that does not intersect the real
axis. If z does not lie on the real axis, the argument principle yields

νn(Λ) =
1

2πi

ˆ
∂Λ

P ′
n(z)

Pn(z)
dz.

Then taking expectations, using Fubini’s theorem to interchange expectation
and integral (a justification is provided in [8], Section 2.4.1, pp. 24–25, for
a random analytic function, which can be tailored for a random polynomial;
very recently, a sketch of the proof for the justification of the interchange of
the expectation and the contour integral has been provided in [16], pp. 6–9),
we obtain

(1) E
[
νn(Λ)

]
=

1

2πi

ˆ
∂Λ

F (z)dz,

where F is given by

F (z) = E

[
P ′
n(z)

Pn(z)

]

and can be evaluated using the calculus of residues.
In the process of dealing with this integral, it is necessary first to resolve

the complex standard normal random variables Pn and P ′
n into their real and

imaginary parts. We have

Pn(z) =

n−1∑
j=0

(αjaj − βjbj) + i

n−1∑
j=0

(αjbj + βjaj),

P ′
n(z) =

n−1∑
j=0

(αjcj − βjdj) + i

n−1∑
j=0

(αjdj + βjcj),
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where

aj =Re
(
zj
)
, bj = Im

(
zj
)
,

cj =Re
(
jzj−1

)
, dj = Im

(
jzj−1

)
.

The four random variables

ξ1 =Re
(
Pn(z)

)
, ξ2 = Im

(
Pn(z)

)
,

ξ3 =Re
(
P ′
n(z)

)
, ξ4 = Im

(
P ′
n(z)

)
,

are correlated normal random variables. That they can be represented in
terms of independent standard normal random variables is key. For we now
introduce

ξ
D
= Lζ,

where

ξ = [ξ1 ξ2 ξ3 ξ4]
T , ζ = [ζ1 ζ2 ζ3 ζ4]

T ,

and L is a lower triangular Cholesky factor of

Cov(ξ) = E
[
ξξT

]
= E

[
Lζ(Lζ)T

]
= LLT ;

that is, L= [lij ] for i≥ j, and L= 0 for i < j. Here, the symbol
D
= is used to

denote equality in distribution.
In order to be able to easily compute things, we designate

a= [a0 a1 · · · an−1]
T , b= [b0 b1 · · · bn−1]

T ,

c= [c0 c1 · · · cn−1]
T , d= [d0 d1 · · · dn−1]

T .

With the notations

A= [a b c d]T , B = [−b a −d c]T ,

the preceding covariance equation takes the matrix form

AAT +BBT = LLT .

If use is made of this relation, it is found that

l11 = l22 =
aTa+ bT b√
aT a+ bT b

, l21 = 0,

l31 = l42 =
cTa+ dT b√
aT a+ bT b

, l32 =−l41 =
cT b− dT a√
aTa+ bT b

.

(2)

Since ξ and Lζ are equal in distribution,⎡
⎢⎢⎣
ξ1
ξ2
ξ3
ξ4

⎤
⎥⎥⎦ D
=

⎡
⎢⎢⎣

l11ζ1
l21ζ1 + l22ζ2

l31ζ1 + l32ζ2 + l33ζ3
l41ζ1 + l42ζ2 + l43ζ3 + l44ζ4

⎤
⎥⎥⎦ .
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From their respective components, we deduce that

P ′
n(z)

Pn(z)

D
=

(l31 + il41)ζ1 + (l32 + il42)ζ2 + (l33 + il43)ζ3 + il44ζ4
(l11 + il21)ζ1 + il22ζ2

.

At this juncture it is critical that the independence of ζ1, ζ2, ζ3, and ζ4 be
exploited. We notice that, in consequence of this,

F (z) =
α

δ
E

[
ζ1

(γδ )ζ1 + ζ2

]
+

β

γ
E

[
ζ2

ζ1 + ( δγ )ζ2

]
,

where

α= l31 + il41, β = l32 + il42,

γ = l11 + il21, δ = il22.

If now we interchange ζ1 and ζ2 and use the complex-valued function f that
is defined off the real axis by

f(w) = E

[
ζ1

wζ1 + ζ2

]

and γ
δ =−i, we get

(3) F (z) =
α

δ
f(−i) +

β

γ
f(i),

and it remains to treat f(−i) and f(i).

We set z = reiφ with r = (x2+ y2)
1
2 and φ= arctan( yx ), where −π < φ≤ π.

Since ζ1 and ζ2 are independent, we have

fζ1ζ2(x, y) =
1

2π
e−

1
2 (x

2+y2),

which in its turn gives

fRΦ(r,φ) =
1

2π
re−

1
2 r

2

,

satisfying
fRΦ(r,φ) = fR(r)fΦ(φ).

It is readily seen that

f(w) =

ˆ ∞

−∞

ˆ ∞

−∞

(
x

wx+ y

)
fζ1ζ2(x, y)dxdy

=

ˆ π

−π

ˆ ∞

0

(
1

w+ tanφ

)
fRΦ(r,φ)dr dφ

=
1

2π

ˆ π

−π

dφ

w+ tanφ

=
1

π

ˆ ∞

−∞

du

(w+ u)(u2 + 1)
,

if we use the substitution u= tanφ.
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To evaluate f(−i), we consider the contour ΓR consisting of the entire
boundary of the large semicircle in the lower half of the complex plane. Then
by Cauchy’s theorem,

lim
R→∞

‰
ΓR

dz

(z − i)2(z + i)
= 2πir̃,

where r̃ is the sum of the residues of the integrand within ΓR. The only
singularity is a simple pole at z = −i and the corresponding residue is − 1

4 .
Now, as R→∞, the contribution from the curved portion of ΓR disappears
because of the behavior of the integrand, whereas the contribution of the
diameter gives ˆ ∞

−∞

dx

(x− i)2(x+ i)
=

πi

2
.

We therefore find that

f(−i) =
i

2
.

If now we consider a similar argument and use the contour consisting of the
entire boundary of the large semicircle in the upper half of the complex plane,
then we find that

f(i) =− i

2
.

If we substitute these results in (3) and make use of γ =−iδ and (2), then

F (z) =
cT b− dT a+ i(cT a+ dT b)

i(aTa+ bT b)
.

By writing aj , bj , cj , and dj in terms of z and z̄, it can be easily calculated
that

aT a+ bT b=

n−1∑
j=0

|z|2j ,

cT b− dT a=

n−1∑
j=0

ij

2

(
1

z
− 1

z̄

)
|z|2j ,

cTa+ dT b=

n−1∑
j=0

j

2

(
1

z
+

1

z̄

)
|z|2j ,

so that

(4) F (z) =

∑n−1
j=0 j|z|2j∑n−1
j=0 z|z|2j

.

We have
n−1∑
j=0

|z|2j = 1− |z|2n
1− |z|2 .
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Differentiating both sides of this equation with respect to |z|2 and then mul-
tiplying throughout by |z|2, we obtain

n−1∑
j=0

j|z|2j = (n− 1)|z|2n+2 − n|z|2n + |z|2
(1− |z|2)2 .

Thus there follows

F (z) =
n|z|2n(|z|2 − 1) + |z|2(1− |z|2n)

z(1− |z|2)(1− |z|2n)(5)

=
1

z

(
n− 1 +

1

1− |z|2 − n

1− |z|2n
)
,

whence we shall write

F (z, z̄) =
1

z

(
n− 1 +

1

1− zz̄
− n

1− (zz̄)n

)
.

Using the Stokes–Green formula for a simply connected region D with a
sufficiently smooth boundary ∂D in the complex formˆ

∂D

(
u(z, z̄)dz + v(z, z̄)dz̄

)
=

¨
D

(
∂

∂z
v(z, z̄)− ∂

∂z̄
u(z, z̄)

)
dz dz̄

with u(z, z̄) = 1
2πiF (z, z̄), v(z, z̄) = 0, dz dz̄ = −2i dxdy, and D = Λ, we find

that

(6) E
[
νn(Λ)

]
=

¨
Λ

1

π

∂

∂z̄
F (z, z̄)dxdy,

where
∂

∂z̄
F (z, z̄) =

1

(1− zz̄)2
− n2(zz̄)n−1

(1− (zz̄)n)2
.

The required expression for hn is finally obtained upon substituting |z|2 = zz̄.
Next, we consider a polar rectangle that covers a portion of the real axis.

When Λ is the angular interval (−θ, θ) crossed with a radial interval (r0, r1)
of the real axis, hn does not have mass accumulated on the real axis. For, in
virtue of (1), as θ→ 0,

E
[
νn

(
(r0, r1)

)]
=

1

2πi

ˆ r1

r0

(
F
(
r−

)
− F

(
r+

))
dr,

where νn((r0, r1)) represents the number of zeros in (r0, r1),

F
(
r−

)
= lim

z→r
Im(z)<0

E

[
P ′
n(z)

Pn(z)

]
,

F
(
r+

)
= lim

z→r
Im(z)>0

E

[
P ′
n(z)

Pn(z)

]
.
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Thus from (4)

F
(
r−

)
= F

(
r+

)
=

∑n−1
j=0 jr2j∑n−1
j=0 r2j+1

,

implying

E
[
νn

(
(r0, r1)

)]
= 0.

This completes the proof of the theorem in question.

3. Proof of the corollary

The proof of the corollary to Theorem 1 distinguishes two cases. First, we
consider when z �=±1, and hence must evaluate

lim
n→∞

hn(z) =
1

π(1− |z|2)2 − 1

π|z|2 lim
n→∞

n2|z|2n
(1− |z|2n)2 .

We encounter two alternatives. First, it may happen that, with |z|< 1,

lim
n→∞

n|z|n =− 1

log |z| lim
n→∞

|z|n = 0

and

lim
n→∞

(
1− |z|2n

)
= 1.

Otherwise, since

lim
n→∞

n|z|n
1− |z|2n = lim

n→∞

n|z|−n

|z|−2n − 1
,

we may also have, with |z|> 1,

lim
n→∞

n|z|−n =
1

log |z| lim
n→∞

1

|z|n = 0

and

lim
n→∞

(
|z|−2n − 1

)
=−1.

In either of these instances,

lim
n→∞

n|z|n
|z|2n − 1

= 0.

Second, we consider when z =±1. Here, we use the alternative expression
for hn,

hn(z) =

∑n−1
j=0 |z|2j

∑n−1
j=0 j2|z|2j − (

∑n−1
j=0 j|z|2j)2

π|z|2(
∑n−1

j=0 |z|2j)2
,

which is obtained upon substituting |z|2 = zz̄ in (4), differentiating with re-
spect to z̄, and then substituting in (6). The required result thereby follows
by setting z =±1 and applying the appropriate power sum formulas.
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4. Proof of Theorem 2

Set z = reiφ in (1). We then clearly have

E
[
νn

(
D(0, r)

)]
=

1

2πi

ˆ
∂D(0,r)

F (z)dz

=
1

2π

ˆ 2π

0

zF (z)dφ.

By the bounded convergence theorem,

(7) lim
n→∞

E
[
νn

(
D(0, r)

)]
=

1

2π

ˆ 2π

0

lim
n→∞

zF (z)dφ.

The first expression in (5) further simplifies to

F (z) =
1

z

(
|z|2

1− |z|2 − n|z|2n
1− |z|2n

)
;

passing this to the limit and observing that r = |z|< 1 gives

lim
n→∞

zF (z) =
|z|2

1− |z|2 +
1

log |z|2 lim
n→∞

|z|2n =
|z|2

1− |z|2 .

Hence setting z = reiφ and substituting the result in (7) yields

lim
n→∞

E
[
νn

(
D(0, r)

)]
=

r2

1− r2
.

Hitherto, let us set z = reiφ with r = e−
s
2n in (1) and compute that

E
[
νn

(
D
(
0, e−

s
2n

))]
=

1

2π

ˆ 2π

0

e−
s
2n+iφF

(
e−

s
2n+iφ

)
dφ.

By the bounded convergence theorem,

lim
n→∞

E

[
1

n
νn

(
D
(
0, e−

s
2n

))]
=

1

2π

ˆ 2π

0

lim
n→∞

1

n
e−

s
2n+iφF

(
e−

s
2n+iφ

)
dφ.

We see from the second expression in (5) that

lim
n→∞

1

n
e−

s
2n+iφF

(
e−

s
2n+iφ

)
= 1+ lim

n→∞

1

n(1− e−
s
n )

− lim
n→∞

1

1− e−s
.

Using the Maclaurin series of the exponential function, we find that the first
limit on the right-hand side equals 1

s . Also, it is plain that the second limit

on the right-hand side equals 1
1−e−s . Consequently

lim
n→∞

E

[
1

n
νn

(
D
(
0, e−

s
2n

))]
= 1+

1

s
− 1

1− e−s

as stated in the theorem.
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5. Final remarks and suggested future research

Our numerical computations exhibit the behavior of hn and the empirical
distributions for Pn for various values of n. In each of Figures 1–4, the picture
on the left shows a gray-scale plot of hn, and the picture on the right represents
a plot of about 20,000 zeros obtained by generating a number of random
polynomials and explicitly computing their zeros. As n becomes large, the
zeros tend to lie very close to the unit circle and seem to be approximately
uniformly distributed around the unit circle. There is no jump present near
the real axis. Indeed, according to the proof of the Theorem 1, hn does not
have mass concentrated on the real axis. In Figure 4, the picture on the left
seems to also capture the behavior of the limit of hn as n→∞. As far as
we can tell, it appears to be indistinguishable from the graph of the limiting
intensity function.

Finally, we mention that, in 1997, Ibragimov and Zeitouni [9] extended the
result by Shepp and Vanderbei. Their method is based on an integral represen-
tation of the expected number of zeros of a random field (see Adler’s classical
book [1], Theorem 5.1.1, p. 95). It enabled Farahmand [5] to investigate the
intensity function corresponding to the number of complex solutions of the
random equation Pn(z) =K+ iK, where K is a constant not necessarily zero,
and Pn possesses complex coefficients, thus generalizing the intensity function
obtained by Shepp and Vanderbei to nonzero K. (See, also, Theorem 8.3 in
[6], Section 8.2, pp. 148–152.)

Very recently, Vanderbei [15] introduced a generalization to the central
assumption underlining the results in [14] and derived comparable explicit

Figure 1. Random degree two polynomial: η0+ η1z+ η2z
2.

The empirical distribution in the right-hand plot was gener-
ated using 10,000 random polynomials.
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Figure 2. Random degree four polynomial: η0 + η1z +
η2z

2 + η3z
3 + η4z

4. The empirical distribution in the right-
hand plot was generated using 5,000 random polynomials.

Figure 3. Random degree nine polynomials: η0 + η1z +
η2z

2 + · · · + η9z
9. The empirical distribution in the right-

hand plot was generated using 2,223 random polynomials.

formulas for the distribution of zeros in the complex plane for any value of
the degree of Pn. This motivated the subsequent studies by Yeager [16] and
one of the authors [12]. As a matter of fact, Vanderbei’s result applies to a
wider class of random sums of the form Sn(z) =

∑n
j=0 ηjfj(z), where {ηj}nj=0

is a sequence of independent and identically distributed real standard normal
random variables, and the functions fj are given analytic functions that are
real-valued on the real number line.
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Figure 4. Random degree thirty-five polynomials: η0 +
η1z + η2z

2 + · · ·+ η35z
35. The empirical distribution in the

right-hand plot was generated using 556 random polynomials.

In connection with these works, it would be of interest to employ the tech-
nique introduced by Shepp and Vanderbei to investigate the number of K-
level crossings of Sn. Namely, one would study the complex solutions of the
random equation Sn(z) =K1 + iK2, where K1 and K2 are constants not nec-
essarily zero, and Sn possesses either real or complex coefficients. This will
be addressed in a future paper.

Acknowledgment. The authors wish to express their most sincere gratitude
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