ON REPRESENTATIONS OF ERROR TERMS RELATED TO THE DERIVATIVES FOR SOME DIRICHLET SERIES

JUN FURUYA, T. MAKOTO MINAMIDE AND YOSHIO TANIGAWA

Abstract

In previous papers, we examined several properties of an error term in a certain divisor problem related to the derivatives of the Riemann zeta-function. In this paper, we obtain representations of error terms related to the derivatives of some Dirichlet series, which can be regarded as generalized versions of a Dirichlet divisor problem and a Gauss circle problem. We also give the upper bounds of the error terms in terms of exponent pairs.

1. Introduction and statement of results

Let $\zeta(s)$ denote the Riemann zeta-function, and $\zeta^{(k)}(s)$ denote the k th derivative of $\zeta(s)$ with $\zeta^{(0)}(s)=\zeta(s)$. Further let $D_{(k, l)}(n)$ be the coefficient of Dirichlet series $(-1)^{k+l} \zeta^{(k)}(s) \zeta^{(l)}(s)$ in $\Re s>1$ for any non-negative integers k and l, namely

$$
D_{(k, l)}(n)=\sum_{d \mid n}(\log d)^{k}\left(\log \frac{n}{d}\right)^{l}
$$

In the previous works, we investigated the upper bound estimates for the error term $\Delta_{(k, l)}(x)$, which is the error term on the summatory function $\sum_{n \leq x} D_{(k, l)}(n)$. In particular, we treated the upper bound estimates for the case $k=l$ in [15], and general k and l in [7]. As other properties for this error term, the truncated Voronoï-type formula and a mean square formula for $\Delta_{(1,1)}(x)$ were derived in [15]. Furthermore, the Riesz means and differences between two kinds of mean values of the error term were treated in [2].

In [7], we derived the representation of $\Delta_{(k, l)}(x)$ called the "Chowla-Walum formula", that is, the sum of the periodic Bernoulli function. Actually, we

Received April 3, 2017; received in final form October 16, 2017.
This work is supported by JSPS KAKENHI Grant Numbers 26400030, 15K17512 and 15K04778.

2010 Mathematics Subject Classification. 11N37.
proved that

$$
\begin{equation*}
\Delta_{(k, l)}(x)=-\left\{R_{k, l}(x)+R_{l, k}(x)\right\}+O\left((\log x)^{k+l}\right) \tag{1.1}
\end{equation*}
$$

with

$$
R_{\alpha, \beta}(x)=\sum_{j=0}^{\beta}\binom{\beta}{j}(-1)^{j}(\log x)^{\beta-j} \sum_{n \leq \sqrt{x}} \psi\left(\frac{x}{n}\right)(\log n)^{\alpha+j}
$$

where $\binom{k}{j}$ is the binomial coefficient and $\psi(x)=x-[x]-1 / 2$ is the periodic Bernoulli function. Here $[x]$ denotes the greatest integer not exceeding x.

The formula (1.1) is derived by using the "Dirichlet hyperbola method", which is formulated as

$$
\begin{align*}
\sum_{m n \leq x} f(n) g(m)= & \sum_{n \leq x^{c}} f(n) \sum_{m \leq x / n} g(m)+\sum_{n \leq x^{1-c}} g(n) \sum_{m \leq x / n} f(m) \tag{1.2}\\
& -\left(\sum_{n \leq x^{c}} f(n)\right)\left(\sum_{n \leq x^{1-c}} g(n)\right)
\end{align*}
$$

for any arithmetical functions f and g, where c is a real number with $0 \leq c \leq 1$ (see [1, Theorem 3.17]).

For an arithmetical function $f(n)$, we put $L(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ for $\Re s>$ σ_{f}, where σ_{f} is an abscissa of absolute convergence of this series. Then we have

$$
\begin{equation*}
\zeta^{(k)}(s) L(s)=\sum_{n=1}^{\infty} \frac{d_{(k)}(n ; f)}{n^{s}} \tag{1.3}
\end{equation*}
$$

for $\Re s>\max \left(1, \sigma_{f}\right)$, where

$$
\begin{equation*}
d_{(k)}(n ; f)=\sum_{d \mid n} f(d)\left(\log \frac{n}{d}\right)^{k} \tag{1.4}
\end{equation*}
$$

The aim of this paper is to study the summatory function

$$
\begin{equation*}
\sum_{n \leq x} d_{(k)}(n ; f) \tag{1.5}
\end{equation*}
$$

and derive the Chowla-Walum type formula for the error term of (1.5). In particular, we treat two examples; one is $L(s)=(-1)^{l} \zeta^{(l)}(s-a)(-1<a<0)$, and the other is $L(s)=(-1)^{l} L^{(l)}(s, \chi)(\chi$ is the Dirichlet character mod 4).
1.1. The case $L(s)=(-1)^{l} \zeta^{(l)}(s-a)$. For a real number $a(-1<a<0)$, let $\sigma_{a}(n)$ denote the arithmetical function defined by

$$
\sigma_{a}(n)=\sum_{d \mid n} d^{a}
$$

This is the coefficient of the Dirichlet series $\zeta(s) \zeta(s-a)$ for $\Re s>1$. A generalized divisor problem is to study the behaviour of the error term $\Delta_{a}(x)$ defined by

$$
\Delta_{a}(x)=\sum_{n \leq x} \sigma_{a}(n)-\zeta(1-a) x-\frac{\zeta(1+a)}{1+a} x^{1+a}
$$

The Chowla-Walum type formula of $\Delta_{a}(x)$ is of the form

$$
\begin{equation*}
\Delta_{a}(x)=-\sum_{n \leq \sqrt{x}} n^{a} \psi\left(\frac{x}{n}\right)-x^{a} \sum_{n \leq \sqrt{x}} n^{-a} \psi\left(\frac{x}{n}\right)+O(1) \tag{1.6}
\end{equation*}
$$

(cf. e.g. [6]). There are many researches on $\Delta_{a}(x)$, for example, the upper bound estimates, Voronoï-type representations and mean value formulas for $\Delta_{a}(x)$. We note that the studies of the function $\Delta_{a}(x)$ for $-1<a<0$ are deeply connected with the behaviour of the Riemann zeta function $\zeta(s)$ for $1 / 2<\sigma<1$. For the details of these topics, see [3], [4], [5], [6], [16].

Now, we shall consider a divisor problem for $(-1)^{k+l} \zeta^{(k)}(s) \zeta^{(l)}(s-a)$ with $-1<a<0$ (the case of $a=0$ was already studied in [7]). In this case, $f(n)=$ $n^{a}(\log n)^{l}$ in (1.4), and we put

$$
\begin{equation*}
\sigma_{(k, l, a)}(n):=d_{(k)}(n ; f)=\sum_{d \mid n} d^{a}(\log d)^{l}\left(\log \frac{n}{d}\right)^{k} \tag{1.7}
\end{equation*}
$$

We consider the error term of $\sum_{n \leq x} \sigma_{(k, l, a)}(n)$ and obtain the following theorem.

ThEOREM 1.1. Let $\sigma_{(k, l, a)}(n)$ be the arithmetical function defined by (1.7). Then we have

$$
\sum_{n \leq x} \sigma_{(k, l, a)}(n)=x P_{k}(\log x)+x^{1+a} Q_{l}(\log x)+\Delta_{(k, l, a)}(x),
$$

where $P_{k}(x)$ and $Q_{l}(x)$ are certain polynomials in x of degree k and l respectively, whose coefficients depend on k, l and a, and $\Delta_{(k, l, a)}(x)$ is the error term defined by

$$
\Delta_{(k, l, a)}(x)=R_{(k, l)}(x ; a)+x^{a} R_{(l, k)}(x ;-a)+O\left((\log x)^{k+l}\right)
$$

with

$$
R_{(p, q)}(x ; r)=-\sum_{j=0}^{p}\binom{p}{j}(-1)^{j}(\log x)^{p-j} \sum_{n \leq \sqrt{x}} n^{r} \psi\left(\frac{x}{n}\right)(\log n)^{q+j}
$$

We can see that the formula in Theorem 1.1 implies the previous formula (1.6).

As a direct application of Theorem 1.1, using the theory of exponent pairs, we obtain the following corollary, which is the non-trivial estimate of $\Delta_{(k, l, a)}(x)$. For the theory of exponent pairs, refer to [10], [13] and [14].

Corollary 1.2. Let (κ, λ) be any exponent pair. Then we have

$$
\Delta_{(k, l, a)}(x) \ll \begin{cases}x^{\frac{a}{2}+\frac{\lambda+\kappa}{2(\kappa+1)}}(\log x)^{k+l+1} & \text { for } a+\frac{\lambda-\kappa}{\kappa+1}>0 \\ x^{\frac{(1+a) \kappa}{1-\lambda+2 \kappa}}(\log x)^{k+l+2} & \text { for } a+\frac{\lambda-\kappa}{\kappa+1} \leq 0\end{cases}
$$

Specific exponent pairs give several upper bound estimates of $\Delta_{(k, l, a)}(x)$ under some condition on a. For example, if we take $(\kappa, \lambda)=(11 / 82,57 / 82)$, we have

$$
\Delta_{(k, l,-1 / 2)}(x)=O\left(x^{11 / 94}(\log x)^{k+l+2}\right)
$$

$(11 / 94=0.11702 \ldots)$. We shall discuss this topic in Section 5.
1.2. The case $L(s)=(-1)^{l} L^{(l)}(s, \chi)$. Let $\chi(n)$ be the primitive Dirichlet character modulo 4, and $L(s, \chi)$ be the Dirichlet L-function associated to χ defined by

$$
L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) n^{-s} \quad(\Re s>1)
$$

The Gauss circle problem is to study the error term related to the Dirichlet series $4 \zeta(s) L(s, \chi)$. Indeed, let $P(x)$ denote the error term in the circle problem defined by

$$
P(x)=\sum_{1 \leq n \leq x} r(n)-\pi x,
$$

where $r(n)$ denotes the number of integer solutions of Diophantine equation $x^{2}+y^{2}=n$. The main object of the Gauss circle problem is to find the best possible estimation of $P(x)$. There are many results concerning several estimations of $P(x)$ and related topics on the circle problem. See e.g. [14] and [13] in details.

The Chowla-Walum type formula for $P(x)$ is of the form

$$
\begin{aligned}
P(x)= & -4 \sum_{n \leq \sqrt{x}} \chi(n) \psi\left(\frac{x}{n}\right)-4 \sum_{n \leq \sqrt{x}} \psi\left(\frac{x-n}{4 n}\right) \\
& +4 \sum_{n \leq \sqrt{x}} \psi\left(\frac{x-3 n}{4 n}\right)+O(1)
\end{aligned}
$$

(cf. [10, Theorem 4.8]).
Now we treat the arithmetical function $r_{(k, l)}(n)$ defined by

$$
\begin{equation*}
r_{(k, l)}(n)=\sum_{d \mid n} \chi(d)(\log d)^{l}\left(\log \frac{n}{d}\right)^{k} \tag{1.8}
\end{equation*}
$$

which is the coefficient of the Dirichlet series $(-1)^{k+l} \zeta^{(k)}(s) L^{(l)}(s, \chi)$. In [8], we studied several arithmetical properties of the error term of the sum $\sum_{n \leq x} r_{(1,1)}(n)$. Actually we derived the truncated Voronoï formula, the mean square formula and the non-trivial estimate of the error term.

Here, we shall derive the Chowla-Walum type formula of the error term related to the summatory function $\sum_{n \leq x} r_{(k, l)}(n)$ for general k and l. We obtain the following theorem.

ThEOREM 1.3. Let $r_{(k, l)}(n)$ be the arithmetical function defined by (1.8). Then we have

$$
\sum_{n \leq x} r_{(k, l)}(n)=-x Q_{k}(\log x ; k, l)+P_{(k, l)}(x)+O\left((\log x)^{k+l}\right)
$$

where $Q_{d}(x ; k, l)$ is the polynomial in x of degree d whose coefficients depend on k and $l,{ }^{1}$ and $P_{(k, l)}(x)$ is the error term defined by

$$
\begin{aligned}
P_{(k, l)}(x)= & -\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}(\log x)^{k-j} \sum_{n \leq \sqrt{x}} \chi(n) \psi\left(\frac{x}{n}\right)(\log n)^{l+j} \\
& +R_{(k, l)}^{(1)}(x ; \chi)+R_{(k, l)}^{(3)}(x ; \chi)+O\left((\log x)^{k+l}\right)
\end{aligned}
$$

with

$$
R_{(k, l)}^{(\alpha)}(x ; \chi)=\chi(-\alpha) \sum_{j=0}^{l}\binom{l}{j}(-1)^{j}(\log x)^{l-j} \sum_{n \leq \sqrt{x}} \psi\left(\frac{y-\alpha n}{4 n}\right)(\log n)^{k+j}
$$

for $\alpha=1$ and 3 .
As an application of Theorem 1.3, we obtain the following corollary.
Corollary 1.4. Let (κ, λ) be any exponent pair. Under the notations of Theorem 1.3, we have

$$
P_{(k, l)}(x) \ll \begin{cases}x^{1 / 3}(\log x)^{k+l} & \text { if } \kappa=\lambda=1 / 2 \\ x^{\frac{\kappa+\lambda}{2(\kappa+1)}}(\log x)^{k+l}+|P(x)|(\log x)^{k+l} & \text { if } \kappa \neq \lambda .\end{cases}
$$

In particular, the exponent pair $(\kappa, \lambda)=(97 / 251,132 / 251)$ gives the estimate

$$
P_{(k, l)}(x)=O\left(x^{\frac{229}{696}}(\log x)^{k+l}\right)
$$

Note that $229 / 696=0.329022 \ldots$. In the case $k=l=0$, the best estimate (Huxley [12]) at present is

$$
P_{(0,0)}(x)=O\left(x^{\frac{131}{416}}(\log x)^{\frac{18627}{8320}}\right)
$$

$(131 / 416=0.314903 \ldots)$. In this case, our Corollary 1.4 is weaker than the above estimate.

[^0]
2. Preliminaries

As a preparation for the purpose, we consider the summation formulas involving the log-function. We present these formulas as the following lemmas.

Lemma 2.1 ([7, Lemma 1]). For a non-negative integer q, we have

$$
\begin{aligned}
\sum_{n \leq y}(\log n)^{q}= & y \sum_{j=0}^{q} a_{q}(j)(\log y)^{j}-\psi(y)(\log y)^{q} \\
& +q \int_{1}^{y} \frac{\psi(t)(\log t)^{q-1}}{t} d t+c_{q}
\end{aligned}
$$

where $a_{q}(j)=(-1)^{q+j} q!/ j$! and c_{q} is given by

$$
c_{q}= \begin{cases}-1 / 2 & \text { if } q=0 \\ (-1)^{q+1} q! & \text { if } q \geq 1\end{cases}
$$

Lemma 2.2. For a non-negative integer q and a real number a with $-1<$ $a<0$, we have

$$
\begin{aligned}
\sum_{n \leq y} n^{a}(\log n)^{q}= & y^{1+a} \sum_{j=0}^{q} \frac{a_{q}(j)}{(1+a)^{q-j+1}}(\log y)^{j}-\psi(y) y^{a}(\log y)^{q} \\
& +\int_{1}^{y} t^{a-1}(a \log t+q) \psi(t)(\log t)^{q-1} d t+\frac{\tilde{c}_{q}}{(1+a)^{q+1}}
\end{aligned}
$$

with

$$
\tilde{c}_{q}= \begin{cases}(1-a) c_{0} & \text { if } q=0 \\ c_{q} & \text { if } q \geq 1\end{cases}
$$

where $a_{q}(j)$ and c_{q} are the constants defined in Lemma 2.1.
Proof. This lemma can be proved by the Euler-Maclaurin summation formula and an integral formula

$$
\begin{equation*}
\int_{1}^{y} t^{a}(\log t)^{q} d t=y^{1+a} \sum_{j=0}^{q} \frac{a_{q}(j)}{(1+a)^{q-j+1}}(\log y)^{j}+\frac{(-1)^{q+1} q!}{(1+a)^{q+1}} \tag{2.1}
\end{equation*}
$$

Note that the formula (2.1) is valid for the cases $a=0$ and $q=0$.
Now we shall transform $\sum_{n \leq x} d_{(k)}(n ; f)$ by the hyperbola method (1.2). By the definition of $d_{(k)}(n ; f)$ and (1.2) with $c=1 / 2$, we can see that

$$
\begin{aligned}
\sum_{n \leq x} d_{(k)}(n ; f)= & \sum_{n \leq \sqrt{x}} f(n) \sum_{m \leq x / n}(\log m)^{k} \\
& +\sum_{n \leq \sqrt{x}}(\log n)^{k} \sum_{m \leq x / n} f(m)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\sum_{n \leq \sqrt{x}} f(n)\right)\left(\sum_{n \leq \sqrt{x}}(\log n)^{k}\right) \\
= & S_{1}+\sum_{n \leq \sqrt{x}}(\log n)^{k} \sum_{m \leq x / n} f(m)-S_{2},
\end{aligned}
$$

say.
In S_{1}, we have by Lemma 2.1 that

$$
\begin{aligned}
S_{1}= & \sum_{n \leq \sqrt{x}} f(n)\left\{\frac{x}{n} \sum_{j=0}^{k} a_{k}(j)\left(\log \frac{x}{n}\right)^{j}-\psi\left(\frac{x}{n}\right)\left(\log \frac{x}{n}\right)^{k}\right. \\
& \left.+k \int_{1}^{x / n} \frac{\psi(t)(\log t)^{k-1}}{t} d t+c_{k}\right\} \\
= & S_{11}+S_{12}+S_{13}+c_{k} \sum_{n \leq \sqrt{x}} f(n)
\end{aligned}
$$

It is easy to see from the binomial expansion and partial summation that

$$
\begin{aligned}
S_{11}= & x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \sum_{n \leq \sqrt{x}} \frac{1}{n} f(n)(\log n)^{\nu} \\
= & \left(\sqrt{x} \sum_{n \leq \sqrt{x}} f(n)\right) \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j} \\
& -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \int_{1}^{\sqrt{x}}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} \sum_{n \leq t} f(n) d t,
\end{aligned}
$$

where we have used the identity

$$
\begin{equation*}
\sum_{n=0}^{N}\binom{N}{n} \frac{(-1)^{n}}{2^{n}}=\frac{1}{2^{N}} \tag{2.2}
\end{equation*}
$$

Similarly, we have

$$
S_{12}=-\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}(\log x)^{k-j} \sum_{n \leq \sqrt{x}} f(n) \psi\left(\frac{x}{n}\right)(\log n)^{j} .
$$

In S_{13}, interchanging summation and integration we have

$$
\begin{aligned}
S_{13}= & k\left(\sum_{n \leq \sqrt{x}} f(n)\right) \int_{1}^{\sqrt{x}} \frac{\psi(t)(\log t)^{k-1}}{t} d t \\
& +k \int_{\sqrt{x}}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} \sum_{n \leq x / t} f(n) d t .
\end{aligned}
$$

Furthermore, in S_{2}, we again apply the formula in Lemma 2.1 to obtain

$$
\begin{aligned}
S_{2}= & \left(\sqrt{x} \sum_{n \leq \sqrt{x}} f(n)\right) \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j} \\
& -2^{-k} \psi(\sqrt{x})(\log x)^{k} \sum_{n \leq \sqrt{x}} f(n) \\
& +k\left(\sum_{n \leq \sqrt{x}} f(n)\right) \int_{1}^{\sqrt{x}} \frac{\psi(t)(\log t)^{k-1}}{t} d t+c_{k} \sum_{n \leq \sqrt{x}} f(n) .
\end{aligned}
$$

Therefore, we obtain the following lemma.
Lemma 2.3. We have

$$
\begin{align*}
& \sum_{n \leq x} d_{(k)}(n ; f) \tag{2.3}\\
&=-x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \\
& \times \int_{1}^{\sqrt{x}}\left\{\frac{1}{t}(\log t)^{\nu}\right\} \sum_{n \leq t} f(n) d t \\
&-\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}(\log x)^{k-j} \sum_{n \leq \sqrt{x}} f(n) \psi\left(\frac{x}{n}\right)(\log n)^{j} \\
&+k \int_{\sqrt{x}}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} \sum_{n \leq x / t} f(n) d t+\sum_{n \leq \sqrt{x}}(\log n)^{k} \sum_{m \leq x / n} f(m) \\
&+2^{-k} \psi(\sqrt{x})(\log x)^{k} \sum_{n \leq \sqrt{x}} f(n) .
\end{align*}
$$

From now on, we assume some conditions of $\sum_{n \leq x} f(n)$. Actually, we put

$$
\begin{equation*}
\sum_{n \leq x} f(n)=g(x)+E(x) \tag{2.4}
\end{equation*}
$$

where $g(x)$ is the "main term" and $E(x)$ is the "error term". We assume that the function $g(x)$ is continuously differentiable and $E(x)=O\left(x^{\theta_{1}}(\log x)^{\theta_{2}}\right)$, where θ_{1} is a constant with $-1<\theta_{1} \leq 0$ and θ_{2} is a non-negative integer. Further we assume that the mean value of $E(x)$ is of the form

$$
\int_{1}^{x} E(t) d t=A_{f} x+B_{f}+O\left(x^{\theta_{3}}(\log x)^{\theta_{4}}\right)
$$

with some constants A_{f}, B_{f}, θ_{3} and a non-negative integer θ_{4}. Note that $A_{f}=0$ if $\theta_{1}<0$, and B_{f} is included in the O-term if $\theta_{3} \geq 0$.

Now we shall transform the formula (2.3) under the assumption (2.4). Indeed, we have

$$
\begin{align*}
& \sum_{n \leq x} d_{(k)}(n ; f) \tag{2.5}\\
&=-x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \int_{1}^{\sqrt{x}}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} g(t) d t \\
&-\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}(\log x)^{k-j} \sum_{n \leq \sqrt{x}} f(n) \psi\left(\frac{x}{n}\right)(\log n)^{j} \\
&+k \int_{\sqrt{x}}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right) d t+\sum_{n \leq \sqrt{x}}(\log n)^{k} g\left(\frac{x}{n}\right) \\
&+2^{-k} \psi(\sqrt{x})(\log x)^{k} g(\sqrt{x})+T(x)
\end{align*}
$$

with

$$
\begin{aligned}
T(x)= & -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \\
& \times \int_{1}^{\sqrt{x}}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} E(t) d t \\
& +k \int_{\sqrt{x}}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} E\left(\frac{x}{t}\right) d t+\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right) \\
& +2^{-k} \psi(\sqrt{x})(\log x)^{k} E(\sqrt{x}) \\
= & T_{1}+T_{2}+\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right)+T_{3}
\end{aligned}
$$

say. By the assumption $E(x)=O\left(x^{\theta_{1}}(\log x)^{\theta_{2}}\right)$ with the constants θ_{j} defined in (2.4), it is trivially seen that

$$
\begin{aligned}
T_{2} & \ll x^{\theta_{1}}(\log x)^{\theta_{2}+k-1} \int_{\sqrt{x}}^{x} t^{-1-\theta_{1}} d t \\
& \ll(\log x)^{\theta_{2}+k-1} \times \begin{cases}\log x & \text { if } \theta_{1}=0, \\
x^{\theta_{1} / 2} & \text { if }-1<\theta_{1}<0\end{cases}
\end{aligned}
$$

and $T_{3}=O\left(x^{\theta_{1} / 2}(\log x)^{\theta_{2}+k}\right)$. Hence, we have $T_{2} \ll T_{3}$.
On T_{1}, we see that $\int_{\sqrt{x}}^{\infty}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} E(t) d t=O\left(x^{-\left(1-\theta_{1}\right) / 2}(\log x)^{\theta_{2}+\nu}\right)$ by the assumption of $E(x)$, and therefore $\int_{1}^{\infty}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} E(t) d t$ is convergent. More precisely, by the assumption $\int_{1}^{x} E(t) d t=A_{f} x+B_{f}+O\left(x^{\theta_{3}}(\log x)^{\theta_{4}}\right)$
and integration by parts, we can see that

$$
\begin{aligned}
& \int_{\sqrt{x}}^{\infty}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} E(t) d t \\
& \quad=-\left.\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime}\right|_{t=\sqrt{x}} \int_{1}^{\sqrt{x}} E(t) d t-\int_{\sqrt{x}}^{\infty}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime \prime} \int_{1}^{t} E(u) d u d t \\
& \quad=-A_{f} x^{-1 / 2}(\log \sqrt{x})^{\nu}+O\left(x^{-1+\theta_{3} / 2}(\log x)^{\theta_{4}+\nu}\right)
\end{aligned}
$$

Hence by putting $c_{f}(\nu)=\int_{1}^{\infty}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} E(t) d t$ we have

$$
\begin{aligned}
T_{1}= & -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} c_{f}(\nu) \\
& -A_{f} x^{1 / 2} \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j}+O\left(x^{\theta_{3} / 2}(\log x)^{\theta_{4}+k}\right)
\end{aligned}
$$

by (2.2).
Combining all the above results, we obtain

$$
\begin{align*}
T(x)= & -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} c_{f}(\nu) \tag{2.6}\\
& -A_{f} x^{1 / 2} \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j}+\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right) \\
& +O\left(x^{\theta_{1} / 2}(\log x)^{\theta_{2}+k}\right)+O\left(x^{\theta_{3} / 2}(\log x)^{\theta_{4}+k}\right)
\end{align*}
$$

As for the second preliminary, we transform the fourth term on the righthand side in (2.5). We put this part as U. By partial summation, we have

$$
\begin{aligned}
U & =g(\sqrt{x}) \sum_{n \leq \sqrt{x}}(\log n)^{k}+x \int_{1}^{\sqrt{x}} t^{-2} g^{\prime}\left(\frac{x}{t}\right) \sum_{n \leq t}(\log n)^{k} d t \\
& =U_{1}+U_{2}
\end{aligned}
$$

say. As for the function U_{1}, we have by Lemma 2.1 that

$$
\begin{aligned}
U_{1}= & g(\sqrt{x})\left\{\sqrt{x} \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j}-\psi(\sqrt{x})(\log \sqrt{x})^{k}\right. \\
& \left.+k \int_{1}^{\sqrt{x}} \frac{\psi(t)(\log t)^{k-1}}{t} d t+c_{k}\right\} \\
= & U_{11}-g(\sqrt{x}) \psi(\sqrt{x})(\log \sqrt{x})^{k}+U_{12}+c_{k} g(\sqrt{x})
\end{aligned}
$$

Note that the second term on the right-hand side in the above is canceled by the fifth term on the right-hand side in (2.5).

On U_{2}, we have

$$
\begin{align*}
U_{2}= & \int_{\sqrt{x}}^{x} g^{\prime}(t)\left\{\frac{x}{t} \sum_{j=0}^{k} a_{k}(j)\left(\log \frac{x}{t}\right)^{j}-\psi\left(\frac{x}{t}\right)\left(\log \frac{x}{t}\right)^{k}\right. \tag{2.7}\\
& \left.+k \int_{1}^{x / t} \frac{\psi(u)(\log u)^{k-1}}{u} d u+c_{k}\right\} d t \\
= & U_{21}-\int_{\sqrt{x}}^{x} g^{\prime}(t) \psi\left(\frac{x}{t}\right)\left(\log \frac{x}{t}\right)^{k} d t \\
& +U_{22}+c_{k}\{g(x)-g(\sqrt{x})\},
\end{align*}
$$

say. It is easy to see that

$$
U_{22}=k \int_{1}^{\sqrt{x}} \frac{\psi(u)(\log u)^{k-1}}{u} g\left(\frac{x}{u}\right) d u-U_{12} .
$$

On U_{21}, we have

$$
\begin{aligned}
U_{21}= & x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \int_{\sqrt{x}}^{x} g^{\prime}(t) \frac{(\log t)^{\nu}}{t} d t \\
= & -U_{11}-x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \\
& \times \int_{\sqrt{x}}^{x} g(t)\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} d t+a_{k}(0) g(x)
\end{aligned}
$$

by (2.2) and the formula

$$
\sum_{n=0}^{N}\binom{N}{n}(-1)^{n}= \begin{cases}1 & \text { if } N=0 \\ 0 & \text { if } N \geq 1\end{cases}
$$

Collecting these estimates we have

$$
\begin{aligned}
U= & -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \int_{\sqrt{x}}^{x} g(t)\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} d t \\
& +k \int_{1}^{\sqrt{x}} \frac{\psi(u)(\log u)^{k-1}}{u} g\left(\frac{x}{u}\right) d u-\int_{\sqrt{x}}^{x} g^{\prime}(t) \psi\left(\frac{x}{t}\right)\left(\log \frac{x}{t}\right)^{k} d t \\
& -2^{-k} g(\sqrt{x}) \psi(\sqrt{x})(\log x)^{k}+\left(a_{k}(0)+c_{k}\right) g(x) .
\end{aligned}
$$

Therefore, as the preparation of the proofs, we obtain the following lemma.

Lemma 2.4. Let $d_{(k)}(n ; f)$ be the function defined by (1.4). Under the assumption (2.4), we have

$$
\begin{align*}
& \sum_{n \leq x} d_{(k)}(n ; f) \tag{2.8}\\
&=-x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \int_{1}^{x}\left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} g(t) d t \\
&+k \int_{1}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right) d t \\
&-\int_{\sqrt{x}}^{x} g^{\prime}(t) \psi\left(\frac{x}{t}\right)\left(\log \frac{x}{t}\right)^{k} d t \\
&-\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}(\log x)^{k-j} \sum_{n \leq \sqrt{x}} f(n) \psi\left(\frac{x}{n}\right)(\log n)^{j} \\
&+\left(a_{k}(0)+c_{k}\right) g(x)+T(x)
\end{align*}
$$

with

$$
\begin{align*}
T(x)= & -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} c_{f}(\nu) \tag{2.9}\\
& -A_{f} x^{1 / 2} \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j}+\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right) \\
& +O\left(x^{\theta_{1} / 2}(\log x)^{\theta_{2}+k}\right)+O\left(x^{\theta_{3} / 2}(\log x)^{\theta_{4}+k}\right) .
\end{align*}
$$

3. Proof of Theorem 1.1

Let $f(n)=n^{a}(\log n)^{l}$ and $\sigma_{(k, l, a)}(n)=d_{(k)}(n ; f)$. By Lemma 2.2 we find that the main term $g(y)$ and the error term $E(y)$ in $\sum_{n \leq y} f(n)$ are of the forms

$$
\begin{equation*}
g(y)=y^{1+a} \sum_{j=0}^{l} \frac{a_{l}(j)}{(1+a)^{l-j+1}}(\log y)^{j} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{aligned}
E(y)= & -y^{a} \psi(y)(\log y)^{l}+\int_{1}^{y} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} d t \\
& +\frac{\tilde{c}_{l}}{(1+a)^{l+1}}
\end{aligned}
$$

respectively. From the definition of $a_{l}(j)$, we find that

$$
\begin{equation*}
g^{\prime}(y)=y^{a}(\log y)^{l} \tag{3.2}
\end{equation*}
$$

Since the integral on the right-hand side of $E(y)$ converges when $y \rightarrow \infty$ we have the following expressions:

$$
\begin{aligned}
E(y) & =A_{f}-y^{a} \psi(y)(\log y)^{l}-\int_{y}^{\infty} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} d t \\
& =A_{f}+O\left(y^{a}(\log y)^{l}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{1}^{y} E(t) d t=A_{f} y+B_{f}+O\left(y^{a}(\log y)^{l}\right) \tag{3.3}
\end{equation*}
$$

where

$$
A_{f}=\frac{\tilde{c}_{l}}{(1+a)^{l+1}}+\int_{1}^{\infty} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} d t
$$

and

$$
B_{f}=-A_{f}-\int_{1}^{\infty} t^{a} \psi(t)(\log t)^{l} d t-\int_{1}^{\infty} t^{a}(a \log t+l) \psi(t)(\log t)^{l-1} d t
$$

Hence, we can take $\theta_{1}=\theta_{2}=0, \theta_{3}=a$ and $\theta_{4}=l$. We remark that $\theta_{3}=a<0$ in this case (compare with the choice in Section 6).

Now we shall consider the formula (2.8).
The fourth term on the right-hand side in (2.8) coincides with $R_{(k, l)}(x ; a)$.
By (3.1), (3.2) and integration by parts we find that

$$
\begin{align*}
\int_{1}^{x} & \left\{\frac{1}{t}(\log t)^{\nu}\right\}^{\prime} g(t) d t \tag{3.4}\\
= & {\left[\frac{(\log t)^{\nu}}{t} g(t)\right]_{1}^{x}-\int_{1}^{x} t^{a-1}(\log t)^{\nu+l} d t } \\
= & (\log x)^{\nu} x^{-1} g(x)-\delta_{\nu}-\int_{1}^{\infty} t^{a-1}(\log t)^{\nu+l} d t \\
& +\int_{x}^{\infty} t^{a-1}(\log t)^{\nu+l} d t
\end{align*}
$$

where $\delta_{\nu}=0$ if $\nu \geq 1$ and $\delta_{0}=g(1)$. We should note that the integral in the second and third lines are convergent by the condition $a<0$. Hence, the first term on the right-hand side in (2.8) becomes

$$
\begin{align*}
= & -g(x) \sum_{j=0}^{k} a_{k}(j)(\log x)^{j} \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu} \tag{3.5}\\
& +x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu}\left(\delta_{\nu}+\int_{1}^{\infty} t^{a-1}(\log t)^{\nu+l} d t\right) \\
& -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \int_{x}^{\infty} t^{a-1}(\log t)^{\nu+l} d t .
\end{align*}
$$

The first line on the right-hand side of (3.5) equals to $-g(x) a_{k}(0)$ since the sum over ν vanishes for $j \geq 1$. We consider the third line of (3.5), which we denote by $J(x)$. By putting back the binomial expansion we have

$$
J(x)=-x \sum_{j=0}^{k} a_{k}(j) \int_{x}^{\infty} t^{a-1}\left(\log \frac{x}{t}\right)^{j}(\log t)^{l} d t
$$

If we change the variable by $\frac{x}{t}=u$, we have

$$
\begin{align*}
J(x)= & -x^{1+a} \sum_{j=0}^{k} a_{k}(j) \int_{0}^{1} u^{-a-1}(\log u)^{j}\left(\log \frac{x}{u}\right)^{l} d u \tag{3.6}\\
= & -x^{1+a} \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{l}\binom{l}{\nu}(-1)^{\nu}(\log x)^{l-\nu} \\
& \times \int_{0}^{1} u^{-a-1}(\log u)^{j+\nu} d u .
\end{align*}
$$

Hence by (3.5) and (3.6), we can see that the first term on the right-hand side of (2.8) has the form

$$
x \sum_{j=0}^{k} A_{1, j}(a, k, l)(\log x)^{j}+x^{1+a} \sum_{j=0}^{l} A_{2, j}(a, k, l)(\log x)^{j} .
$$

Next, we treat the second term on the right-hand side in (2.8). Let $\psi_{1}(y)=$ $\int_{1}^{y} \psi(t) d t$. Noting that $\psi_{1}(y)=O(1)$ uniformly in y, we have by integration by parts that

$$
\begin{aligned}
k \int_{1}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right) d t= & -k \int_{1}^{x} \psi_{1}(t)\left\{\frac{(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right)\right\}^{\prime} d t \\
& +O\left(x^{-1}(\log x)^{k-1}\right)
\end{aligned}
$$

By (3.1), we get

$$
\begin{aligned}
& \frac{(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right) \\
& \quad=x^{1+a} \sum_{j=0}^{l} \frac{a_{l}(j)}{(1+a)^{l-j+1}} \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} \frac{(\log t)^{\nu+k-1}}{t^{2+a}},
\end{aligned}
$$

and thus

$$
\begin{aligned}
& k \int_{1}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right) d t \\
& \quad=-k x^{1+a} \sum_{j=0}^{l} \frac{a_{l}(j)}{(1+a)^{l-j+1}} \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu}
\end{aligned}
$$

$$
\begin{aligned}
& \times \int_{1}^{x} \psi_{1}(t)\left\{\frac{(\log t)^{\nu+k-1}}{t^{2+a}}\right\}^{\prime} d t \\
& +O\left(x^{-1}(\log x)^{k-1}\right)
\end{aligned}
$$

Since $-1<a<0$, we see that the integral in the above is convergent absolutely. We obtain

$$
\begin{aligned}
k \int_{1}^{x} \frac{\psi(t)(\log t)^{k-1}}{t} g\left(\frac{x}{t}\right) d t= & x^{1+a} \sum_{j=0}^{l} A_{3, j}(a, k, l)(\log x)^{j} \\
& +O\left(x^{-1}(\log x)^{k+l-1}\right)
\end{aligned}
$$

As for the third one, we have by noting the formula (3.2) that

$$
\begin{aligned}
& \int_{\sqrt{x}}^{x} g^{\prime}(t) \psi\left(\frac{x}{t}\right)\left(\log \frac{x}{t}\right)^{k} d t \\
&= x \int_{1}^{\sqrt{x}} u^{-2} \psi(u) g^{\prime}\left(\frac{x}{u}\right)(\log u)^{k} d u \\
&= x^{1+a} \int_{1}^{\sqrt{x}} u^{-2-a} \psi(u)\left(\log \frac{x}{u}\right)^{l}(\log u)^{k} d u \\
&= x^{1+a} \sum_{\nu=0}^{l}\binom{l}{\nu}(-1)^{\nu}(\log x)^{l-\nu} \\
& \times \int_{1}^{\sqrt{x}} u^{-2-a} \psi(u)(\log u)^{\nu+k} d u .
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{1}^{\sqrt{x}} u^{-2-a} \psi(u)(\log u)^{\nu+k} d u= & \int_{1}^{\infty} u^{-2-a} \psi(u)(\log u)^{\nu+k} d u \\
& +O\left(x^{-1-a / 2}(\log x)^{\nu+k}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
& \int_{\sqrt{x}}^{x} g^{\prime}(t) \psi\left(\frac{x}{t}\right)\left(\log \frac{x}{t}\right)^{k} d t \\
& \quad=x^{1+a} \sum_{j=0}^{l} A_{4, j}(a, k, l)(\log x)^{j}+O\left(x^{a / 2}(\log x)^{k+l}\right)
\end{aligned}
$$

Clearly $a_{k}(0) g(x)$ in the fifth term of (2.8) cancels with the first line of (3.5), hence it becomes $c_{k} g(x)$, which we write

$$
c_{k} g(x)=x^{1+a} \sum_{j=0}^{l} A_{5, j}(a, k, l)(\log x)^{j} .
$$

It remains to consider the formula of (2.9). By the definition of $E(x)$, we have

$$
\begin{aligned}
\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right)= & \sum_{n \leq \sqrt{x}}(\log n)^{k}\left\{-\left(\frac{x}{n}\right)^{a} \psi\left(\frac{x}{n}\right)\left(\log \frac{x}{n}\right)^{l}\right. \\
& \left.+\int_{x / n}^{\infty} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} d t+A_{f}\right\} \\
= & V_{1}+V_{2}+V_{3}
\end{aligned}
$$

say. For V_{1}, it is easy to see that

$$
V_{1}=-x^{a} \sum_{\nu=0}^{l}\binom{l}{\nu}(-1)^{\nu}(\log x)^{l-\nu} \sum_{n \leq \sqrt{x}} n^{-a} \psi\left(\frac{x}{n}\right)(\log n)^{k+\nu}
$$

which coincides with $x^{a} R_{(l, k)}(x ;-a)$. Also it is easily seen from Lemma 2.1 that

$$
V_{3}=A_{f} \sqrt{x} \sum_{j=0}^{k} a_{k}(j)(\log \sqrt{x})^{k}+O\left((\log x)^{k}\right) .
$$

For V_{2}, changing the summation and integration, we have

$$
\begin{aligned}
V_{2}= & \int_{\sqrt{x}}^{x} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} \sum_{x / t<n \leq \sqrt{x}}(\log n)^{k} d t \\
& +\left(\sum_{n \leq \sqrt{x}}(\log n)^{k}\right) \int_{x}^{\infty} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} d t \\
= & -\int_{\sqrt{x}}^{x} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} \sum_{n \leq x / t}(\log n)^{k} d t \\
& +\left(\sum_{n \leq \sqrt{x}}(\log n)^{k}\right) \int_{\sqrt{x}}^{\infty} t^{a-1}(a \log t+l) \psi(t)(\log t)^{l-1} d t \\
= & V_{21}+V_{22},
\end{aligned}
$$

say. It is easy to see that $V_{22} \ll x^{a / 2}(\log x)^{k+l}$. For V_{21}, we apply Lemma 2.2 and get

$$
\begin{aligned}
V_{21}= & -x \sum_{j=0}^{k} a_{k}(j) \int_{\sqrt{x}}^{x} t^{a-2}(a \log t+l) \psi(t)(\log t)^{l-1}\left(\log \frac{x}{t}\right)^{j} d t \\
& +O\left(x^{a / 2}(\log x)^{k+l}\right) \\
= & -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \times \int_{\sqrt{x}}^{x} t^{a-2}(a \log t+l) \psi(t)(\log t)^{l-1+\nu} d t \\
& \quad+O\left(x^{a / 2}(\log x)^{k+l}\right) \\
& \ll
\end{aligned} x^{a / 2}(\log x)^{k+l} .
$$

Collecting these estimates we obtain that

$$
\begin{aligned}
\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right)= & x^{a} R_{(l, k)}(x ;-a)+A_{f} \sqrt{x} \sum_{j=0}^{k} a_{k}(j)(\log \sqrt{x})^{k} \\
& +O\left((\log x)^{k}\right)+O\left(x^{a / 2}(\log x)^{k+l}\right)
\end{aligned}
$$

The second term on the right-hand side above is canceled by the second term on the right-hand side in (2.9). Clearly the first term of $T(x)$ has the form $x \sum_{j=0}^{k} A_{6, j}(a, k, l)(\log x)^{j}$.

Collecting all formulas, we obtain the assertion of Theorem 1.1.
Remark. We can see that the coefficient of $x(\log x)^{k}$, which is the greatest term for the main term of $\sum_{n \leq x} \sigma_{(k, l, a)}(n)$, does not vanish. Actually, we can see this fact as follows: The explicit value of such coefficient is equal to the sum of the terms from $A_{1, k}(a, k, l)$ and $A_{6, k}(a, k, l)$ in the case $j=k$ and $\nu=0$. By the definitions of $A_{1, k}(a, k, l)$ and $A_{6, k}(1, k, l)$, we have that the corresponding term coming from $A_{1, k}(a, k, l)$ is

$$
=\frac{(-1)^{l} l!}{(1+a)^{l+1}}+\int_{1}^{\infty} t^{a-1}(\log t)^{l} d t
$$

and the term corresponding to $A_{6, k}(a, k, l)$ is

$$
=-c_{f}(0)=(-1)^{l-1} \zeta^{(l)}(1-a)-\frac{(-1)^{l} l!}{(1+a)^{l}}-\int_{1}^{\infty} t^{a-1}(\log t)^{l} d t
$$

Then we have that the coefficient of $x(\log x)^{k}$ is $(-1)^{l-1} \zeta^{(l)}(1-a)$. We can trivially see that $\zeta^{(l)}(1-a) \neq 0$ for all non-negative integer l and the real number a with $-1<a<0$, hence we see that the coefficient of $x(\log x)^{k}$ is not equal to zero.

4. Proof of Corollary 1.2

In order to prove Corollary 1.2, we apply the formula of $\psi(x)$ in the following lemma.

Lemma 4.1 ([11, p. 245]). Let h be any real number. We have

$$
\begin{equation*}
\psi(x)=-\frac{1}{2 \pi i} \sum_{1 \leq|h| \leq H} \frac{e(h x)}{h}+O\left(E_{H}(x)\right) \tag{4.1}
\end{equation*}
$$

with $e(y)=\exp (2 \pi i y)$, where $E_{H}(x)$ is the function estimated and represented as

$$
E_{H}(x)=\min \left(1, \frac{1}{H\|x\|}\right)=\sum_{h=-\infty}^{\infty} b(h) e(h x)
$$

with

$$
\begin{equation*}
b(0) \ll \frac{\log H}{H} \quad \text { and } \quad b(h) \ll \min \left(\frac{\log H}{H}, \frac{H}{h^{2}}\right) \quad(h \neq 0) . \tag{4.2}
\end{equation*}
$$

By using this lemma, we have the following lemma.
Lemma 4.2. Let r be a real number and let $\mathfrak{g}_{N}(x)$ be the function defined by

$$
\begin{equation*}
\mathfrak{g}_{N}(x)=\sum_{N<n \leq 2 N} n^{r} \psi\left(\frac{x}{n}\right) \tag{4.3}
\end{equation*}
$$

with $1 \leq N \leq \sqrt{x}$. Then we have

$$
\begin{equation*}
\mathfrak{g}_{N}(x) \ll x^{\frac{\kappa}{\kappa+1}} N^{r+\frac{\lambda-\kappa}{\kappa+1}} \log x \tag{4.4}
\end{equation*}
$$

for any exponent pair (κ, λ).
Proof. Substituting (4.1) in (4.3), we have

$$
\begin{equation*}
\mathfrak{g}_{N}(x)=-\frac{1}{2 \pi i} \sum_{1 \leq|h| \leq H} \frac{1}{h} \sum_{N<n \leq 2 N} e\left(\frac{h x}{n}\right)+O\left(\sum_{N<n \leq 2 N} n^{r} E_{H}\left(\frac{x}{n}\right)\right) \tag{4.5}
\end{equation*}
$$

Let (κ, λ) be an exponent pair. By partial summation and applying this exponent pair, we get

$$
\begin{aligned}
\sum_{N<n \leq 2 N} n^{r} e\left(\frac{h x}{n}\right) & \ll \max _{N<t \leq 2 N}\left|\sum_{N<n \leq t} e\left(\frac{h x}{n}\right)\right| N^{r} \\
& \ll N^{r}\left\{\left(\frac{h x}{N^{2}}\right)^{\kappa}(t-N)^{\lambda}+\frac{N^{2}}{h x}\right\} \\
& \ll h^{\kappa} x^{\kappa} N^{a+\lambda-2 \kappa}
\end{aligned}
$$

Hence the first term on the right-hand side of (4.5) is evaluated as as

$$
\ll H^{\kappa} x^{\kappa} N^{a+\lambda-2 \kappa} \times \begin{cases}\log H & \kappa=0 \\ 1 & \kappa>0\end{cases}
$$

On the other hand by using (4.2), the second term on the right-hand side of (4.5) is bounded as

$$
\sum_{N<n \leq 2 N} n^{r} E_{H}\left(\frac{x}{n}\right) \ll\left(x^{\kappa} N^{a+\lambda-2 \kappa} H^{\kappa}+\frac{N^{a+1}}{H}\right) \log H
$$

Hence, we get

$$
\begin{equation*}
\mathfrak{g}_{N}(x) \ll\left(x^{\kappa} N^{a+\lambda-2 \kappa} H^{\kappa}+\frac{N^{a+1}}{H}\right) \log H \tag{4.6}
\end{equation*}
$$

for $H \geq 1$. Note that $\mathfrak{g}_{N}(x) \ll N^{a+1}$ trivially, hence (4.6) holds for all $H>0$. Taking $H=x^{-\kappa /(\kappa+1)} N^{(1-\lambda+2 \kappa) /(\kappa+1)}$, we get (4.4).

Proof of Corollary 1.2. Let r be a real number and let

$$
G(x, r)=\sum_{n \leq \sqrt{x}} n^{r} \psi\left(\frac{x}{n}\right)(\log x)^{A}
$$

for a non-negative integer A. In view of Theorem 1.1, we have to estimate the upper bounds of $G(x, a)$ and $x^{a} G(x,-a)$.

Let

$$
g(t)=\sum_{n \leq t} n^{r} \psi\left(\frac{x}{n}\right)
$$

By partial summation, we have

$$
\begin{aligned}
G(x, r) & =g(\sqrt{x})(\log \sqrt{x})^{A}-A \int_{1}^{\sqrt{x}} g(t)(\log t)^{A-1} \frac{1}{t} d t \\
& \ll\left\{\max _{t \leq \sqrt{x}}|g(t)|\right\}(\log x)^{A}
\end{aligned}
$$

Hence, it is enough to evaluate $|g(t)|$ for t in the range $1 \leq t \leq \sqrt{x}$. Let $N_{j}=t / 2^{j}$. Then by the standard decomposition technique we have

$$
g(t)=\sum_{j=1}^{j_{0}} \mathfrak{g}_{N_{j}}(x)+O(1)
$$

where $j_{0}=[\log t / \log 2]$.
For $G(x, a)$ we take $r=a$ for $-1<a<0$ in (4.4). We consider the three cases.

Case 1. Suppose that $a+\frac{\lambda-\kappa}{\kappa+1}>0$. In this case, we have

$$
\begin{aligned}
g(t) & \ll x^{\frac{\kappa}{\kappa+1}} \sum_{j}\left(\frac{t}{2^{j}}\right)^{a+\frac{\lambda-\kappa}{\kappa+1}} \log x \\
& \ll x^{\frac{\kappa}{\kappa+1}} t^{a+\frac{\lambda-\kappa}{\kappa+1}} \log x
\end{aligned}
$$

Case 2. Suppose that $a+\frac{\lambda-\kappa}{\kappa+1}<0$. Let t be a real number such that $0<t<1$. By the theory of exponent pairs,

$$
\left(\kappa_{t}, \lambda_{t}\right)=t(0,1)+(1-t)(\kappa, \lambda)=((1-t) \kappa, t / 2+(1-t) \lambda)
$$

is also an exponent pair. If we take

$$
t_{0}=\frac{-a(\kappa+1)-(\lambda-\kappa)}{1-a \kappa-(\lambda-\kappa)},
$$

then we have $a\left(\kappa_{t_{0}}+1\right)+\lambda_{t_{0}}-\kappa_{t_{0}}=0$. We also note that $0<t_{0}<1$ by the assumption $a+\frac{\lambda-\kappa}{\kappa+1}<0$. Applying this exponent pair in (4.4), we get

$$
\mathfrak{g}_{N}(x) \ll x^{\frac{\kappa_{0}}{\kappa_{0}+1}} \log x=x^{\frac{(1+a) \kappa}{1-\lambda+2 \kappa}} \log x
$$

and hence

$$
g(t) \ll x^{\frac{(1+a) \kappa}{1-\lambda+2 \kappa}}(\log x)^{2}
$$

Case 3. Suppose that $a+\frac{\lambda-\kappa}{\kappa+1}=0$. As in the case 2, we get

$$
g(t) \ll x^{\frac{\kappa}{\kappa+1}}(\log x)^{2} .
$$

From these estimates, we have

$$
G(x, a) \ll \begin{cases}x^{\frac{a}{2}+\frac{\lambda+\kappa}{2(\kappa+1)}}(\log x)^{A+1}, & a+\frac{\lambda-\kappa}{\kappa+1}>0, \tag{4.7}\\ x^{\frac{(1+a) \kappa}{1-\lambda+2 \kappa}}(\log x)^{A+2}, & a+\frac{\lambda-\kappa}{\kappa+1} \leq 0 .\end{cases}
$$

For $x^{a} G(x,-a)$ we take $r=-a>0$ in (4.4). Since $-a+\frac{\lambda-\kappa}{\kappa+1}>1$ we have

$$
\begin{equation*}
x^{a} G(x,-a) \ll x^{\frac{a}{2}+\frac{\lambda+\kappa}{2(\kappa+1)}}(\log x)^{A+1} . \tag{4.8}
\end{equation*}
$$

Therefore, by the definition of $\Delta_{(k, l, a)}(x)$ in Theorem 1.1, we obtain

$$
\Delta_{(k, l, a)}(x) \ll \begin{cases}x^{\frac{a}{2}+\frac{\lambda+\kappa}{2(\kappa+1)}}(\log x)^{k+l+1}, & a+\frac{\lambda-\kappa}{\kappa+1}>0 \\ x^{\frac{(1+a \kappa}{1-\lambda+2 \kappa}}(\log x)^{k+l+2}+x^{\frac{a}{2}+\frac{\lambda+\kappa}{2(\kappa+1)}}(\log x)^{k+l+1}, & a+\frac{\lambda-\kappa}{\kappa+1} \leq 0\end{cases}
$$

Remarking that $\frac{a}{2}+\frac{\lambda+\kappa}{2(\kappa+1)} \leq \frac{(1+a) \kappa}{1-\lambda+2 \kappa}$ for $a+\frac{\lambda-\kappa}{\kappa+1} \leq 0$, we obtain the assertion of Corollary 1.2.

5. Some remarks on Corollary 1.2

We first recall that the constant a satisfies the condition $-1<a<0$.
If we take the trivial exponent pair $(\kappa, \lambda)=(0,1)$, we have $a+\frac{\lambda-\kappa}{\kappa+1}>0$ and hence

$$
\Delta_{(k, l, a)}(x)=O\left(x^{\frac{a+1}{2}}(\log x)^{k+l+1}\right)
$$

for $-1<a<0$. Similarly, if we take $(\kappa, \lambda)=(1 / 2,1 / 2)$, we have $a+\frac{\lambda-\kappa}{\kappa+1} \leq 0$ and hence

$$
\Delta_{(k, l, a)}(x)=O\left(x^{\frac{a+1}{3}}(\log x)^{k+l+1}\right)
$$

for $-1<a<0$.
Here are some other examples. Each exponent pair is taken from [14].
(i) Put $(\kappa, \lambda)=(1 / 6,4 / 6)$, then

$$
\Delta_{(k, l, a)}(x) \ll \begin{cases}x^{\frac{a}{2}+\frac{5}{14}}(\log x)^{k+l+1} & \text { for }-\frac{3}{7}<a<0 \\ x^{\frac{(a+1)}{4}}(\log x)^{k+l+2} & \text { for }-1<a \leq-\frac{3}{7}\end{cases}
$$

(ii) Put $(\kappa, \lambda)=(2 / 18,13 / 18)$, then

$$
\Delta_{(k, l, a)}(x) \ll \begin{cases}x^{\frac{a}{2}+\frac{3}{8}}(\log x)^{k+l+1} & \text { for }-\frac{11}{20}<a<0 \\ x^{\frac{2}{9}(a+1)}(\log x)^{k+l+2} & \text { for }-1<a \leq-\frac{11}{20}\end{cases}
$$

(iii) Put $(\kappa, \lambda)=(11 / 82,57 / 82)$, then

$$
\Delta_{(k, l, a)}(x) \ll \begin{cases}x^{\frac{a}{2}+\frac{34}{93}}(\log x)^{k+l+1} & \text { for }-\frac{46}{93}<a<0 \\ x^{\frac{11(a+1)}{47}}(\log x)^{k+l+2} & \text { for }-1<a \leq-\frac{46}{93}\end{cases}
$$

Thus, the third one gives the special estimate

$$
\Delta_{(k, l,-1 / 2)}(x)=O\left(x^{\frac{11}{94}}(\log x)^{k+l+2}\right)
$$

6. Proof of Theorem 1.3

We put $f(n)=\chi(n)(\log n)^{l}$, then $d_{(k)}(n ; f)=r_{(k, l)}(n)$ in this setting. By the formula

$$
\begin{equation*}
\sum_{n \leq y} \chi(n)=\frac{1}{2}-\psi\left(\frac{y-1}{4}\right)+\psi\left(\frac{y-3}{4}\right) \tag{6.1}
\end{equation*}
$$

(cf. [6, Lemma 4.7]), we have by partial summation that

$$
\sum_{n \leq y} f(n)=\left\{-\psi\left(\frac{y-1}{4}\right)+\psi\left(\frac{y-3}{4}\right)\right\}(\log y)^{l}+A_{f}+O\left(y^{-1}(\log y)^{l-1}\right)
$$

where A_{f} is a constant. Hence, we have

$$
\int_{1}^{y} \sum_{n \leq t} f(n) d t=A_{f} y+O\left((\log y)^{l}\right)
$$

Thus if we put $g(x)=0, E(x)=\sum_{n \leq x} f(n), \theta_{1}=\theta_{3}=0$ and $\theta_{2}=\theta_{4}=l$, we can see that the function $f(n)$ of this setting satisfies all assumptions of the error term $E(x)$ in Section 2.

On this setting, the formula (2.5) is reduced to

$$
\begin{aligned}
\sum_{n \leq x} r_{(k, l)}(n)= & -\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}(\log x)^{k-j} \sum_{n \leq \sqrt{x}} \chi(n) \psi\left(\frac{x}{n}\right)(\log n)^{l+j} \\
& -x \sum_{j=0}^{k} a_{k}(j) \sum_{\nu=0}^{j}\binom{j}{\nu}(-1)^{\nu}(\log x)^{j-\nu} c_{f}(\nu) \\
& -A_{f} x^{1 / 2} \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j}+\sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right) \\
& +O\left((\log x)^{k+l}\right)
\end{aligned}
$$

Here the second term on the right-hand side contributes the main term $-x Q_{k}(\log x ; k, l)$ of the theorem; the first one above is the first term of $P_{(k, l)}(x)$.

On the fourth term in the right-hand side of the above formula, applying partial summation and substituting the formula (6.1) into it, we have

$$
\begin{aligned}
& \sum_{n \leq \sqrt{x}}(\log n)^{k} E\left(\frac{x}{n}\right) \\
&= \sum_{n \leq \sqrt{x}}(\log n)^{k} \sum_{m \leq x / n} \chi(m)(\log m)^{l} \\
&= \sum_{n \leq \sqrt{x}}(\log n)^{k}\left\{\left(-\psi\left(\frac{x / n-1}{4}\right)+\psi\left(\frac{x / n-3}{4}\right)\right)\left(\log \frac{x}{n}\right)^{l}+A_{f}\right\} \\
&+O\left((\log x)^{k+l-1}\right) \\
&= \sum_{j=0}^{l}\binom{l}{j}(-1)^{j}(\log x)^{l-j} \sum_{n \leq \sqrt{x}}\left\{-\psi\left(\frac{x-n}{4 n}\right)+\psi\left(\frac{x-3 n}{4 n}\right)\right\}(\log n)^{k+j} \\
& \quad+A_{f}\left(x^{1 / 2} \sum_{j=0}^{k} \frac{a_{k}(j)}{2^{j}}(\log x)^{j}+O\left((\log x)^{k}\right)\right)+O\left((\log x)^{k+l-1}\right)
\end{aligned}
$$

Hence, the term containing A_{f} cancels and the remaining terms containing $\psi(x)$ contribute $R_{(k, l)}^{(1)}(x, \chi)$ and $R_{(k, l)}^{(3)}(x, \chi)$ of $P_{(k, l)}(x)$ of the theorem. The proof of Theorem 1.3 is complete.

The assertions of Corollary 1.4 can be proved by using Theorem 1.3 and the method used in [10] and [7, Section 5]. We omit the details of the proof of this corollary.

Acknowledgments. The authors would like to thank the referees for their careful reading and useful comments to this paper.

References

[1] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
[2] D. Banerjee and M. Minamide, The average behaviour of the error term in a new kind of the divisor problem, J. Math. Anal. Appl. 438 (2016), no. 2, 533-550. MR 3466051
[3] X. Cao, J. Furuya, Y. Tanigawa and W. Zhai, A generalized divisor problem and the sum of Chowla and Walum, J. Math. Anal. Appl. 400 (2013), 15-21. MR 3003959
[4] X. Cao, J. Furuya, Y. Tanigawa and W. Zhai, A generalized divisor problem and the sum of Chowla and Walum II, Funct. Approx. Comment. Math. 49 (2013), 159-188. MR 3127905
[5] X. Cao, Y. Tanigawa and W. Zhai, On a conjecture of Chowla and Walum, Sci. China Math. 53 (2010), no. 10, 2755-2771. MR 2728277
[6] S. Chowla, Contributions to the analytic theory of numbers, Math. Z. 35 (1932), 279299. MR 1545300
[7] J. Furuya, M. Minamide and Y. Tanigawa, Representations and evaluations of the error term in a certain divisor problem, Math. Slovaca 66 (2016), 575-582. MR 3543721
[8] J. Furuya, M. Minamide and Y. Tanigawa, On a new circle problem, J. Aust. Math. Soc. 103 (2017), 231-249. MR 3703924
[9] J. Furuya and Y. Tanigawa, On integrals and Dirichlet series obtained from the error term in the circle problem, Funct. Approx. Comment. Math. 51 (2014), no. 2, 303-333. MR 3282630
[10] S. W. Graham and G. Kolesnik, Van der Corput's method for exponential sums, London Mathematical Society Lecture Note Series, vol. 126, Cambridge University Press, Cambridge, 1991. MR 1145488
[11] D. R. Heath-Brown, The Piateckǐ̌-S̆apiro prime number theory, J. Number Theory 16 (1983), 242-266. MR 0698168
[12] M. N. Huxley, Exponential sums and lattice points III, Proc. Lond. Math. Soc. 87 (2003), 591-609. MR 2005876
[13] A. Ivić, The Riemann zeta-function: Theory and applications, Dover Publications, Inc., Mineola, NY, 2003, Reprint of the 1985 original (Wiley). MR 1994094
[14] E. Krätzel, Lattice points, Kluwer Acad. Publishers, Dordrecht, 1988. MR 0998378
[15] M. Minamide, The truncated Voronoï formula for the derivative of the Riemann zeta function, Indian J. Math. 55 (2013), no. 3, 325-352. MR 3137009
[16] Y.-F. S. Pétermann, Divisor problems and exponent pairs, Arch. Math. 50 (1988), 243-250. MR 0933919

Jun Furuya, Department of Integrated Human Sciences (Mathematics), Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan

E-mail address: jfuruya@hama-med.ac.jp
T. Makoto Minamide, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan

E-mail address: minamide@yamaguchi-u.ac.jp
Yoshio Tanigawa, Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan

E-mail address: tanigawa@math.nagoya-u.ac.jp

[^0]: ${ }^{1}$ Note that the leading term of $-x Q_{k}(\log x ; k, l)$ is positive, since $c_{f}(0)<0$ (cf. e.g. [9]).

