EVALUATION OF TORNHEIM'S TYPE OF DOUBLE SERIES

SHIN-YA KADOTA, TAKUYA OKAMOTO AND KOJI TASAKA

ABSTRACT. We examine values of certain Tornheim's type of double series with odd weight. As a result, an affirmative answer to a conjecture about the parity theorem for the zeta function of the root system of the exceptional Lie algebra G_2 , proposed by Komori, Matsumoto and Tsumura, is given.

1. Introduction and main theorem

For integers $a, b, k_1, k_2, k_3 \ge 1$, let

$$\zeta_{a,b}(k_1,k_2,k_3) := \sum_{m,n>0} \frac{1}{m^{k_1} n^{k_2} (am+bn)^{k_3}},$$

which converges absolutely and gives a real number. Since Tornheim [12] first studied the value $\zeta_{1,1}(k_1, k_2, k_3)$, we call the value $\zeta_{a,b}(k_1, k_2, k_3)$ Tornheim's type of double series (note that the function $\zeta_{a,b}(s_1, s_2, s_3)$ with $s_i \in \mathbb{C}$ can be viewed as a special case of the Shintani zeta function, but we will focus on its special values). In [8], the second author examined the values $\zeta_{a,b}(k_1, k_2, k_3)$ in the study of evaluations of special values of the zeta functions of root systems associated with A_2 , B_2 and G_2 . The goal was to express the special values of the zeta functions of root systems as \mathbb{Q} -linear combinations of two products of certain zeta values. As a prototype, we have in mind the analogous story for the parity theorem for multiple zeta values [3, Corollary 8] (see also [15]) and for Tornheim's series [2, Theorem 2] (see also [16]). For example, the identity

$$\zeta_{1,1}(1,1,3) = 4\zeta(5) - 2\zeta(2)\zeta(3)$$

is well known. Similar studies have been done in many articles [7], [11], [13], [14], [16], [17], [19] (see also [9]). In this paper, we will generalize the above

©2018 University of Illinois

Received March 29, 2017; received in final form September 3, 2017.

This work was partially supported by JSPS KAKENHI Grant Numbers 15K17517 and 16H07115.

²⁰¹⁰ Mathematics Subject Classification. Primary 11M32. Secondary 40B05.

expression to the value $\zeta_{a,b}(k_1, k_2, k_3)$ with $k_1 + k_2 + k_3$ odd. As a consequence, we give an affirmative answer to a conjecture about special values of the zeta function of the root system of G_2 , which was proposed by Komori, Matsumoto and Tsumura [5, Eq. (7.1)].

We now state our main result. We use the Clausen-type functions defined for a positive integer $k \geq 2$ and $x \in \mathbb{R}$ by

(1)

$$C_{k}(x) := \operatorname{Re} Li_{k}(e^{2\pi i x}) = \sum_{m>0} \frac{\cos(2\pi m x)}{m^{k}},$$

$$S_{k}(x) := \operatorname{Im} Li_{k}(e^{2\pi i x}) = \sum_{m>0} \frac{\sin(2\pi m x)}{m^{k}},$$

where $Li_k(z)$ is the polylogarithm $\sum_{m>0} \frac{z^m}{m^k}$. Note that $C_k(x)$ equals the Riemann zeta value $\zeta(k) := \sum_{m>0} \frac{1}{m^k}$ when $x \in \mathbb{Z}$, and $S_k(x)$ is 0 when $x \in \frac{1}{2}\mathbb{Z}$.

THEOREM 1. For positive integers N, a, b, k, k_1 , k_2 , k_3 with N = lcm(a, b)and $k = k_1 + k_2 + k_3$ odd, the value $\zeta_{a,b}(k_1, k_2, k_3)$ can be expressed as \mathbb{Q} -linear combinations of $\pi^{2n}C_{k-2n}(\frac{d}{N})$ and $\pi^{2n+1}S_{k-2n-1}(\frac{d}{N})$ for $0 \le n \le \frac{k-3}{2}$ and $d \in \mathbb{Z}/N\mathbb{Z}$.

Theorem 1 will be proved in Section 4 by using the generating functions. This leads to a recipe for giving a formula for the \mathbb{Q} -linear combination in Theorem 1. More precisely, one can deduce an explicit formula from Corollary 3 and Propositions 4, 7 and 8, but it might be much complicated (we do not develop the explicit formulas in this paper). As an example of a simple identity, we have

(2)
$$\zeta_{1,3}(1,1,3) = \frac{1}{81} \left(367\zeta(5) - 19\pi^2\zeta(3) - 27\pi S_4\left(\frac{1}{3}\right) - 4\pi^3 S_2\left(\frac{1}{3}\right) \right).$$

We apply Theorem 1 to proving the conjecture suggested by Komori, Matsumoto and Tsumura [5, Eq. (7.1)]. This will be described in Section 5.

It is worth mentioning that since the value $\zeta_{a,b}(k_1, k_2, k_3)$ can be expressed as \mathbb{Q} -linear combinations of double polylogarithms

(3)
$$Li_{k_1,k_2}(z_1,z_2) = \sum_{0 < m < n} \frac{z_1^m z_2^n}{m^{k_1} n^{k_2}},$$

Theorem 1 might be proved by the parity theorem for double polylogarithms obtained by Panzer [10] and Nakamura [7], which is illustrated in Remark 2. In this paper, we however do not use their result to prove Theorem 1, since we want to keep this paper self-contained.

The contents of this paper are as follows. In Section 2, we give an integral representation of the generating function of the values $\zeta_{a,b}(k_1, k_2, k_3)$ for any integers $a, b \geq 1$. In Section 3, the integral is computed. Section 4 gives a

proof of Theorem 1.1. In Section 5, we recall the question [5, Eq. (7.1)] and give an affirmative answer to this.

2. Integral representation

In this section, we give an integral representation of the generating function of the values $\zeta_{a,b}(k_1, k_2, k_3)$ for any integers $a, b \ge 1$. The integral representation of the value $\zeta_{a,b}(k_1, k_2, k_3)$ was first given by the second author [8, Theorem 4.4], following the method used by Zagier (see also [6]). We recall it briefly.

For an integer $k \ge 0$, the Bernoulli polynomial $B_k(x)$ of order k is defined by

$$\sum_{k\geq 0} B_k(x) \frac{t^k}{k!} = \frac{te^{xt}}{e^t - 1}.$$

The polynomial $B_k(x)$ admits the following expression (see [1, Theorem 4.11]): for $k \ge 1$ and $x \in \mathbb{R}$ ($x \in \mathbb{R} - \mathbb{Z}$, if k = 1)

$$B_k(x - [x]) = \begin{cases} -2i\frac{k!}{(2\pi i)^k} \sum_{m>0} \frac{\sin(2\pi mx)}{m^k}, & k \ge 1: \text{odd}, \\ -2\frac{k!}{(2\pi i)^k} \sum_{m>0} \frac{\cos(2\pi mx)}{m^k}, & k \ge 2: \text{even} \end{cases}$$

where $i = \sqrt{-1}$ and the summation $\sum_{m>0}$ is regarded as $\lim_{N\to\infty} \sum_{N>m>0}$ when k = 1 (this ensures convergence). We define the modified (generalized) Clausen function for $k \ge 1$ and $x \in \mathbb{R}$ ($x \in \mathbb{R} - \mathbb{Z}$, if k = 1) by

$$Cl_k(x - [x]) = \begin{cases} -\frac{k!}{(2\pi i)^{k-1}} \sum_{m>0} \frac{\cos(2\pi mx)}{m^k}, & k \ge 1: \text{odd}, \\ -i\frac{k!}{(2\pi i)^{k-1}} \sum_{m>0} \frac{\sin(2\pi mx)}{m^k}, & k \ge 2: \text{even}. \end{cases}$$

With this, for $k \ge 1$ and $x \in \mathbb{R}$ $(x \in \mathbb{R} - \mathbb{Z} \text{ if } k = 1)$, the polylogarithm $Li_k(e^{2\pi ix})$ can be written in the form

(4)
$$Li_k(e^{2\pi ix}) = -\frac{(2\pi i)^{k-1}}{k!} (Cl_k(x-[x]) + \pi iB_k(x-[x])).$$

We introduce formal generating functions. For $x \in \mathbb{R} - \mathbb{Z}$, let

$$\beta(x;t) := \sum_{k>0} \frac{B_k(x-[x])t^k}{k!} \quad \text{and} \quad \gamma(x;t) := \sum_{k>0} \frac{Cl_k(x-[x])t^k}{k!}.$$

PROPOSITION 2. For integers $a, b \ge 1$, we have

$$\sum_{\substack{k_1,k_2,k_3>0}} \zeta_{a,b}(k_1,k_2,k_3) t_1^{k_1} t_2^{k_2} t_3^{k_3} \\ = -\frac{1}{4\pi i} \int_0^1 \left(\gamma(ax;2\pi i t_1)\beta(bx;2\pi i t_2) + \beta(ax;2\pi i t_1)\gamma(bx;2\pi i t_2) \right) \\ \times \beta(x;-2\pi i t_3) \, dx$$

$$+\frac{1}{4\pi^2}\int_0^1 \left(\gamma(ax;2\pi i t_1)\gamma(bx;2\pi i t_2) - \pi^2\beta(ax;2\pi i t_1)\beta(bx;2\pi i t_2)\right) \\\times \beta(x;-2\pi i t_3)\,dx,$$

where the integrals on the right-hand side are defined formally by term-by-term integration.

Proof. When $k_1, k_2, k_3 \ge 2$, it follows that

$$\int_{0}^{1} Li_{k_{1}}(e^{2\pi iax}) Li_{k_{2}}(e^{2\pi ibx}) \overline{Li_{k_{3}}(e^{2\pi ix})} dx$$
$$= \int_{0}^{1} \sum_{m,n,l>0} \frac{e^{2\pi imax} e^{2\pi inbx} e^{-2\pi ilx}}{m^{k_{1}} n^{k_{2}} l^{k_{3}}} dx$$
$$= \sum_{m,n,l>0} \frac{1}{m^{k_{1}} n^{k_{2}} l^{k_{3}}} \int_{0}^{1} e^{2\pi ix(am+bn-l)} dx = \zeta_{a,b}(k_{1},k_{2},k_{3}),$$

where $\overline{Li_{k_3}(e^{2\pi ix})}$ stands for complex conjugate of $Li_{k_3}(e^{2\pi ix})$. For $k_1, k_2, k_3 \ge 1$, the above equality is justified by replacing the integral \int_0^1 with

(5)
$$\lim_{\varepsilon \to 0} \sum_{j=1}^{\operatorname{lcm}(a,b)} \int_{j=1}^{j} \frac{j}{\operatorname{lcm}(a,b)} -\varepsilon}{\int_{j=1}^{j-1} \frac{j}{\operatorname{lcm}(a,b)} + \varepsilon},$$

where lcm(a, b) is the least common multiple of a and b (see [8, Theorem 4.4] for the details). Letting $Li(x;t) := \sum_{k>0} Li_k(e^{2\pi i x})t^k$, we therefore obtain

(6)
$$\sum_{k_1,k_2,k_3>0} \zeta_{a,b}(k_1,k_2,k_3) t_1^{k_1} t_2^{k_2} t_3^{k_3} = \int_0^1 Li(ax;t_1) Li(bx;t_2) \overline{Li(x;t_3)} \, dx.$$

Furthermore, the generating function of $Li_k(e^{2\pi ix})$ with $x \in \mathbb{R} - \mathbb{Z}$ can be written in the form

(7)
$$Li(x;t) = -\frac{1}{2\pi i} \big(\gamma(x;2\pi i t) + \pi i\beta(x;2\pi i t)\big),$$

and hence, the right-hand side of (6) is equal to

(8)
$$\frac{1}{(2\pi i)^3} \int_0^1 \left(\gamma(ax; 2\pi i t_1) + \pi i \beta(ax; 2\pi i t_1) \right) \\ \times \left(\gamma(bx; 2\pi i t_2) + \pi i \beta(bx; 2\pi i t_2) \right) \left(\gamma(x; -2\pi i t_3) - \pi i \beta(x; -2\pi i t_3) \right) dx.$$

We note that, similarly to (6), one obtains the relation

$$\int_0^1 Li(ax;t_1)Li(bx;t_2)Li(x;-t_3)\,dx = 0,$$

and substituting (7) to the above identity, one has

$$\begin{split} &\int_0^1 \big(\gamma(ax;2\pi i t_1) + \pi i\beta(ax;2\pi i t_1)\big)\big(\gamma(bx;2\pi i t_2) + \pi i\beta(bx;2\pi i t_2)\big) \\ &\times \gamma(x;-2\pi i t_3) \, dx \\ &= -\pi i \int_0^1 \big(\gamma(ax;2\pi i t_1) \\ &+ \pi i\beta(ax;2\pi i t_1)\big)\big(\gamma(bx;2\pi i t_2) + \pi i\beta(bx;2\pi i t_2)\big)\beta(x;-2\pi i t_3) \, dx. \end{split}$$

With this, (8) is reduced to

$$-\frac{1}{(2\pi i)^2} \int_0^1 \left(\gamma(ax; 2\pi i t_1) + \pi i \beta(ax; 2\pi i t_1) \right) \left(\gamma(bx; 2\pi i t_2) + \pi i \beta(bx; 2\pi i t_2) \right) \\ \times \beta(x; -2\pi i t_3) \, dx,$$

which completes the proof.

The coefficient of t^k in $\gamma(x; 2\pi it)$ (resp. $\beta(x; 2\pi it)$) is a real-valued function, if k is even, and a real-valued function times $i = \sqrt{-1}$, if k is odd. Thus, comparing the coefficient of both sides, we have the following corollary. For simplicity, for integers $a, b \ge 1$ we let

(9)
$$F_{a,b}(t_1, t_2, t_3) := \int_0^1 \gamma(ax; t_1) \beta(bx; t_2) \beta(x; -t_3) \, dx,$$

where the integral is defined formally by term-by-term integration and by (5).

COROLLARY 3. One has

$$\sum_{\substack{k_1,k_2,k_3>0\\k_1+k_2+k_3:\text{odd}}} \zeta_{a,b}(k_1,k_2,k_3)t_1^{k_1}t_2^{k_2}t_3^{k_3}$$
$$= -\frac{1}{4\pi i}F_{a,b}(2\pi i t_1,2\pi i t_2,2\pi i t_3) - \frac{1}{4\pi i}F_{b,a}(2\pi i t_2,2\pi i t_1,2\pi i t_3).$$

Remark that, using the same method, one can give an integral expression of the generating function of the Riemann zeta values, which will be used later.

PROPOSITION 4. For integers $a, b \ge 1$, we have

(10)
$$\frac{1}{2\pi i} \int_0^1 \gamma(ax; 2\pi i t_1) \beta(bx; -2\pi i t_2) \, dx$$
$$= \sum_{\substack{r,s>0\\r+s: \text{odd}}} \frac{\gcd(a, b)^{r+s}}{a^s b^r} \zeta(r+s) t_1^r t_2^s.$$

Proof. Let $d = \gcd(a, b)$ and set a = a'd, b = b'd. It follows that

$$\int_0^1 Li_r(e^{2\pi iax}) \overline{Li_s(e^{2\pi ibx})} dx$$
$$= \sum_{m,n>0} \frac{1}{m^r n^s} \int_0^1 e^{2\pi ix(am-bn)} dx$$
$$= \sum_{\substack{m,n>0\\m = \frac{b'}{a'}n}} \frac{1}{m^r n^s} = \left(\frac{a'}{b'}\right)^r \sum_{\substack{n>0\\a'\mid n}} \frac{1}{n^{r+s}}$$
$$= \frac{1}{a'^s b'^r} \zeta(r+s).$$

Hence, we have

$$\int_0^1 Li(ax;t_1)\overline{Li(bx;t_2)}\,dx = \sum_{r,s>0} \frac{\gcd(a,b)^{r+s}}{a^s b^r} \zeta(r+s)t_1^r t_2^s.$$

By the relation $\int_0^1 Li(ax; t_1)Li(bx; -t_2) dx = 0$ $(a, b \ge 1)$ and (7), the left-hand side of the above equation can be reduced to

$$\frac{1}{2\pi i} \int_0^1 \left(\gamma(ax; 2\pi i t_1) + \pi i \beta(ax; 2\pi i t_1) \right) \beta(bx; -2\pi i t_2) \, dx.$$

Comparing the coefficients of $t_1^r t_2^s$, we complete the proof.

3. Evaluation of integrals

In this section, we compute the integral $F_{a,b}(t_1, t_2, t_3)$. We denote the generating function of the Bernoulli polynomials by $\beta_0(x;t)$:

$$\beta_0(x;t) := \frac{te^{xt}}{e^t - 1} = \sum_{k \ge 0} B_k(x) \frac{t^k}{k!}.$$

For integers $b, c \ge 1$, we set

$$\alpha_b(t_1, t_2) := \beta_0(0; t_1)\beta_0(0; -t_2) \frac{e^{bt_1 - t_2} - 1}{bt_1 - t_2},$$

$$\widetilde{\alpha}_{b,c}(t_1, t_2) := -t_1 e^{-ct_1}\beta_0(0; -t_2) \frac{e^{bt_1 - t_2} - 1}{bt_1 - t_2},$$

which are elements in the formal power series ring $\mathbb{Q}[[t_1, t_2]]$.

LEMMA 5. For any integers $b, d \ge 1$, we have

$$e^{-dt_1}\alpha_b(t_1,t_2) = \alpha_b(t_1,t_2) + \sum_{c=1}^d \widetilde{\alpha}_{b,c}(t_1,t_2).$$

Proof. By the relation $B_k(x) = B_k(x+1) - kx^{k-1}$ for $k \in \mathbb{Z}_{\geq 0}$ (see [1, Proposition 4.9 (2)]), we have $\beta_0(x;t) = \beta_0(x+1;t) - te^{xt}$. Using this formula with $x = -d, -d+1, \ldots, 1$ repeatedly, one gets

$$\beta_0(-d;t) = \beta_0(-d+1;t) - te^{-dt} = \dots = \beta_0(0;t) - t\sum_{c=1}^a e^{-ct}.$$

Hence, we obtain

$$\begin{split} e^{-dt_1} \alpha_b(t_1, t_2) &= \beta_0(-d; t_1) \beta_0(0; -t_2) \frac{e^{bt_1 - t_2} - 1}{bt_1 - t_2} \\ &= \alpha_b(t_1, t_2) - t_1 \sum_{c=1}^d e^{-ct_1} \beta_0(0; -t_2) \frac{e^{bt_1 - t_2} - 1}{bt_1 - t_2} \\ &= \alpha_b(t_1, t_2) + \sum_{c=1}^d \widetilde{\alpha}_{b,c}(t_1, t_2), \end{split}$$

which completes the proof.

REMARK 1. Let us denote by $A_b(r,s)$ (resp. $\widetilde{A}_{b,c}(r,s)$) the coefficient of $t_1^r t_2^s$ in $\alpha_b(t_1, t_2)$ (resp. in $\widetilde{\alpha}_{b,c}(t_1, t_2)$). Then, we have

$$A_b(r,s) = \sum_{\substack{p_1+q_1=r\\p_2+q_2=s\\p_1,p_2,q_1,q_2 \ge 0}} \frac{(-1)^{q_2+p_2} b^{p_1} B_{q_1} B_{q_2}}{p_1! p_2! q_1! q_2! (p_1+p_2+1)}$$

and

$$\widetilde{A}_{b,c}(r,s) = \sum_{\substack{p_1+q_1=r\\p_2+q_2=s\\p_1,p_2,q_2\ge 0\\q_1\ge 1}} \frac{(-1)^{q_1+q_2+p_2}c^{q_1-1}b^{p_1}B_{q_2}}{p_1!(q_1-1)!p_2!q_2!(p_1+p_2+1)},$$

where $B_k = B_k(1) = (-1)^k B_k(0)$ is the *k*th Bernoulli number. We note that since $\widetilde{\alpha}_{b,c}(t_1, t_2) \in t_1 \mathbb{Q}[[t_1, t_2]]$, we have $\widetilde{A}_{b,c}(0, s) = 0$ for any $s \in \mathbb{Z}_{\geq 0}$.

LEMMA 6. Let b, d be positive integers with $d \in \{0, 1, \dots, b-1\}$. Then, for $x \in (\frac{d}{b}, \frac{d+1}{b})$, we have

$$\begin{split} \beta(bx;t_1)\beta(x;-t_2) &= e^{-dt_1}\alpha_b(t_1,t_2)\beta_0(x;bt_1-t_2) - \beta(bx;t_1) - \beta(x;-t_2) - 1, \\ \text{where we recall } \beta(x;t) &= \sum_{k>0} \frac{B_k(x-[x])}{k!}t^k. \end{split}$$

Proof. Since
$$bx - [bx] = bx - d$$
 when $x \in (\frac{d}{b}, \frac{d+1}{b})$, one has
 $(\beta(bx; t_1) + 1) (\beta(x; -t_2) + 1)$
 $= \frac{t_1 e^{(bx-d)t_1}}{e^{t_1} - 1} \frac{-t_2 e^{-xt_2}}{e^{-t_2} - 1}$

$$= e^{-dt_1} \frac{t_1}{e^{t_1} - 1} \frac{-t_2}{e^{-t_2} - 1} e^{(bt_1 - t_2)x}$$

= $e^{-dt_1} \beta_0(0; t_1) \beta_0(0; -t_2) \frac{e^{bt_1 - t_2} - 1}{bt_1 - t_2} \frac{(bt_1 - t_2)e^{(bt_1 - t_2)x}}{e^{bt_1 - t_2} - 1}$
= $e^{-dt_1} \alpha_b(t_1, t_2) \beta_0(x; bt_1 - t_2),$

from which the statement follows.

PROPOSITION 7. For any integers $a, b \ge 1$, we have

(11)
$$F_{a,b}(t_1, t_2, t_3) = \alpha_b(t_2, t_3) \int_0^1 \gamma(ax; t_1) \beta_0(x; bt_2 - t_3) \, dx \\ + \sum_{c=1}^{b-1} \widetilde{\alpha}_{b,c}(t_2, t_3) \int_{\frac{c}{b}}^1 \gamma(ax; t_1) \beta_0(x; bt_2 - t_3) \, dx \\ - \int_0^1 \gamma(ax; t_1) \big(\beta(bx; t_2) + \beta(x; -t_3) \big) \, dx.$$

Proof. Splitting the integral $\int_0^1 = \sum_{d=0}^{b-1} \int_{\frac{d}{b}}^{\frac{d+1}{b}}$ in the definition of $F_{a,b}$ (see (9)) and then using Lemma 6, we have

$$\begin{split} F_{a,b}(t_1, t_2, t_3) \\ &= \sum_{d=0}^{b-1} \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma(ax; t_1) \beta(bx; t_2) \beta(x; -t_3) \, dx \\ &= \sum_{d=0}^{b-1} e^{-dt_2} \alpha_b(t_2, t_3) \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma(ax; t_1) \beta_0(x; bt_2 - t_3) \, dx \\ &\quad - \sum_{d=0}^{b-1} \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma(ax; t_1) \left(\beta(bx; t_2) + \beta(x; -t_3) + 1\right) \, dx \\ &= \sum_{d=0}^{b-1} \left(\alpha_b(t_2, t_3) + \sum_{c=1}^{d} \widetilde{\alpha}_{b,c}(t_2, t_3) \right) \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma(ax; t_1) \beta_0(x; bt_2 - t_3) \, dx \\ &\quad - \int_{0}^{1} \gamma(ax; t_1) \left(\beta(bx; t_2) + \beta(x; -t_3) + 1\right) \, dx, \end{split}$$

where for the last equality we have used Lemma 5. Since $\int_0^1 Li(ax;t) dx = 0$ holds, we have

(12)
$$\int_{0}^{1} \gamma(ax;t_{1}) \, dx = 0.$$

Hence, the statement follows from and the interchange of order of summation $\sum_{d=1}^{b-1} \sum_{c=1}^{d} = \sum_{c=1}^{b-1} \sum_{d=c}^{b-1}$.

We now deal with the integral of the second term of the right-hand side of (11).

PROPOSITION 8. For any integers $a, b \ge 1$ and $c \in \{0, 1, \dots, b-1\}$, we have

$$\begin{aligned} \frac{1}{2\pi i} \int_{\frac{c}{b}}^{1} \gamma(ax; 2\pi i t_1) \beta_0(x; 2\pi i (bt_2 - t_3)) \, dx \\ &= -i \sum_{\substack{p,q \ge 0\\p+s: \text{odd}}} \frac{(-1)^s (2\pi i)^{q-1}}{q! a^s} S_{p+s+1} \left(\frac{ac}{b}\right) B_q\left(\frac{c}{b}\right) t_1^{p+1} (bt_2 - t_3)^{q+s-1} \\ &+ \sum_{\substack{s \ge 1\\p,q \ge 0\\p+s: \text{even}}} \frac{(-1)^s (2\pi i)^{q-1}}{q! a^s} \left(\zeta(p+s+1) B_q - C_{p+s+1} \left(\frac{ac}{b}\right) B_q\left(\frac{c}{b}\right)\right) \\ &\times t_1^{p+1} (bt_2 - t_3)^{q+s-1}, \end{aligned}$$

where $S_n(x)$ and $C_n(x)$ are defined in (1).

Proof. For an integer $s \ge 1$, we let

$$\gamma_s(x;t) = \sum_{k \ge s} \frac{Cl_k(x-[x])}{k!} t^k.$$

It is easily seen that for any integer $s \ge 2$ we have

$$\frac{d}{dx}\gamma_s(ax;t) = at\gamma_{s-1}(ax;t)$$
 and $\frac{d}{dx}\beta_0(x;t) = t\beta_0(x;t).$

By repeated use of the integration by parts and noting that $\gamma_1(x;t) = \gamma(x;t)$, we have

$$\begin{split} &\int_{\frac{c}{b}}^{1} \gamma(ax; 2\pi i t_1) \beta_0 \left(x; 2\pi i (bt_2 - t_3) \right) dx \\ &= \sum_{s \ge 2} \frac{(-2\pi i (bt_2 - t_3))^{s-2}}{(2\pi i a t_1)^{s-1}} \left[\gamma_s(ax; 2\pi i t_1) \beta_0 \left(x; 2\pi i (bt_2 - t_3) \right) \right]_{\frac{c}{b}}^{1} \\ &= \sum_{\substack{s \ge 2\\p \ge s\\q \ge 0}} \frac{(-1)^s (2\pi i)^{p+q-1}}{p! q! a^{s-1}} \\ &\times \left[Cl_p \left(ax - [ax] \right) B_q(x) \right]_{\frac{c}{b}}^{1} t_1^{p-s+1} (bt_2 - t_3)^{q+s-2} \\ &= \sum_{\substack{s \ge 1\\p,q \ge 0}} \frac{(-1)^{s+1} (2\pi i)^{p+q+s}}{(p+s+1)! q! a^s} \\ &\times \left[Cl_{p+s+1} \left(ax - [ax] \right) B_q(x) \right]_{\frac{c}{b}}^{1} t_1^{p+1} (bt_2 - t_3)^{q+s-1}. \end{split}$$

By definition, for any $x \in \mathbb{Q}$ and $k \ge 2$ we have

$$Cl_k(x - [x]) = \begin{cases} -\frac{k!}{(2\pi i)^{k-1}}C_k(x), & k: \text{odd}, \\ -i\frac{k!}{(2\pi i)^{k-1}}S_k(x), & k: \text{even}, \end{cases}$$

and hence, the above last line is computed as follows:

$$i \sum_{\substack{s \ge 1 \\ p,q \ge 0 \\ p+s \text{ odd}}} \frac{(-1)^s (2\pi i)^q}{q! a^s} \left(S_{p+s+1}(a) B_q(1) - S_{p+s+1}\left(\frac{ac}{b}\right) B_q\left(\frac{c}{b}\right) \right)$$

$$\times t_1^{p+1} (bt_2 - t_3)^{q+s-1}$$

$$+ \sum_{\substack{s \ge 1 \\ p,q \ge 0 \\ p+s \text{ even}}} \frac{(-1)^s (2\pi i)^q}{q! a^s} \left(C_{p+s+1}(a) B_q(1) - C_{p+s+1}\left(\frac{ac}{b}\right) B_q\left(\frac{c}{b}\right) \right)$$

$$\times t_1^{p+1} (bt_2 - t_3)^{q+s-1},$$

which completes the proof.

4. Proof of Theorem 1

We can now complete the proof of Theorem 1 as follows.

Proof of Theorem 1. We compute the real part of the coefficient of $t_1^{k_1} t_2^{k_2} t_3^{k_3}$ in the generating function $\frac{1}{2\pi i} F_{a,b}(2\pi i t_1, 2\pi i t_2, 2\pi i t_3)$ for positive integers k, k_1, k_2, k_3 with $k = k_1 + k_2 + k_3$ odd. By (11) with $t_j \to 2\pi i t_j$, we have

$$(13) \qquad \frac{1}{2\pi i} F_{a,b}(2\pi i t_1, 2\pi i t_2, 2\pi i t_3) \\ = \alpha_b(2\pi i t_2, 2\pi i t_3) \\ \times \frac{1}{2\pi i} \int_0^1 \gamma(ax; 2\pi i t_1) \beta_0(x; -2\pi i (t_3 - b t_2)) dx \\ (14) \qquad + \sum_{c=1}^{b-1} \widetilde{\alpha}_{b,c}(2\pi i t_2, 2\pi i t_3) \\ \times \frac{1}{2\pi i} \int_{\frac{c}{b}}^1 \gamma(ax; 2\pi i t_1) \beta_0(x; 2\pi i (b t_2 - t_3)) dx \\ (15) \qquad - \frac{1}{2\pi i} \int_0^1 \gamma(ax; 2\pi i t_1) \left(\beta(bx; -2\pi i (-t_2)) + \beta(x; -2\pi i t_3)\right) dx. \end{cases}$$

By (10), the coefficient of $t_1^{k_1}t_2^{k_2}t_3^{k_3}$ in the last term (15) is a rational multiple

of $\zeta(k)$. For the first term (13), using (10) and (12), we have

$$\frac{1}{2\pi i} \int_0^1 \gamma(ax; 2\pi i t_1) \beta_0(x; -2\pi i (t_3 - b t_2)) dx$$

$$\in \sum_{\substack{k_1, k_2, k_3 > 0\\k_1 + k_2 + k_3 : \text{odd}}} \mathbb{Q}\zeta(k_1 + k_2 + k_3) t_1^{k_1} t_2^{k_2} t_3^{k_3},$$

where $\sum a_r t^r \in \sum V_r t^r$ means $a_r \in V_r$ for all r. We also have

$$\alpha_b(2\pi i t_1, 2\pi i t_2) \in \sum_{r,s\geq 0} \mathbb{Q}(2\pi i)^{r+s} t_1^r t_2^s.$$

Hence the real part of the coefficient of $t_1^{k_1}t_2^{k_2}t_3^{k_3}$ in (13) can be expressed as \mathbb{Q} -linear combinations of $\pi^{2n}\zeta(k-2n)$ with $0 \le n \le \frac{k-3}{2}$. For the second term (14), using Proposition 8 (see also Remark 1), we have

(16)
$$\widetilde{\alpha}_{b,c}(2\pi i t_2, 2\pi i t_3) \times \frac{1}{2\pi i} \int_{\frac{c}{b}}^{1} \gamma(ax; 2\pi i t_1) \beta_0(x; 2\pi i (bt_2 - t_3)) dx$$
$$= -i \sum_{\substack{n_2 \ge 1 \\ n_3 \ge 0}} \sum_{\substack{p,q \ge 0 \\ p+s: \text{odd}}} \frac{(-1)^s \widetilde{A}_{b,c}(n_2, n_3)}{q! a^s} \times (2\pi i)^{n_2 + n_3 + q - 1} S_{p+s+1} \left(\frac{ac}{b}\right) B_q\left(\frac{c}{b}\right) \times t_1^{p+1} (bt_2 - t_3)^{q+s-1} t_2^{n_2} t_3^{n_3}$$
$$+ \sum_{\substack{n_2 \ge 1 \\ n_3 \ge 0}} \sum_{\substack{p,q \ge 0 \\ p+s: \text{even}}} \frac{(-1)^s \widetilde{A}_{b,c}(n_2, n_3)}{q! a^s} (2\pi i)^{n_2 + n_3 + q - 1} \times \left(\zeta(p+s+1)B_q - C_{p+s+1}\left(\frac{ac}{b}\right) B_q\left(\frac{c}{b}\right)\right) t_1^{p+1} (bt_2 - t_3)^{q+s-1} t_2^{n_2} t_3^{n_3}$$

where we note that in the above both summations, p + s + 1 runs over integers greater than 1. Since for any $x \in \mathbb{Q}$ and $k \ge 0$ we have $B_k(x) \in \mathbb{Q}$, the real part of the coefficient of $t_1^{k_1} t_2^{k_2} t_3^{k_3}$ in the first term (resp. the second term) of the right-hand side of (16) is a \mathbb{Q} -linear combination of $\pi^{2n+1}S_{k-2n-1}(\frac{ac}{b})$ with $0 \le n \le \frac{k-3}{2}$ (resp. $\pi^{2n}C_{k-2n}(\frac{ac}{b})$ and $\pi^{2n}\zeta(k-2n)$ with $0 \le n \le \frac{k-3}{2}$). We therefore find that the real part of the coefficient of $t_1^{k_1} t_2^{k_2} t_3^{k_3}$ in the generating function $\frac{1}{2\pi i}F_{a,b}(2\pi i t_1, 2\pi i t_2, 2\pi i t_3)$ can be expressed as \mathbb{Q} -linear combinations of $\pi^{2n+1}S_{k-2n-1}(\frac{ac}{b})$ and $\pi^{2n}C_{k-2n}(\frac{ac}{b})$ with $0 \le n \le \frac{k-3}{2}$ and $c \in \mathbb{Z}/b\mathbb{Z}$. Thus by Corollary 3, we complete the proof.

REMARK 2. As mentioned in the introduction, the value $\zeta_{a,b}(k_1, k_2, k_3)$ is expressible as Q-linear combinations of double polylogarithms $Li_{r,s}(z_1, z_2)$ defined in (3), where the expression is obtained from the partial fractional decomposition

$$\frac{1}{x^r y^s} = \sum_{\substack{p+q=r+s\\p,q \ge 1}} \frac{1}{(x+y)^p} \left(\binom{p-1}{s-1} \frac{1}{x^q} + \binom{p-1}{r-1} \frac{1}{y^q} \right) \qquad (r, s \in \mathbb{Z}_{\ge 1})$$

and the orthogonality relation

$$\frac{1}{N}\sum_{n\in\mathbb{Z}/N\mathbb{Z}}\mu_N^{dn} = \begin{cases} 1, & N\mid d,\\ 0, & N\nmid d, \end{cases}$$

where $\mu_N = e^{2\pi i/N}$ and $d \in \mathbb{Z}$. For example, one can check

(17)
$$\zeta_{1,3}(1,1,3) = \sum_{u \in \mathbb{Z}/3\mathbb{Z}} Li_{1,4}(\mu_3^{-u},\mu_3^u) + \sum_{u \in \mathbb{Z}/3\mathbb{Z}} Li_{1,4}(\mu_3^u,1)$$

From this, Theorem 1 might be proved by the parity theorem for double polylogarithms examined in [10, Eq. (3.2)]. Although we do not proceed with this in general, let us illustrate an example. As a special case of [10, Eq. (3.2)], one obtains

$$Li_{1,4}(z_1, z_2) + Li_{1,4}(z_1^{-1}, z_2^{-1})$$

= $\sum_{n=1}^{5} (-1)^{n+1} Li_n(z_1) \mathcal{B}_{5-n}(z_1 z_2) - Li_1(z_1) \mathcal{B}_4(z_2)$
+ $\sum_{n=4}^{5} {\binom{n-1}{3}} Li_n(z_2^{-1}) \mathcal{B}_{5-n}(z_1 z_2) - Li_5(z_1 z_2),$

where for each integer $k \ge 0$ we set $\mathcal{B}_k(z) = \frac{(2\pi i)^k}{k!} B_k(\frac{1}{2} + \frac{\log(-z)}{2\pi i})$. We note that $Li_k(\mu_3^u) = C_k(\frac{u}{3}) + iS_k(\frac{u}{3})$ and $\mathcal{B}_k(\mu_3) = \frac{(2\pi i)^k}{k!} B_k(\frac{1}{3})$ since $\log(-\mu_3) = -\frac{\pi i}{3}$. With this, the above formula gives

$$\begin{aligned} \operatorname{Re} & \left(Li_{1,4} \left(\mu_3^{-1}, \mu_3 \right) + Li_{1,4} \left(\mu_3^{-2}, \mu_3^2 \right) \right) \\ &= \frac{1}{243} \left(-843\zeta(5) + 36\pi^2 \zeta(3) + 4\pi^4 \log 3 \right), \\ \operatorname{Re} & \left(Li_{1,4}(\mu_3, 1) + Li_{1,4}(\mu_3^2, 1) \right) \\ &= \frac{1}{243} \left(972\zeta(5) - 12\pi^2 \zeta(3) - 4\pi^4 \log 3 - 81\pi S_4 \left(\frac{1}{3} \right) - 12\pi^3 S_2 \left(\frac{1}{3} \right) \right), \\ 2Li_{1,4}(1, 1) &= 4\zeta(5) - \frac{1}{3}\pi^2 \zeta(3), \end{aligned}$$

where we have used $C_k(\frac{1}{3}) = C_k(\frac{2}{3}) = \frac{1-3^{k-1}}{2\cdot 3^{k-1}}\zeta(k)$ for $k \ge 2$ and $C_1(\frac{1}{3}) = C_1(\frac{2}{3}) = -\frac{1}{2}\log 3$. Substituting the above formulas to (17), one gets (2). We have checked Theorem 1 for (a,b) = (1,3) and (2,3) in this direction.

5. The zeta function of the root system G_2

In this section, we give an affirmative answer to the question posed by Komori, Matsumoto and Tsumura [5, Eq. (7.1)].

The zeta-function associated with the exceptional Lie algebra G_2 is defined for complex variables $\mathbf{s} = (s_1, s_2, \dots, s_6) \in \mathbb{C}^6$ by

$$\zeta(\mathbf{s};G_2) := \sum_{m,n>0} \frac{1}{m^{s_1} n^{s_2} (m+n)^{s_3} (m+2n)^{s_4} (m+3n)^{s_5} (2m+3n)^{s_6}}.$$

The function $\zeta(\mathbf{s}; G_2)$ was first introduced by Komori, Matsumoto and Tsumura (see [4], [5]), where they developed its analytic properties and functional relations. They also examined explicit evaluations of the special values of $\zeta(\mathbf{k}; G_2)$ at $\mathbf{k} \in \mathbb{Z}_{>0}^6$ (see [18] for $\mathbf{k} \in \mathbb{Z}_{\geq 0}^6$), where we note that the series $\zeta(\mathbf{k}; G_2)$ converges absolutely for $\mathbf{k} \in \mathbb{Z}_{>0}^6$. For example, they showed

$$\zeta(2,1,1,1,1,1;G_2) = -\frac{109}{1296}\zeta(7) + \frac{1}{18}\zeta(2)\zeta(5)$$

Komori, Matsumoto and Tsumura [5, Eq. (7.1)] suggested a conjecture that the value $\zeta(k_1, \ldots, k_6; G_2)$ with $k_1 + \cdots + k_6$ odd lies in the polynomial ring over \mathbb{Q} generated by $\zeta(k)$ $(k \in \mathbb{Z}_{\geq 2})$ and $L(k, \chi_3)$ $(k \in \mathbb{Z}_{\geq 1})$, where $L(s, \chi_3)$ is the Dirichlet *L*-function associated with the character χ_3 defined by

$$L(s,\chi_3) = \sum_{m>0} \frac{\chi_3(m)}{m^s}$$

and the character χ_3 is determined by $\chi_3(n) = 1$ if $n \equiv 1 \mod 3$, $\chi_3(n) = -1$ if $n \equiv 2 \mod 3$ and $\chi_3(n) = 0$ if $n \equiv 0 \mod 3$. We remark that the second author [8] showed that the value $\zeta(k_1, \ldots, k_6; G_2)$ with $k_1 + \cdots + k_6$ odd can be written in terms of $\zeta(s), L(s, \chi_3), S_r(\frac{d}{N}), C_r(\frac{d}{N})$ for N = 4, 12 and 0 < d < N, (d, N) = 1 (see also [5, §7]). The following theorem gives an affirmative answer to the question.

THEOREM 9. For any integers $k, k_1, \ldots, k_6 \ge 1$ with $k = k_1 + \cdots + k_6$ odd, the value $\zeta(k_1, \ldots, k_6; G_2)$ can be expressed as \mathbb{Q} -linear combinations of $\zeta(2n)\zeta(k-2n)$ $(0 \le n \le \frac{k-3}{2})$ and $L(2n+1,\chi_3)L(k-2n-1,\chi_3)$ $(0 \le n \le \frac{k-3}{2})$, where $\zeta(0) = -\frac{1}{2}$.

Proof. In [8, Theorem 2.3], the second author proved that for any integers $l_1, \ldots, l_6 \ge 1$, the value $\zeta(l_1, \ldots, l_6; G_2)$ can be expressed as \mathbb{Q} -linear combinations of $\zeta_{a,b}(n_1, n_2, n_3)$ with $(a, b) = (1, 1), (1, 2), (1, 3), (2, 3), n_1 + n_2 + n_3 =$

 $l_1 + \cdots + l_6$ and $n_1, n_2, n_3 \in \mathbb{Z}_{>0}$. As a consequence, it follows from Theorem 1 that the value $\zeta(k_1, \ldots, k_6; G_2)$ can be written as \mathbb{Q} -linear combinations of $\pi^{2n}C_{k-2n}(\frac{d}{6})$ and $\pi^{2n+1}S_{k-2n-1}(\frac{d}{6})$ with $0 \le n \le \frac{k-3}{2}$ and $d \in \mathbb{Z}/6\mathbb{Z}$. Now consider the values $C_k(\frac{d}{6})$ and $S_k(\frac{d}{6})$. They are expressible as \mathbb{Q} -linear combinations of

$$\zeta_l^{(d)}(k) = \sum_{\substack{m \ge 0 \\ m \equiv d \mod l}} \frac{1}{m^k} \quad (d \in \mathbb{Z}/l\mathbb{Z}).$$

For $k \geq 2$, using the identities $\zeta(k) = \sum_{d \in \mathbb{Z}/l\mathbb{Z}} \zeta_l^{(d)}(k)$ and $\zeta_l^{(0)}(k) \in \mathbb{Q}\zeta(k)$, we have $C_k(\frac{1}{2}) = \zeta_2^{(0)}(k) - \zeta_2^{(1)}(k) \in \mathbb{Q}\zeta(k)$ and $C_k(\frac{1}{3}) = C_k(\frac{2}{3}) = \zeta_3^{(0)}(k) - \frac{1}{2}(\zeta_3^{(1)}(k) + \zeta_3^{(2)}(k)) \in \mathbb{Q}\zeta(k)$. Furthermore, using the identity $\zeta_{al}^{(ad)}(k) = a^{-k}\zeta_l^{(d)}(k)$, we have

$$C_k\left(\frac{1}{6}\right) = C_k\left(\frac{5}{6}\right)$$

= $\zeta_6^{(0)}(k) - \zeta_6^{(3)}(k) + \frac{1}{2}\left(\zeta_6^{(1)}(k) + \zeta_6^{(5)}(k)\right) - \frac{1}{2}\left(\zeta_6^{(2)}(k) + \zeta_6^{(4)}(k)\right)$
 $\in \mathbb{Q}\zeta(k).$

Thus, $C_k(\frac{d}{6}) \in \mathbb{Q}\zeta(k)$ holds for any $d \in \mathbb{Z}/6\mathbb{Z}$ and $k \geq 2$. Likewise, it is easily seen that $S_k(\frac{d}{6}) \in \mathbb{Q}\sqrt{3}L(k,\chi_3)$ holds. Then the result follows from the wellknown formula: $\zeta(2n) \in \mathbb{Q}\pi^{2n}, L(2n+1,\chi_3) \in \mathbb{Q}\sqrt{3}\pi^{2n+1}$ for any $n \in \mathbb{Z}_{\geq 0}$ (see [1, Theorem 9.6]).

Let us illustrate an example of the formula for $\zeta(k_1, \ldots, k_6; G_2)$. Applying the partial fractional decomposition repeatedly to the form $(m+n)^{-k_3}(m+2n)^{-k_4}(m+3n)^{-k_5}(2m+3n)^{-k_6}$, we get

$$\zeta(1,1,1,1,1,2;G_2) = \frac{1}{2}\zeta_{1,1}(5,1,1) - 16\zeta_{1,2}(5,1,1) + \frac{9}{2}\zeta_{1,3}(5,1,1) + 9\zeta_{2,3}(4,1,2) + 18\zeta_{2,3}(5,1,1).$$

Then, by Theorem 1 (actually we use Corollary 3 together with Propositions 4, 7 and 8), we have

$$\zeta(1,1,1,1,1,2;G_2) = \frac{2507}{1296}\zeta(7) - \frac{505}{648}\pi^2\zeta(5) + \frac{9}{4}\pi S_6\left(\frac{1}{3}\right)$$
$$= \frac{2507}{1296}\zeta(7) - \frac{505}{108}\zeta(2)\zeta(5) + \frac{3}{8}L(1,\chi_3)L(6,\chi_3),$$
e $L(1,\chi_2) = \frac{\pi}{1296}$

where $L(1, \chi_3) = \frac{\pi}{3\sqrt{3}}$.

Acknowledgments. The authors are grateful to Professors Kohji Matsumoto, Takashi Nakamura and Hirofumi Tsumura for initial advice and many useful comments.

References

- T. Arakawa, T. Ibukiyama and M. Kaneko, *Bernoulli numbers and zeta functions*, Springer Monographs in Mathematics, Springer, Tokyo, 2014. MR 3307736
- [2] J. G. Huard, K. S. Williams and N. Y. Zhang, On Tornheim's double series, Acta Arith. 75 (1996), no. 2, 105–117.
- [3] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006), no. 2, 307–338.
- [4] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semi-simple Lie algebras IV, Glasg. Math. J. 53 (2011), no. 1, 185–206. MR 2747143
- [5] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-function associated with semi-simple Lie algebras V, Glasg. Math. J. 57 (2015), no. 1, 107–130. MR 3292681
- [6] T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125 (2006), no. 3, 257–263.
- [7] T. Nakamura, A simple proof of the functional relation for the Lerch type Tornheim double zeta function, Tokyo J. Math. 35 (2012), no. 2, 333–337.
- [8] T. Okamoto, Multiple zeta values related with the zeta-function of the root system of type A₂, B₂ and G₂, Comment. Math. Univ. St. Pauli **61** (2012), no. 1, 9–27.
- T. Okamoto, On alternating analogues of the Mordell-Tornheim triple zeta values, J. Ramanujan Math. Soc. 28 (2013), no. 2, 247–269.
- [10] E. Panzer, The parity theorem for multiple polylogarithms, J. Number Theory 172 (2017), 93–113. MR 3573145
- [11] M. V. Subbarao and R. Sitaramachandra, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), no. 1, 245–255.
- [12] L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303–314. MR 0034860
- H. Tsumura, On alternating analogues of Tornheim's double series, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3633–3641.
- [14] H. Tsumura, Evaluation formulas for Tornheim's type of alternating double series, Math. Comp. 73 (2004), no. 245, 251–258.
- [15] H. Tsumura, Combinatorial relations for Euler-Zagier sums, Acta Arith. 111 (2004), no. 1, 27–42.
- [16] H. Tsumura, On Mordell-Tornheim zeta values, Proc. Amer. Math. Soc. 133 (2005), 2387–2393.
- [17] H. Tsumura, On alternating analogues of Tornheim's double series. II, Ramanujan J. 18 (2009), no. 1, 81–90.
- [18] J. Zhao, Multi-polylogs at twelfth roots of unity and special values of Witten multiple zeta function attached to the exceptional Lie algebra g₂, J. Algebra Appl. 9 (2010), no. 2, 327–337.
- [19] X. Zhou, T. Cai and D. M. Bradley, Signed q-analogs of Tornheim's double series, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2689–2698.

Shin-ya Kadota, Graduate School of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya-shi, Aichi 464-8602, Japan

E-mail address: m13018c@math.nagoya-u.ac.jp

Takuya Okamoto, Department of Mathematics, College of Liberal Arts and Sciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

E-mail address: takuyaok@kitasato-u.ac.jp

Koji Tasaka, Department of Information Science and Technology, Aichi Prefectural University, 1522-3 Ibaragabasama, Nagakute, Aichi Prefecture 480-1198, Japan

E-mail address: tasaka@ist.aichi-pu.ac.jp