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ON REPRESENTATIONS OF ERROR TERMS RELATED TO
THE DERIVATIVES FOR SOME DIRICHLET SERIES

JUN FURUYA, T. MAKOTO MINAMIDE AND YOSHIO TANIGAWA

Abstract. In previous papers, we examined several properties of
an error term in a certain divisor problem related to the deriva-
tives of the Riemann zeta-function. In this paper, we obtain

representations of error terms related to the derivatives of some

Dirichlet series, which can be regarded as generalized versions of

a Dirichlet divisor problem and a Gauss circle problem. We also

give the upper bounds of the error terms in terms of exponent
pairs.

1. Introduction and statement of results

Let ζ(s) denote the Riemann zeta-function, and ζ(k)(s) denote the kth
derivative of ζ(s) with ζ(0)(s) = ζ(s). Further let D(k,l)(n) be the coefficient

of Dirichlet series (−1)k+lζ(k)(s)ζ(l)(s) in �s > 1 for any non-negative integers
k and l, namely

D(k,l)(n) =
∑
d|n

(logd)k
(
log

n

d

)l

.

In the previous works, we investigated the upper bound estimates for the
error term Δ(k,l)(x), which is the error term on the summatory function∑

n≤xD(k,l)(n). In particular, we treated the upper bound estimates for the

case k = l in [15], and general k and l in [7]. As other properties for this er-
ror term, the truncated Voronöı-type formula and a mean square formula for
Δ(1,1)(x) were derived in [15]. Furthermore, the Riesz means and differences
between two kinds of mean values of the error term were treated in [2].

In [7], we derived the representation of Δ(k,l)(x) called the “Chowla–Walum
formula”, that is, the sum of the periodic Bernoulli function. Actually, we
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proved that

(1.1) Δ(k,l)(x) =−
{
Rk,l(x) +Rl,k(x)

}
+O

(
(logx)k+l

)
with

Rα,β(x) =

β∑
j=0

(
β

j

)
(−1)j(logx)β−j

∑
n≤√

x

ψ

(
x

n

)
(logn)α+j ,

where
(
k
j

)
is the binomial coefficient and ψ(x) = x− [x]− 1/2 is the periodic

Bernoulli function. Here [x] denotes the greatest integer not exceeding x.
The formula (1.1) is derived by using the “Dirichlet hyperbola method”,

which is formulated as∑
mn≤x

f(n)g(m) =
∑
n≤xc

f(n)
∑

m≤x/n

g(m) +
∑

n≤x1−c

g(n)
∑

m≤x/n

f(m)(1.2)

−
(∑

n≤xc

f(n)

)( ∑
n≤x1−c

g(n)

)

for any arithmetical functions f and g, where c is a real number with 0≤ c≤ 1
(see [1, Theorem 3.17]).

For an arithmetical function f(n), we put L(s) =
∑∞

n=1 f(n)n
−s for �s >

σf , where σf is an abscissa of absolute convergence of this series. Then we
have

(1.3) ζ(k)(s)L(s) =

∞∑
n=1

d(k)(n;f)

ns

for �s >max(1, σf ), where

(1.4) d(k)(n;f) =
∑
d|n

f(d)

(
log

n

d

)k

.

The aim of this paper is to study the summatory function

(1.5)
∑
n≤x

d(k)(n;f),

and derive the Chowla–Walum type formula for the error term of (1.5). In
particular, we treat two examples; one is L(s) = (−1)lζ(l)(s−a) (−1< a< 0),
and the other is L(s) = (−1)lL(l)(s,χ) (χ is the Dirichlet character mod 4).

1.1. The case L(s) = (−1)lζ(l)(s− a). For a real number a (−1< a < 0),
let σa(n) denote the arithmetical function defined by

σa(n) =
∑
d|n

da.
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This is the coefficient of the Dirichlet series ζ(s)ζ(s− a) for �s > 1. A gen-
eralized divisor problem is to study the behaviour of the error term Δa(x)
defined by

Δa(x) =
∑
n≤x

σa(n)− ζ(1− a)x− ζ(1 + a)

1 + a
x1+a.

The Chowla–Walum type formula of Δa(x) is of the form

(1.6) Δa(x) =−
∑

n≤√
x

naψ

(
x

n

)
− xa

∑
n≤√

x

n−aψ

(
x

n

)
+O(1)

(cf. e.g. [6]). There are many researches on Δa(x), for example, the upper
bound estimates, Voronöı-type representations and mean value formulas for
Δa(x). We note that the studies of the function Δa(x) for −1 < a < 0 are
deeply connected with the behaviour of the Riemann zeta function ζ(s) for
1/2< σ < 1. For the details of these topics, see [3], [4], [5], [6], [16].

Now, we shall consider a divisor problem for (−1)k+lζ(k)(s)ζ(l)(s− a) with
−1< a< 0 (the case of a= 0 was already studied in [7]). In this case, f(n) =
na(logn)l in (1.4), and we put

(1.7) σ(k,l,a)(n) := d(k)(n;f) =
∑
d|n

da(logd)l
(
log

n

d

)k

.

We consider the error term of
∑

n≤x σ(k,l,a)(n) and obtain the following the-
orem.

Theorem 1.1. Let σ(k,l,a)(n) be the arithmetical function defined by (1.7).
Then we have∑

n≤x

σ(k,l,a)(n) = xPk(logx) + x1+aQl(logx) +Δ(k,l,a)(x),

where Pk(x) and Ql(x) are certain polynomials in x of degree k and l respec-
tively, whose coefficients depend on k, l and a, and Δ(k,l,a)(x) is the error
term defined by

Δ(k,l,a)(x) =R(k,l)(x;a) + xaR(l,k)(x;−a) +O
(
(logx)k+l

)
with

R(p,q)(x; r) =−
p∑

j=0

(
p

j

)
(−1)j(logx)p−j

∑
n≤√

x

nrψ

(
x

n

)
(logn)q+j .

We can see that the formula in Theorem 1.1 implies the previous formula
(1.6).

As a direct application of Theorem 1.1, using the theory of exponent
pairs, we obtain the following corollary, which is the non-trivial estimate of
Δ(k,l,a)(x). For the theory of exponent pairs, refer to [10], [13] and [14].
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Corollary 1.2. Let (κ,λ) be any exponent pair. Then we have

Δ(k,l,a)(x)�
{
x

a
2+

λ+κ
2(κ+1) (logx)k+l+1 for a+ λ−κ

κ+1 > 0,

x
(1+a)κ
1−λ+2κ (logx)k+l+2 for a+ λ−κ

κ+1 ≤ 0.

Specific exponent pairs give several upper bound estimates of Δ(k,l,a)(x)
under some condition on a. For example, if we take (κ,λ) = (11/82,57/82),
we have

Δ(k,l,−1/2)(x) =O
(
x11/94(logx)k+l+2

)
(11/94 = 0.11702 . . .). We shall discuss this topic in Section 5.

1.2. The case L(s) = (−1)lL(l)(s,χ). Let χ(n) be the primitive Dirichlet
character modulo 4, and L(s,χ) be the Dirichlet L-function associated to χ
defined by

L(s,χ) =
∞∑

n=1

χ(n)n−s (�s > 1).

The Gauss circle problem is to study the error term related to the Dirich-
let series 4ζ(s)L(s,χ). Indeed, let P (x) denote the error term in the circle
problem defined by

P (x) =
∑

1≤n≤x

r(n)− πx,

where r(n) denotes the number of integer solutions of Diophantine equation
x2 + y2 = n. The main object of the Gauss circle problem is to find the
best possible estimation of P (x). There are many results concerning several
estimations of P (x) and related topics on the circle problem. See e.g. [14]
and [13] in details.

The Chowla–Walum type formula for P (x) is of the form

P (x) = −4
∑

n≤√
x

χ(n)ψ

(
x

n

)
− 4

∑
n≤√

x

ψ

(
x− n

4n

)

+ 4
∑

n≤√
x

ψ

(
x− 3n

4n

)
+O(1)

(cf. [10, Theorem 4.8]).
Now we treat the arithmetical function r(k,l)(n) defined by

(1.8) r(k,l)(n) =
∑
d|n

χ(d)(logd)l
(
log

n

d

)k

,

which is the coefficient of the Dirichlet series (−1)k+lζ(k)(s)L(l)(s,χ). In
[8], we studied several arithmetical properties of the error term of the sum∑

n≤x r(1,1)(n). Actually we derived the truncated Voronöı formula, the mean
square formula and the non-trivial estimate of the error term.
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Here, we shall derive the Chowla–Walum type formula of the error term
related to the summatory function

∑
n≤x r(k,l)(n) for general k and l. We

obtain the following theorem.

Theorem 1.3. Let r(k,l)(n) be the arithmetical function defined by (1.8).
Then we have∑

n≤x

r(k,l)(n) =−xQk(logx;k, l) + P(k,l)(x) +O
(
(logx)k+l

)
,

where Qd(x;k, l) is the polynomial in x of degree d whose coefficients depend
on k and l,1 and P(k,l)(x) is the error term defined by

P(k,l)(x) = −
k∑

j=0

(
k

j

)
(−1)j(logx)k−j

∑
n≤√

x

χ(n)ψ

(
x

n

)
(logn)l+j

+R
(1)
(k,l)(x;χ) +R

(3)
(k,l)(x;χ) +O

(
(logx)k+l

)
with

R
(α)
(k,l)(x;χ) = χ(−α)

l∑
j=0

(
l

j

)
(−1)j(logx)l−j

∑
n≤√

x

ψ

(
y− αn

4n

)
(logn)k+j

for α= 1 and 3.

As an application of Theorem 1.3, we obtain the following corollary.

Corollary 1.4. Let (κ,λ) be any exponent pair. Under the notations of
Theorem 1.3, we have

P(k,l)(x)�
{
x1/3(logx)k+l if κ= λ= 1/2,

x
κ+λ

2(κ+1) (logx)k+l + |P (x)|(logx)k+l if κ �= λ.

In particular, the exponent pair (κ,λ) = (97/251,132/251) gives the estimate

P(k,l)(x) =O
(
x

229
696 (logx)k+l

)
.

Note that 229/696 = 0.329022 . . . . In the case k = l= 0, the best estimate
(Huxley [12]) at present is

P(0,0)(x) =O
(
x

131
416 (logx)

18627
8320

)
(131/416 = 0.314903 . . .). In this case, our Corollary 1.4 is weaker than the
above estimate.

1 Note that the leading term of −xQk(logx;k, l) is positive, since cf (0)< 0 (cf. e.g. [9]).
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2. Preliminaries

As a preparation for the purpose, we consider the summation formulas
involving the log-function. We present these formulas as the following lemmas.

Lemma 2.1 ([7, Lemma 1]). For a non-negative integer q, we have

∑
n≤y

(logn)q = y

q∑
j=0

aq(j)(log y)
j −ψ(y)(log y)q

+ q

∫ y

1

ψ(t)(log t)q−1

t
dt+ cq,

where aq(j) = (−1)q+jq!/j! and cq is given by

cq =

{
−1/2 if q = 0,

(−1)q+1q! if q ≥ 1.

Lemma 2.2. For a non-negative integer q and a real number a with −1<
a< 0, we have

∑
n≤y

na(logn)q = y1+a

q∑
j=0

aq(j)

(1 + a)q−j+1
(log y)j − ψ(y)ya(log y)q

+

∫ y

1

ta−1(a log t+ q)ψ(t)(log t)q−1 dt+
c̃q

(1 + a)q+1

with

c̃q =

{
(1− a)c0 if q = 0,

cq if q ≥ 1,

where aq(j) and cq are the constants defined in Lemma 2.1.

Proof. This lemma can be proved by the Euler–Maclaurin summation for-
mula and an integral formula

(2.1)

∫ y

1

ta(log t)q dt= y1+a

q∑
j=0

aq(j)

(1 + a)q−j+1
(log y)j +

(−1)q+1q!

(1 + a)q+1
.

�

Note that the formula (2.1) is valid for the cases a= 0 and q = 0.
Now we shall transform

∑
n≤x d(k)(n;f) by the hyperbola method (1.2).

By the definition of d(k)(n;f) and (1.2) with c= 1/2, we can see that∑
n≤x

d(k)(n;f) =
∑

n≤√
x

f(n)
∑

m≤x/n

(logm)k

+
∑

n≤√
x

(logn)k
∑

m≤x/n

f(m)
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−
( ∑

n≤√
x

f(n)

)( ∑
n≤√

x

(logn)k
)

= S1 +
∑

n≤√
x

(logn)k
∑

m≤x/n

f(m)− S2,

say.
In S1, we have by Lemma 2.1 that

S1 =
∑

n≤√
x

f(n)

{
x

n

k∑
j=0

ak(j)

(
log

x

n

)j

−ψ

(
x

n

)(
log

x

n

)k

+ k

∫ x/n

1

ψ(t)(log t)k−1

t
dt+ ck

}

=: S11 + S12 + S13 + ck
∑

n≤√
x

f(n).

It is easy to see from the binomial expansion and partial summation that

S11 = x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∑
n≤√

x

1

n
f(n)(logn)ν

=

(√
x

∑
n≤√

x

f(n)

) k∑
j=0

ak(j)

2j
(logx)j

− x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∫ √
x

1

{
1

t
(log t)ν

}′∑
n≤t

f(n)dt,

where we have used the identity

(2.2)

N∑
n=0

(
N

n

)
(−1)n

2n
=

1

2N
.

Similarly, we have

S12 =−
k∑

j=0

(
k

j

)
(−1)j(logx)k−j

∑
n≤√

x

f(n)ψ

(
x

n

)
(logn)j .

In S13, interchanging summation and integration we have

S13 = k

( ∑
n≤√

x

f(n)

)∫ √
x

1

ψ(t)(log t)k−1

t
dt

+ k

∫ x

√
x

ψ(t)(log t)k−1

t

∑
n≤x/t

f(n)dt.
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Furthermore, in S2, we again apply the formula in Lemma 2.1 to obtain

S2 =

(√
x

∑
n≤√

x

f(n)

) k∑
j=0

ak(j)

2j
(logx)j

− 2−kψ(
√
x)(logx)k

∑
n≤√

x

f(n)

+ k

( ∑
n≤√

x

f(n)

)∫ √
x

1

ψ(t)(log t)k−1

t
dt+ ck

∑
n≤√

x

f(n).

Therefore, we obtain the following lemma.

Lemma 2.3. We have∑
n≤x

d(k)(n;f)(2.3)

=−x
k∑

j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

×
∫ √

x

1

{
1

t
(log t)ν

}′∑
n≤t

f(n)dt

−
k∑

j=0

(
k

j

)
(−1)j(logx)k−j

∑
n≤√

x

f(n)ψ

(
x

n

)
(logn)j

+ k

∫ x

√
x

ψ(t)(log t)k−1

t

∑
n≤x/t

f(n)dt+
∑

n≤√
x

(logn)k
∑

m≤x/n

f(m)

+ 2−kψ(
√
x)(logx)k

∑
n≤√

x

f(n).

From now on, we assume some conditions of
∑

n≤x f(n). Actually, we put

(2.4)
∑
n≤x

f(n) = g(x) +E(x),

where g(x) is the “main term” and E(x) is the “error term”. We assume that
the function g(x) is continuously differentiable and E(x) = O(xθ1(logx)θ2),
where θ1 is a constant with −1 < θ1 ≤ 0 and θ2 is a non-negative integer.
Further we assume that the mean value of E(x) is of the form∫ x

1

E(t)dt=Afx+Bf +O
(
xθ3(logx)θ4

)
with some constants Af , Bf , θ3 and a non-negative integer θ4. Note that
Af = 0 if θ1 < 0, and Bf is included in the O-term if θ3 ≥ 0.
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Now we shall transform the formula (2.3) under the assumption (2.4). In-
deed, we have∑

n≤x

d(k)(n;f)(2.5)

=−x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∫ √
x

1

{
1

t
(log t)ν

}′
g(t)dt

−
k∑

j=0

(
k

j

)
(−1)j(logx)k−j

∑
n≤√

x

f(n)ψ

(
x

n

)
(logn)j

+ k

∫ x

√
x

ψ(t)(log t)k−1

t
g

(
x

t

)
dt+

∑
n≤√

x

(logn)kg

(
x

n

)

+ 2−kψ(
√
x)(logx)kg(

√
x) + T (x)

with

T (x) = −x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

×
∫ √

x

1

{
1

t
(log t)ν

}′
E(t)dt

+ k

∫ x

√
x

ψ(t)(log t)k−1

t
E

(
x

t

)
dt+

∑
n≤√

x

(logn)kE

(
x

n

)

+ 2−kψ(
√
x)(logx)kE(

√
x)

= T1 + T2 +
∑

n≤√
x

(logn)kE

(
x

n

)
+ T3,

say. By the assumption E(x) =O(xθ1(logx)θ2) with the constants θj defined
in (2.4), it is trivially seen that

T2 � xθ1(logx)θ2+k−1

∫ x

√
x

t−1−θ1 dt

� (logx)θ2+k−1 ×
{
logx if θ1 = 0,

xθ1/2 if − 1< θ1 < 0

and T3 =O(xθ1/2(logx)θ2+k). Hence, we have T2 � T3.
On T1, we see that

∫∞√
x
{ 1
t (log t)

ν}′E(t)dt = O(x−(1−θ1)/2(logx)θ2+ν) by

the assumption of E(x), and therefore
∫∞
1

{ 1
t (log t)

ν}′E(t)dt is convergent.

More precisely, by the assumption
∫ x

1
E(t)dt = Afx + Bf + O(xθ3(logx)θ4)
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and integration by parts, we can see that∫ ∞

√
x

{
1

t
(log t)ν

}′
E(t)dt

=−
{
1

t
(log t)ν

}′∣∣∣∣
t=

√
x

∫ √
x

1

E(t)dt−
∫ ∞

√
x

{
1

t
(log t)ν

}′′ ∫ t

1

E(u)dudt

=−Afx
−1/2(log

√
x)ν +O

(
x−1+θ3/2(logx)θ4+ν

)
.

Hence by putting cf (ν) =
∫∞
1

{ 1
t (log t)

ν}′E(t)dt we have

T1 = −x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−νcf (ν)

−Afx
1/2

k∑
j=0

ak(j)

2j
(logx)j +O

(
xθ3/2(logx)θ4+k

)
by (2.2).

Combining all the above results, we obtain

T (x) = −x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−νcf (ν)(2.6)

−Afx
1/2

k∑
j=0

ak(j)

2j
(logx)j +

∑
n≤√

x

(logn)kE

(
x

n

)

+O
(
xθ1/2(logx)θ2+k

)
+O

(
xθ3/2(logx)θ4+k

)
.

As for the second preliminary, we transform the fourth term on the right-
hand side in (2.5). We put this part as U . By partial summation, we have

U = g(
√
x)

∑
n≤√

x

(logn)k + x

∫ √
x

1

t−2g′
(
x

t

)∑
n≤t

(logn)k dt

= U1 +U2,

say. As for the function U1, we have by Lemma 2.1 that

U1 = g(
√
x)

{
√
x

k∑
j=0

ak(j)

2j
(logx)j −ψ(

√
x)(log

√
x)k

+ k

∫ √
x

1

ψ(t)(log t)k−1

t
dt+ ck

}

= U11 − g(
√
x)ψ(

√
x)(log

√
x)k +U12 + ckg(

√
x).

Note that the second term on the right-hand side in the above is canceled by
the fifth term on the right-hand side in (2.5).
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On U2, we have

U2 =

∫ x

√
x

g′(t)

{
x

t

k∑
j=0

ak(j)

(
log

x

t

)j

−ψ

(
x

t

)(
log

x

t

)k

(2.7)

+ k

∫ x/t

1

ψ(u)(logu)k−1

u
du+ ck

}
dt

= U21 −
∫ x

√
x

g′(t)ψ

(
x

t

)(
log

x

t

)k

dt

+U22 + ck
{
g(x)− g(

√
x)
}
,

say. It is easy to see that

U22 = k

∫ √
x

1

ψ(u)(logu)k−1

u
g

(
x

u

)
du−U12.

On U21, we have

U21 = x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∫ x

√
x

g′(t)
(log t)ν

t
dt

= −U11 − x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

×
∫ x

√
x

g(t)

{
1

t
(log t)ν

}′
dt+ ak(0)g(x)

by (2.2) and the formula

N∑
n=0

(
N

n

)
(−1)n =

{
1 if N = 0,

0 if N ≥ 1.

Collecting these estimates we have

U = −x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∫ x

√
x

g(t)

{
1

t
(log t)ν

}′
dt

+ k

∫ √
x

1

ψ(u)(logu)k−1

u
g

(
x

u

)
du−

∫ x

√
x

g′(t)ψ

(
x

t

)(
log

x

t

)k

dt

− 2−kg(
√
x)ψ(

√
x)(logx)k +

(
ak(0) + ck

)
g(x).

Therefore, as the preparation of the proofs, we obtain the following
lemma.
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Lemma 2.4. Let d(k)(n;f) be the function defined by (1.4). Under the
assumption (2.4), we have∑

n≤x

d(k)(n;f)(2.8)

=−x
k∑

j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∫ x

1

{
1

t
(log t)ν

}′
g(t)dt

+ k

∫ x

1

ψ(t)(log t)k−1

t
g

(
x

t

)
dt

−
∫ x

√
x

g′(t)ψ

(
x

t

)(
log

x

t

)k

dt

−
k∑

j=0

(
k

j

)
(−1)j(logx)k−j

∑
n≤√

x

f(n)ψ

(
x

n

)
(logn)j

+
(
ak(0) + ck

)
g(x) + T (x)

with

T (x) = −x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−νcf (ν)(2.9)

−Afx
1/2

k∑
j=0

ak(j)

2j
(logx)j +

∑
n≤√

x

(logn)kE

(
x

n

)

+O
(
xθ1/2(logx)θ2+k

)
+O

(
xθ3/2(logx)θ4+k

)
.

3. Proof of Theorem 1.1

Let f(n) = na(logn)l and σ(k,l,a)(n) = d(k)(n;f). By Lemma 2.2 we find
that the main term g(y) and the error term E(y) in

∑
n≤y f(n) are of the

forms

(3.1) g(y) = y1+a
l∑

j=0

al(j)

(1 + a)l−j+1
(log y)j

and

E(y) = −yaψ(y)(log y)l +

∫ y

1

ta−1(a log t+ l)ψ(t)(log t)l−1 dt

+
c̃l

(1 + a)l+1
,

respectively. From the definition of al(j), we find that

(3.2) g′(y) = ya(log y)l.
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Since the integral on the right-hand side of E(y) converges when y →∞
we have the following expressions:

E(y) =Af − yaψ(y)(log y)l −
∫ ∞

y

ta−1(a log t+ l)ψ(t)(log t)l−1 dt

=Af +O
(
ya(log y)l

)
,

and

(3.3)

∫ y

1

E(t)dt=Afy+Bf +O
(
ya(log y)l

)
,

where

Af =
c̃l

(1 + a)l+1
+

∫ ∞

1

ta−1(a log t+ l)ψ(t)(log t)l−1 dt,

and

Bf =−Af −
∫ ∞

1

taψ(t)(log t)l dt−
∫ ∞

1

ta(a log t+ l)ψ(t)(log t)l−1 dt.

Hence, we can take θ1 = θ2 = 0, θ3 = a and θ4 = l. We remark that θ3 = a < 0
in this case (compare with the choice in Section 6).

Now we shall consider the formula (2.8).
The fourth term on the right-hand side in (2.8) coincides with R(k,l)(x;a).
By (3.1), (3.2) and integration by parts we find that∫ x

1

{
1

t
(log t)ν

}′
g(t)dt(3.4)

=

[
(log t)ν

t
g(t)

]x
1

−
∫ x

1

ta−1(log t)ν+l dt

= (logx)νx−1g(x)− δν −
∫ ∞

1

ta−1(log t)ν+l dt

+

∫ ∞

x

ta−1(log t)ν+l dt,

where δν = 0 if ν ≥ 1 and δ0 = g(1). We should note that the integral in the
second and third lines are convergent by the condition a < 0. Hence, the first
term on the right-hand side in (2.8) becomes

= −g(x)
k∑

j=0

ak(j)(logx)
j

j∑
ν=0

(
j

ν

)
(−1)ν(3.5)

+ x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

(
δν +

∫ ∞

1

ta−1(log t)ν+l dt

)

− x
k∑

j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν

∫ ∞

x

ta−1(log t)ν+l dt.
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The first line on the right-hand side of (3.5) equals to −g(x)ak(0) since the
sum over ν vanishes for j ≥ 1. We consider the third line of (3.5), which we
denote by J(x). By putting back the binomial expansion we have

J(x) =−x
k∑

j=0

ak(j)

∫ ∞

x

ta−1

(
log

x

t

)j

(log t)l dt.

If we change the variable by x
t = u, we have

J(x) = −x1+a
k∑

j=0

ak(j)

∫ 1

0

u−a−1(logu)j
(
log

x

u

)l

du(3.6)

= −x1+a
k∑

j=0

ak(j)

l∑
ν=0

(
l

ν

)
(−1)ν(logx)l−ν

×
∫ 1

0

u−a−1(logu)j+ν du.

Hence by (3.5) and (3.6), we can see that the first term on the right-hand side
of (2.8) has the form

x

k∑
j=0

A1,j(a, k, l)(logx)
j + x1+a

l∑
j=0

A2,j(a, k, l)(logx)
j .

Next, we treat the second term on the right-hand side in (2.8). Let ψ1(y) =∫ y

1
ψ(t)dt. Noting that ψ1(y) =O(1) uniformly in y, we have by integration

by parts that

k

∫ x

1

ψ(t)(log t)k−1

t
g

(
x

t

)
dt = −k

∫ x

1

ψ1(t)

{
(log t)k−1

t
g

(
x

t

)}′
dt

+O
(
x−1(logx)k−1

)
.

By (3.1), we get

(log t)k−1

t
g

(
x

t

)

= x1+a
l∑

j=0

al(j)

(1 + a)l−j+1

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν (log t)

ν+k−1

t2+a
,

and thus

k

∫ x

1

ψ(t)(log t)k−1

t
g

(
x

t

)
dt

=−kx1+a
l∑

j=0

al(j)

(1 + a)l−j+1

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν
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×
∫ x

1

ψ1(t)

{
(log t)ν+k−1

t2+a

}′
dt

+O
(
x−1(logx)k−1

)
.

Since −1< a< 0, we see that the integral in the above is convergent absolutely.
We obtain

k

∫ x

1

ψ(t)(log t)k−1

t
g

(
x

t

)
dt = x1+a

l∑
j=0

A3,j(a, k, l)(logx)
j

+O
(
x−1(logx)k+l−1

)
.

As for the third one, we have by noting the formula (3.2) that∫ x

√
x

g′(t)ψ

(
x

t

)(
log

x

t

)k

dt

= x

∫ √
x

1

u−2ψ(u)g′
(
x

u

)
(logu)k du

= x1+a

∫ √
x

1

u−2−aψ(u)

(
log

x

u

)l

(logu)k du

= x1+a
l∑

ν=0

(
l

ν

)
(−1)ν(logx)l−ν

×
∫ √

x

1

u−2−aψ(u)(logu)ν+k du.

Since ∫ √
x

1

u−2−aψ(u)(logu)ν+k du =

∫ ∞

1

u−2−aψ(u)(logu)ν+k du

+O
(
x−1−a/2(logx)ν+k

)
,

we get ∫ x

√
x

g′(t)ψ

(
x

t

)(
log

x

t

)k

dt

= x1+a
l∑

j=0

A4,j(a, k, l)(logx)
j +O

(
xa/2(logx)k+l

)
.

Clearly ak(0)g(x) in the fifth term of (2.8) cancels with the first line of
(3.5), hence it becomes ckg(x), which we write

ckg(x) = x1+a
l∑

j=0

A5,j(a, k, l)(logx)
j .
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It remains to consider the formula of (2.9). By the definition of E(x), we
have

∑
n≤√

x

(logn)kE

(
x

n

)
=

∑
n≤√

x

(logn)k
{
−
(
x

n

)a

ψ

(
x

n

)(
log

x

n

)l

+

∫ ∞

x/n

ta−1(a log t+ l)ψ(t)(log t)l−1 dt+Af

}
= V1 + V2 + V3,

say. For V1, it is easy to see that

V1 =−xa
l∑

ν=0

(
l

ν

)
(−1)ν(logx)l−ν

∑
n≤√

x

n−aψ

(
x

n

)
(logn)k+ν ,

which coincides with xaR(l,k)(x;−a). Also it is easily seen from Lemma 2.1
that

V3 =Af

√
x

k∑
j=0

ak(j)(log
√
x)k +O

(
(logx)k

)
.

For V2, changing the summation and integration, we have

V2 =

∫ x

√
x

ta−1(a log t+ l)ψ(t)(log t)l−1
∑

x/t<n≤√
x

(logn)k dt

+

( ∑
n≤√

x

(logn)k
)∫ ∞

x

ta−1(a log t+ l)ψ(t)(log t)l−1 dt

= −
∫ x

√
x

ta−1(a log t+ l)ψ(t)(log t)l−1
∑

n≤x/t

(logn)k dt

+

( ∑
n≤√

x

(logn)k
)∫ ∞

√
x

ta−1(a log t+ l)ψ(t)(log t)l−1 dt

= V21 + V22,

say. It is easy to see that V22 � xa/2(logx)k+l. For V21, we apply Lemma 2.2
and get

V21 = −x
k∑

j=0

ak(j)

∫ x

√
x

ta−2(a log t+ l)ψ(t)(log t)l−1

(
log

x

t

)j

dt

+O
(
xa/2(logx)k+l

)
= −x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−ν
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×
∫ x

√
x

ta−2(a log t+ l)ψ(t)(log t)l−1+ν dt

+O
(
xa/2(logx)k+l

)
� xa/2(logx)k+l.

Collecting these estimates we obtain that

∑
n≤√

x

(logn)kE

(
x

n

)
= xaR(l,k)(x;−a) +Af

√
x

k∑
j=0

ak(j)(log
√
x)k

+O
(
(logx)k

)
+O

(
xa/2(logx)k+l

)
.

The second term on the right-hand side above is canceled by the second term
on the right-hand side in (2.9). Clearly the first term of T (x) has the form

x
∑k

j=0A6,j(a, k, l)(logx)
j .

Collecting all formulas, we obtain the assertion of Theorem 1.1.

Remark. We can see that the coefficient of x(logx)k, which is the greatest
term for the main term of

∑
n≤x σ(k,l,a)(n), does not vanish. Actually, we can

see this fact as follows: The explicit value of such coefficient is equal to the
sum of the terms from A1,k(a, k, l) and A6,k(a, k, l) in the case j = k and
ν = 0. By the definitions of A1,k(a, k, l) and A6,k(1, k, l), we have that the
corresponding term coming from A1,k(a, k, l) is

=
(−1)ll!

(1 + a)l+1
+

∫ ∞

1

ta−1(log t)l dt

and the term corresponding to A6,k(a, k, l) is

=−cf (0) = (−1)l−1ζ(l)(1− a)− (−1)ll!

(1 + a)l
−
∫ ∞

1

ta−1(log t)l dt.

Then we have that the coefficient of x(logx)k is (−1)l−1ζ(l)(1− a). We can
trivially see that ζ(l)(1 − a) �= 0 for all non-negative integer l and the real
number a with −1 < a < 0, hence we see that the coefficient of x(logx)k is
not equal to zero.

4. Proof of Corollary 1.2

In order to prove Corollary 1.2, we apply the formula of ψ(x) in the fol-
lowing lemma.

Lemma 4.1 ([11, p. 245]). Let h be any real number. We have

(4.1) ψ(x) =− 1

2πi

∑
1≤|h|≤H

e(hx)

h
+O

(
EH(x)

)
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with e(y) = exp(2πiy), where EH(x) is the function estimated and represented
as

EH(x) =min

(
1,

1

H‖x‖

)
=

∞∑
h=−∞

b(h)e(hx)

with

(4.2) b(0)� logH

H
and b(h)�min

(
logH

H
,
H

h2

)
(h �= 0).

By using this lemma, we have the following lemma.

Lemma 4.2. Let r be a real number and let gN (x) be the function defined
by

(4.3) gN (x) =
∑

N<n≤2N

nrψ

(
x

n

)

with 1≤N ≤√
x. Then we have

(4.4) gN (x)� x
κ

κ+1Nr+λ−κ
κ+1 logx

for any exponent pair (κ,λ).

Proof. Substituting (4.1) in (4.3), we have

(4.5) gN (x) =− 1

2πi

∑
1≤|h|≤H

1

h

∑
N<n≤2N

e

(
hx

n

)
+O

( ∑
N<n≤2N

nrEH

(
x

n

))
.

Let (κ,λ) be an exponent pair. By partial summation and applying this
exponent pair, we get∑

N<n≤2N

nre

(
hx

n

)
� max

N<t≤2N

∣∣∣∣ ∑
N<n≤t

e

(
hx

n

)∣∣∣∣Nr

�Nr

{(
hx

N2

)κ

(t−N)λ +
N2

hx

}
� hκxκNa+λ−2κ.

Hence the first term on the right-hand side of (4.5) is evaluated as as

�HκxκNa+λ−2κ ×
{
logH κ= 0,

1 κ > 0.

On the other hand by using (4.2), the second term on the right-hand side of
(4.5) is bounded as∑

N<n≤2N

nrEH

(
x

n

)
�

(
xκNa+λ−2κHκ +

Na+1

H

)
logH.
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Hence, we get

(4.6) gN (x)�
(
xκNa+λ−2κHκ +

Na+1

H

)
logH

for H ≥ 1. Note that gN (x)�Na+1 trivially, hence (4.6) holds for all H > 0.
Taking H = x−κ/(κ+1)N (1−λ+2κ)/(κ+1), we get (4.4). �

Proof of Corollary 1.2. Let r be a real number and let

G(x, r) =
∑

n≤√
x

nrψ

(
x

n

)
(logx)A

for a non-negative integer A. In view of Theorem 1.1, we have to estimate
the upper bounds of G(x,a) and xaG(x,−a).

Let

g(t) =
∑
n≤t

nrψ

(
x

n

)
.

By partial summation, we have

G(x, r) = g(
√
x)(log

√
x)A −A

∫ √
x

1

g(t)(log t)A−1 1

t
dt

�
{
max
t≤√

x

∣∣g(t)∣∣}(logx)A.
Hence, it is enough to evaluate |g(t)| for t in the range 1 ≤ t ≤ √

x. Let
Nj = t/2j . Then by the standard decomposition technique we have

g(t) =

j0∑
j=1

gNj (x) +O(1),

where j0 = [log t/ log 2].
For G(x,a) we take r = a for −1 < a < 0 in (4.4). We consider the three

cases.
Case 1. Suppose that a+ λ−κ

κ+1 > 0. In this case, we have

g(t)� x
κ

κ+1

∑
j

(
t

2j

)a+λ−κ
κ+1

logx

� x
κ

κ+1 ta+
λ−κ
κ+1 logx.

Case 2. Suppose that a + λ−κ
κ+1 < 0. Let t be a real number such that

0< t < 1. By the theory of exponent pairs,

(κt, λt) = t(0,1) + (1− t)(κ,λ) =
(
(1− t)κ, t/2 + (1− t)λ

)
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is also an exponent pair. If we take

t0 =
−a(κ+ 1)− (λ− κ)

1− aκ− (λ− κ)
,

then we have a(κt0 + 1) + λt0 − κt0 = 0. We also note that 0< t0 < 1 by the
assumption a+ λ−κ

κ+1 < 0. Applying this exponent pair in (4.4), we get

gN (x)� x
κ0

κ0+1 logx= x
(1+a)κ
1−λ+2κ logx,

and hence

g(t)� x
(1+a)κ
1−λ+2κ (logx)2.

Case 3. Suppose that a+ λ−κ
κ+1 = 0. As in the case 2, we get

g(t)� x
κ

κ+1 (logx)2.

From these estimates, we have

(4.7) G(x,a)�
{
x

a
2+

λ+κ
2(κ+1) (logx)A+1, a+ λ−κ

κ+1 > 0,

x
(1+a)κ
1−λ+2κ (logx)A+2, a+ λ−κ

κ+1 ≤ 0.

For xaG(x,−a) we take r =−a > 0 in (4.4). Since −a+ λ−κ
κ+1 > 1 we have

(4.8) xaG(x,−a)� x
a
2+

λ+κ
2(κ+1) (logx)A+1.

Therefore, by the definition of Δ(k,l,a)(x) in Theorem 1.1, we obtain

Δ(k,l,a)(x)�
{
x

a
2+

λ+κ
2(κ+1) (logx)k+l+1, a+ λ−κ

κ+1 > 0,

x
(1+a)κ
1−λ+2κ (logx)k+l+2 + x

a
2+

λ+κ
2(κ+1) (logx)k+l+1, a+ λ−κ

κ+1 ≤ 0.

Remarking that a
2 +

λ+κ
2(κ+1) ≤

(1+a)κ
1−λ+2κ for a+ λ−κ

κ+1 ≤ 0, we obtain the assertion

of Corollary 1.2. �

5. Some remarks on Corollary 1.2

We first recall that the constant a satisfies the condition −1< a< 0.
If we take the trivial exponent pair (κ,λ) = (0,1), we have a+ λ−κ

κ+1 > 0 and
hence

Δ(k,l,a)(x) =O
(
x

a+1
2 (logx)k+l+1

)
for −1< a < 0. Similarly, if we take (κ,λ) = (1/2,1/2), we have a+ λ−κ

κ+1 ≤ 0
and hence

Δ(k,l,a)(x) =O
(
x

a+1
3 (logx)k+l+1

)
for −1< a< 0.

Here are some other examples. Each exponent pair is taken from [14].

(i) Put (κ,λ) = (1/6,4/6), then

Δ(k,l,a)(x)�
{
x

a
2+

5
14 (logx)k+l+1 for − 3

7 < a< 0,

x
(a+1)

4 (logx)k+l+2 for −1< a≤−3
7 .
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(ii) Put (κ,λ) = (2/18,13/18), then

Δ(k,l,a)(x)�
{
x

a
2+

3
8 (logx)k+l+1 for − 11

20 < a< 0,

x
2
9 (a+1)(logx)k+l+2 for −1< a≤−11

20 .

(iii) Put (κ,λ) = (11/82,57/82), then

Δ(k,l,a)(x)�
{
x

a
2+

34
93 (logx)k+l+1 for −46

93 < a< 0,

x
11(a+1)

47 (logx)k+l+2 for −1< a≤−46
93 .

Thus, the third one gives the special estimate

Δ(k,l,−1/2)(x) =O
(
x

11
94 (logx)k+l+2

)
.

6. Proof of Theorem 1.3

We put f(n) = χ(n)(logn)l, then d(k)(n;f) = r(k,l)(n) in this setting. By
the formula

(6.1)
∑
n≤y

χ(n) =
1

2
−ψ

(
y− 1

4

)
+ψ

(
y− 3

4

)

(cf. [6, Lemma 4.7]), we have by partial summation that∑
n≤y

f(n) =

{
−ψ

(
y− 1

4

)
+ψ

(
y− 3

4

)}
(log y)l +Af +O

(
y−1(log y)l−1

)
,

where Af is a constant. Hence, we have∫ y

1

∑
n≤t

f(n)dt=Afy+O
(
(log y)l

)
.

Thus if we put g(x) = 0, E(x) =
∑

n≤x f(n), θ1 = θ3 = 0 and θ2 = θ4 = l, we

can see that the function f(n) of this setting satisfies all assumptions of the
error term E(x) in Section 2.

On this setting, the formula (2.5) is reduced to

∑
n≤x

r(k,l)(n) = −
k∑

j=0

(
k

j

)
(−1)j(logx)k−j

∑
n≤√

x

χ(n)ψ

(
x

n

)
(logn)l+j

− x

k∑
j=0

ak(j)

j∑
ν=0

(
j

ν

)
(−1)ν(logx)j−νcf (ν)

−Afx
1/2

k∑
j=0

ak(j)

2j
(logx)j +

∑
n≤√

x

(logn)kE

(
x

n

)

+O
(
(logx)k+l

)
.
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Here the second term on the right-hand side contributes the main term
−xQk(logx;k, l) of the theorem; the first one above is the first term of
P(k,l)(x).

On the fourth term in the right-hand side of the above formula, applying
partial summation and substituting the formula (6.1) into it, we have∑

n≤√
x

(logn)kE

(
x

n

)

=
∑

n≤√
x

(logn)k
∑

m≤x/n

χ(m)(logm)l

=
∑

n≤√
x

(logn)k
{(

−ψ

(
x/n− 1

4

)
+ψ

(
x/n− 3

4

))(
log

x

n

)l

+Af

}

+O
(
(logx)k+l−1

)
=

l∑
j=0

(
l

j

)
(−1)j(logx)l−j

∑
n≤√

x

{
−ψ

(
x− n

4n

)
+ψ

(
x− 3n

4n

)}
(logn)k+j

+Af

(
x1/2

k∑
j=0

ak(j)

2j
(logx)j +O

(
(logx)k

))
+O

(
(logx)k+l−1

)
.

Hence, the term containing Af cancels and the remaining terms containing

ψ(x) contribute R
(1)
(k,l)(x,χ) and R

(3)
(k,l)(x,χ) of P(k,l)(x) of the theorem. The

proof of Theorem 1.3 is complete.
The assertions of Corollary 1.4 can be proved by using Theorem 1.3 and

the method used in [10] and [7, Section 5]. We omit the details of the proof
of this corollary.
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