# EVALUATION OF TORNHEIM'S TYPE OF DOUBLE SERIES 

SHIN-YA KADOTA, TAKUYA OKAMOTO AND KOJI TASAKA


#### Abstract

We examine values of certain Tornheim's type of double series with odd weight. As a result, an affirmative answer to a conjecture about the parity theorem for the zeta function of the root system of the exceptional Lie algebra $G_{2}$, proposed by Komori, Matsumoto and Tsumura, is given.


## 1. Introduction and main theorem

For integers $a, b, k_{1}, k_{2}, k_{3} \geq 1$, let

$$
\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right):=\sum_{m, n>0} \frac{1}{m^{k_{1}} n^{k_{2}}(a m+b n)^{k_{3}}}
$$

which converges absolutely and gives a real number. Since Tornheim [12] first studied the value $\zeta_{1,1}\left(k_{1}, k_{2}, k_{3}\right)$, we call the value $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ Tornheim's type of double series (note that the function $\zeta_{a, b}\left(s_{1}, s_{2}, s_{3}\right)$ with $s_{i} \in \mathbb{C}$ can be viewed as a special case of the Shintani zeta function, but we will focus on its special values). In [8], the second author examined the values $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ in the study of evaluations of special values of the zeta functions of root systems associated with $A_{2}, B_{2}$ and $G_{2}$. The goal was to express the special values of the zeta functions of root systems as $\mathbb{Q}$-linear combinations of two products of certain zeta values. As a prototype, we have in mind the analogous story for the parity theorem for multiple zeta values [3, Corollary 8] (see also [15]) and for Tornheim's series [2, Theorem 2] (see also [16]). For example, the identity

$$
\zeta_{1,1}(1,1,3)=4 \zeta(5)-2 \zeta(2) \zeta(3)
$$

is well known. Similar studies have been done in many articles [7], [11], [13], [14], [16], [17], [19] (see also [9]). In this paper, we will generalize the above

[^0]expression to the value $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ with $k_{1}+k_{2}+k_{3}$ odd. As a consequence, we give an affirmative answer to a conjecture about special values of the zeta function of the root system of $G_{2}$, which was proposed by Komori, Matsumoto and Tsumura [5, Eq. (7.1)].

We now state our main result. We use the Clausen-type functions defined for a positive integer $k \geq 2$ and $x \in \mathbb{R}$ by

$$
\begin{align*}
& C_{k}(x):=\operatorname{Re} L i_{k}\left(e^{2 \pi i x}\right)=\sum_{m>0} \frac{\cos (2 \pi m x)}{m^{k}}  \tag{1}\\
& S_{k}(x):=\operatorname{Im} L i_{k}\left(e^{2 \pi i x}\right)=\sum_{m>0} \frac{\sin (2 \pi m x)}{m^{k}}
\end{align*}
$$

where $L i_{k}(z)$ is the polylogarithm $\sum_{m>0} \frac{z^{m}}{m^{k}}$. Note that $C_{k}(x)$ equals the Riemann zeta value $\zeta(k):=\sum_{m>0} \frac{1}{m^{k}}$ when $x \in \mathbb{Z}$, and $S_{k}(x)$ is 0 when $x \in$ $\frac{1}{2} \mathbb{Z}$.

ThEOREM 1. For positive integers $N, a, b, k, k_{1}, k_{2}, k_{3}$ with $N=\operatorname{lcm}(a, b)$ and $k=k_{1}+k_{2}+k_{3}$ odd, the value $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ can be expressed as $\mathbb{Q}$-linear combinations of $\pi^{2 n} C_{k-2 n}\left(\frac{d}{N}\right)$ and $\pi^{2 n+1} S_{k-2 n-1}\left(\frac{d}{N}\right)$ for $0 \leq n \leq \frac{k-3}{2}$ and $d \in \mathbb{Z} / N \mathbb{Z}$.

Theorem 1 will be proved in Section 4 by using the generating functions. This leads to a recipe for giving a formula for the $\mathbb{Q}$-linear combination in Theorem 1. More precisely, one can deduce an explicit formula from Corollary 3 and Propositions 4, 7 and 8 , but it might be much complicated (we do not develop the explicit formulas in this paper). As an example of a simple identity, we have

$$
\begin{equation*}
\zeta_{1,3}(1,1,3)=\frac{1}{81}\left(367 \zeta(5)-19 \pi^{2} \zeta(3)-27 \pi S_{4}\left(\frac{1}{3}\right)-4 \pi^{3} S_{2}\left(\frac{1}{3}\right)\right) \tag{2}
\end{equation*}
$$

We apply Theorem 1 to proving the conjecture suggested by Komori, Matsumoto and Tsumura [5, Eq. (7.1)]. This will be described in Section 5.

It is worth mentioning that since the value $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ can be expressed as $\mathbb{Q}$-linear combinations of double polylogarithms

$$
\begin{equation*}
L i_{k_{1}, k_{2}}\left(z_{1}, z_{2}\right)=\sum_{0<m<n} \frac{z_{1}^{m} z_{2}^{n}}{m^{k_{1}} n^{k_{2}}} \tag{3}
\end{equation*}
$$

Theorem 1 might be proved by the parity theorem for double polylogarithms obtained by Panzer [10] and Nakamura [7], which is illustrated in Remark 2. In this paper, we however do not use their result to prove Theorem 1, since we want to keep this paper self-contained.

The contents of this paper are as follows. In Section 2, we give an integral representation of the generating function of the values $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ for any integers $a, b \geq 1$. In Section 3, the integral is computed. Section 4 gives a
proof of Theorem 1.1. In Section 5, we recall the question [5, Eq. (7.1)] and give an affirmative answer to this.

## 2. Integral representation

In this section, we give an integral representation of the generating function of the values $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ for any integers $a, b \geq 1$. The integral representation of the value $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ was first given by the second author [8, Theorem 4.4], following the method used by Zagier (see also [6]). We recall it briefly.

For an integer $k \geq 0$, the Bernoulli polynomial $B_{k}(x)$ of order $k$ is defined by

$$
\sum_{k \geq 0} B_{k}(x) \frac{t^{k}}{k!}=\frac{t e^{x t}}{e^{t}-1}
$$

The polynomial $B_{k}(x)$ admits the following expression (see [1, Theorem 4.11]): for $k \geq 1$ and $x \in \mathbb{R}(x \in \mathbb{R}-\mathbb{Z}$, if $k=1)$

$$
B_{k}(x-[x])= \begin{cases}-2 i \frac{k!}{(2 \pi i)^{k}} \sum_{m>0} \frac{\sin (2 \pi m x)}{m^{k}}, & k \geq 1: \text { odd }, \\ -2 \frac{k!}{(2 \pi i)^{k}} \sum_{m>0} \frac{\cos (2 \pi m x)}{m^{k}}, & k \geq 2: \text { even },\end{cases}
$$

where $i=\sqrt{-1}$ and the summation $\sum_{m>0}$ is regarded as $\lim _{N \rightarrow \infty} \sum_{N>m>0}$ when $k=1$ (this ensures convergence). We define the modified (generalized) Clausen function for $k \geq 1$ and $x \in \mathbb{R}(x \in \mathbb{R}-\mathbb{Z}$, if $k=1)$ by

$$
C l_{k}(x-[x])= \begin{cases}-\frac{k!}{(2 \pi i)^{k-1}} \sum_{m>0} \frac{\cos (2 \pi m x)}{m^{k}}, & k \geq 1: \text { odd } \\ -i \frac{k!}{(2 \pi i)^{k-1}} \sum_{m>0} \frac{\sin (2 \pi m x)}{m^{k}}, & k \geq 2: \text { even } .\end{cases}
$$

With this, for $k \geq 1$ and $x \in \mathbb{R} \quad(x \in \mathbb{R}-\mathbb{Z}$ if $k=1)$, the polylogarithm $L i_{k}\left(e^{2 \pi i x}\right)$ can be written in the form

$$
\begin{equation*}
L i_{k}\left(e^{2 \pi i x}\right)=-\frac{(2 \pi i)^{k-1}}{k!}\left(C l_{k}(x-[x])+\pi i B_{k}(x-[x])\right) \tag{4}
\end{equation*}
$$

We introduce formal generating functions. For $x \in \mathbb{R}-\mathbb{Z}$, let

$$
\beta(x ; t):=\sum_{k>0} \frac{B_{k}(x-[x]) t^{k}}{k!} \quad \text { and } \quad \gamma(x ; t):=\sum_{k>0} \frac{C l_{k}(x-[x]) t^{k}}{k!} .
$$

Proposition 2. For integers $a, b \geq 1$, we have

$$
\begin{aligned}
& \sum_{k_{1}, k_{2}, k_{3}>0} \zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right) t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}} \\
& =-\frac{1}{4 \pi i} \int_{0}^{1}\left(\gamma\left(a x ; 2 \pi i t_{1}\right) \beta\left(b x ; 2 \pi i t_{2}\right)+\beta\left(a x ; 2 \pi i t_{1}\right) \gamma\left(b x ; 2 \pi i t_{2}\right)\right) \\
& \quad \times \beta\left(x ;-2 \pi i t_{3}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{4 \pi^{2}} \int_{0}^{1}\left(\gamma\left(a x ; 2 \pi i t_{1}\right) \gamma\left(b x ; 2 \pi i t_{2}\right)-\pi^{2} \beta\left(a x ; 2 \pi i t_{1}\right) \beta\left(b x ; 2 \pi i t_{2}\right)\right) \\
& \times \beta\left(x ;-2 \pi i t_{3}\right) d x
\end{aligned}
$$

where the integrals on the right-hand side are defined formally by term-by-term integration.

Proof. When $k_{1}, k_{2}, k_{3} \geq 2$, it follows that

$$
\begin{aligned}
& \int_{0}^{1} L i_{k_{1}}\left(e^{2 \pi i a x}\right) L i_{k_{2}}\left(e^{2 \pi i b x}\right) \overline{L i_{k_{3}}\left(e^{2 \pi i x}\right)} d x \\
& \quad=\int_{0}^{1} \sum_{m, n, l>0} \frac{e^{2 \pi i m a x} e^{2 \pi i n b x} e^{-2 \pi i l x}}{m^{k_{1}} n^{k_{2}} l^{k_{3}}} d x \\
& \quad=\sum_{m, n, l>0} \frac{1}{m^{k_{1}} n^{k_{2}} l^{k_{3}}} \int_{0}^{1} e^{2 \pi i x(a m+b n-l)} d x=\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

where $\overline{L i_{k_{3}}\left(e^{2 \pi i x}\right)}$ stands for complex conjugate of $L i_{k_{3}}\left(e^{2 \pi i x}\right)$. For $k_{1}, k_{2}$, $k_{3} \geq 1$, the above equality is justified by replacing the integral $\int_{0}^{1}$ with

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sum_{j=1}^{\operatorname{lcm}(a, b)} \int_{\frac{j-1}{\operatorname{lcm}(a, b)}+\varepsilon}^{\frac{j}{\operatorname{ccm}(a, b)}-\varepsilon} \tag{5}
\end{equation*}
$$

where $\operatorname{lcm}(a, b)$ is the least common multiple of $a$ and $b$ (see [8, Theorem 4.4] for the details). Letting $L i(x ; t):=\sum_{k>0} L i_{k}\left(e^{2 \pi i x}\right) t^{k}$, we therefore obtain

$$
\begin{align*}
& \sum_{k_{1}, k_{2}, k_{3}>0} \zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right) t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}}  \tag{6}\\
& =\int_{0}^{1} L i\left(a x ; t_{1}\right) L i\left(b x ; t_{2}\right) \overline{L i\left(x ; t_{3}\right)} d x
\end{align*}
$$

Furthermore, the generating function of $L i_{k}\left(e^{2 \pi i x}\right)$ with $x \in \mathbb{R}-\mathbb{Z}$ can be written in the form

$$
\begin{equation*}
L i(x ; t)=-\frac{1}{2 \pi i}(\gamma(x ; 2 \pi i t)+\pi i \beta(x ; 2 \pi i t)) \tag{7}
\end{equation*}
$$

and hence, the right-hand side of (6) is equal to

$$
\begin{align*}
& \frac{1}{(2 \pi i)^{3}} \int_{0}^{1}\left(\gamma\left(a x ; 2 \pi i t_{1}\right)+\pi i \beta\left(a x ; 2 \pi i t_{1}\right)\right)  \tag{8}\\
& \quad \times\left(\gamma\left(b x ; 2 \pi i t_{2}\right)+\pi i \beta\left(b x ; 2 \pi i t_{2}\right)\right)\left(\gamma\left(x ;-2 \pi i t_{3}\right)-\pi i \beta\left(x ;-2 \pi i t_{3}\right)\right) d x
\end{align*}
$$

We note that, similarly to (6), one obtains the relation

$$
\int_{0}^{1} L i\left(a x ; t_{1}\right) L i\left(b x ; t_{2}\right) L i\left(x ;-t_{3}\right) d x=0
$$

and substituting (7) to the above identity, one has

$$
\begin{aligned}
\int_{0}^{1} & \left(\gamma\left(a x ; 2 \pi i t_{1}\right)+\pi i \beta\left(a x ; 2 \pi i t_{1}\right)\right)\left(\gamma\left(b x ; 2 \pi i t_{2}\right)+\pi i \beta\left(b x ; 2 \pi i t_{2}\right)\right) \\
& \times \gamma\left(x ;-2 \pi i t_{3}\right) d x \\
= & -\pi i \int_{0}^{1}\left(\gamma\left(a x ; 2 \pi i t_{1}\right)\right. \\
& \left.+\pi i \beta\left(a x ; 2 \pi i t_{1}\right)\right)\left(\gamma\left(b x ; 2 \pi i t_{2}\right)+\pi i \beta\left(b x ; 2 \pi i t_{2}\right)\right) \beta\left(x ;-2 \pi i t_{3}\right) d x .
\end{aligned}
$$

With this, (8) is reduced to

$$
\begin{aligned}
& -\frac{1}{(2 \pi i)^{2}} \int_{0}^{1}\left(\gamma\left(a x ; 2 \pi i t_{1}\right)+\pi i \beta\left(a x ; 2 \pi i t_{1}\right)\right)\left(\gamma\left(b x ; 2 \pi i t_{2}\right)+\pi i \beta\left(b x ; 2 \pi i t_{2}\right)\right) \\
& \quad \times \beta\left(x ;-2 \pi i t_{3}\right) d x
\end{aligned}
$$

which completes the proof.
The coefficient of $t^{k}$ in $\gamma(x ; 2 \pi i t)$ (resp. $\beta(x ; 2 \pi i t)$ ) is a real-valued function, if $k$ is even, and a real-valued function times $i=\sqrt{-1}$, if $k$ is odd. Thus, comparing the coefficient of both sides, we have the following corollary. For simplicity, for integers $a, b \geq 1$ we let

$$
\begin{equation*}
F_{a, b}\left(t_{1}, t_{2}, t_{3}\right):=\int_{0}^{1} \gamma\left(a x ; t_{1}\right) \beta\left(b x ; t_{2}\right) \beta\left(x ;-t_{3}\right) d x \tag{9}
\end{equation*}
$$

where the integral is defined formally by term-by-term integration and by (5).
Corollary 3. One has

$$
\begin{aligned}
& \sum_{\substack{k_{1}, k_{2}, k_{3}>0 \\
k_{1}+k_{2}+k_{3}: \text { odd }}} \zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right) t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}} \\
& =-\frac{1}{4 \pi i} F_{a, b}\left(2 \pi i t_{1}, 2 \pi i t_{2}, 2 \pi i t_{3}\right)-\frac{1}{4 \pi i} F_{b, a}\left(2 \pi i t_{2}, 2 \pi i t_{1}, 2 \pi i t_{3}\right) .
\end{aligned}
$$

Remark that, using the same method, one can give an integral expression of the generating function of the Riemann zeta values, which will be used later.

Proposition 4. For integers $a, b \geq 1$, we have

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{0}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta\left(b x ;-2 \pi i t_{2}\right) d x  \tag{10}\\
& \quad=\sum_{\substack{r, s>0 \\
r+s: \text { odd }}} \frac{\operatorname{gcd}(a, b)^{r+s}}{a^{s} b^{r}} \zeta(r+s) t_{1}^{r} t_{2}^{s}
\end{align*}
$$

Proof. Let $d=\operatorname{gcd}(a, b)$ and set $a=a^{\prime} d, b=b^{\prime} d$. It follows that

$$
\begin{array}{rl}
\int_{0}^{1} & L i_{r}\left(e^{2 \pi i a x}\right) \overline{L i_{s}\left(e^{2 \pi i b x}\right)} d x \\
\quad= & \sum_{m, n>0} \frac{1}{m^{r} n^{s}} \int_{0}^{1} e^{2 \pi i x(a m-b n)} d x \\
\quad=\sum_{\substack{m, n>0 \\
m=\frac{b^{\prime}}{a^{\prime}} n}} \frac{1}{m^{r} n^{s}}=\left(\frac{a^{\prime}}{b^{\prime}}\right)^{r} \sum_{\substack{n>0 \\
a^{\prime} \mid n}} \frac{1}{n^{r+s}} \\
= & \frac{1}{a^{\prime s} b^{\prime}} \zeta(r+s) .
\end{array}
$$

Hence, we have

$$
\int_{0}^{1} L i\left(a x ; t_{1}\right) \overline{L i\left(b x ; t_{2}\right)} d x=\sum_{r, s>0} \frac{\operatorname{gcd}(a, b)^{r+s}}{a^{s} b^{r}} \zeta(r+s) t_{1}^{r} t_{2}^{s}
$$

By the relation $\int_{0}^{1} \operatorname{Li}\left(a x ; t_{1}\right) L i\left(b x ;-t_{2}\right) d x=0(a, b \geq 1)$ and (7), the left-hand side of the above equation can be reduced to

$$
\frac{1}{2 \pi i} \int_{0}^{1}\left(\gamma\left(a x ; 2 \pi i t_{1}\right)+\pi i \beta\left(a x ; 2 \pi i t_{1}\right)\right) \beta\left(b x ;-2 \pi i t_{2}\right) d x
$$

Comparing the coefficients of $t_{1}^{r} t_{2}^{s}$, we complete the proof.

## 3. Evaluation of integrals

In this section, we compute the integral $F_{a, b}\left(t_{1}, t_{2}, t_{3}\right)$.
We denote the generating function of the Bernoulli polynomials by $\beta_{0}(x ; t)$ :

$$
\beta_{0}(x ; t):=\frac{t e^{x t}}{e^{t}-1}=\sum_{k \geq 0} B_{k}(x) \frac{t^{k}}{k!}
$$

For integers $b, c \geq 1$, we set

$$
\begin{aligned}
\alpha_{b}\left(t_{1}, t_{2}\right) & :=\beta_{0}\left(0 ; t_{1}\right) \beta_{0}\left(0 ;-t_{2}\right) \frac{e^{b t_{1}-t_{2}}-1}{b t_{1}-t_{2}} \\
\widetilde{\alpha}_{b, c}\left(t_{1}, t_{2}\right) & :=-t_{1} e^{-c t_{1}} \beta_{0}\left(0 ;-t_{2}\right) \frac{e^{b t_{1}-t_{2}}-1}{b t_{1}-t_{2}}
\end{aligned}
$$

which are elements in the formal power series ring $\mathbb{Q}\left[\left[t_{1}, t_{2}\right]\right]$.
Lemma 5. For any integers $b, d \geq 1$, we have

$$
e^{-d t_{1}} \alpha_{b}\left(t_{1}, t_{2}\right)=\alpha_{b}\left(t_{1}, t_{2}\right)+\sum_{c=1}^{d} \widetilde{\alpha}_{b, c}\left(t_{1}, t_{2}\right)
$$

Proof. By the relation $B_{k}(x)=B_{k}(x+1)-k x^{k-1}$ for $k \in \mathbb{Z}_{\geq 0}$ (see [1, Proposition $4.9(2)])$, we have $\beta_{0}(x ; t)=\beta_{0}(x+1 ; t)-t e^{x t}$. Using this formula with $x=-d,-d+1, \ldots, 1$ repeatedly, one gets

$$
\beta_{0}(-d ; t)=\beta_{0}(-d+1 ; t)-t e^{-d t}=\cdots=\beta_{0}(0 ; t)-t \sum_{c=1}^{d} e^{-c t}
$$

Hence, we obtain

$$
\begin{aligned}
e^{-d t_{1}} \alpha_{b}\left(t_{1}, t_{2}\right) & =\beta_{0}\left(-d ; t_{1}\right) \beta_{0}\left(0 ;-t_{2}\right) \frac{e^{b t_{1}-t_{2}}-1}{b t_{1}-t_{2}} \\
& =\alpha_{b}\left(t_{1}, t_{2}\right)-t_{1} \sum_{c=1}^{d} e^{-c t_{1}} \beta_{0}\left(0 ;-t_{2}\right) \frac{e^{b t_{1}-t_{2}}-1}{b t_{1}-t_{2}} \\
& =\alpha_{b}\left(t_{1}, t_{2}\right)+\sum_{c=1}^{d} \widetilde{\alpha}_{b, c}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

which completes the proof.
REMARK 1. Let us denote by $A_{b}(r, s)$ (resp. $\left.\widetilde{A}_{b, c}(r, s)\right)$ the coefficient of $t_{1}^{r} t_{2}^{s}$ in $\alpha_{b}\left(t_{1}, t_{2}\right)$ (resp. in $\left.\widetilde{\alpha}_{b, c}\left(t_{1}, t_{2}\right)\right)$. Then, we have

$$
A_{b}(r, s)=\sum_{\substack{p_{1}+q_{1}=r \\ p_{2}+q_{2}=s \\ p_{1}, p_{2}, q_{1}, q_{2} \geq 0}} \frac{(-1)^{q_{2}+p_{2}} b^{p_{1}} B_{q_{1}} B_{q_{2}}}{p_{1}!p_{2}!q_{1}!q_{2}!\left(p_{1}+p_{2}+1\right)}
$$

and

$$
\widetilde{A}_{b, c}(r, s)=\sum_{\substack{p_{1}+q_{1}=r \\ p_{2}+q_{2}=s \\ p_{1}, p_{2} q_{2} \geq 0 \\ q_{1} \geq 1}} \frac{(-1)^{q_{1}+q_{2}+p_{2}} c^{q_{1}-1} b^{p_{1}} B_{q_{2}}}{p_{1}!\left(q_{1}-1\right)!p_{2}!q_{2}!\left(p_{1}+p_{2}+1\right)}
$$

where $B_{k}=B_{k}(1)=(-1)^{k} B_{k}(0)$ is the $k$ th Bernoulli number. We note that since $\widetilde{\alpha}_{b, c}\left(t_{1}, t_{2}\right) \in t_{1} \mathbb{Q}\left[\left[t_{1}, t_{2}\right]\right]$, we have $\widetilde{A}_{b, c}(0, s)=0$ for any $s \in \mathbb{Z}_{\geq 0}$.

Lemma 6. Let $b$, $d$ be positive integers with $d \in\{0,1, \ldots, b-1\}$. Then, for $x \in\left(\frac{d}{b}, \frac{d+1}{b}\right)$, we have

$$
\beta\left(b x ; t_{1}\right) \beta\left(x ;-t_{2}\right)=e^{-d t_{1}} \alpha_{b}\left(t_{1}, t_{2}\right) \beta_{0}\left(x ; b t_{1}-t_{2}\right)-\beta\left(b x ; t_{1}\right)-\beta\left(x ;-t_{2}\right)-1,
$$

where we recall $\beta(x ; t)=\sum_{k>0} \frac{B_{k}(x-[x])}{k!} t^{k}$.
Proof. Since $b x-[b x]=b x-d$ when $x \in\left(\frac{d}{b}, \frac{d+1}{b}\right)$, one has

$$
\begin{aligned}
& \left(\beta\left(b x ; t_{1}\right)+1\right)\left(\beta\left(x ;-t_{2}\right)+1\right) \\
& \quad=\frac{t_{1} e^{(b x-d) t_{1}}}{e^{t_{1}}-1} \frac{-t_{2} e^{-x t_{2}}}{e^{-t_{2}}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-d t_{1}} \frac{t_{1}}{e^{t_{1}}-1} \frac{-t_{2}}{e^{-t_{2}}-1} e^{\left(b t_{1}-t_{2}\right) x} \\
& =e^{-d t_{1}} \beta_{0}\left(0 ; t_{1}\right) \beta_{0}\left(0 ;-t_{2}\right) \frac{e^{b t_{1}-t_{2}}-1}{b t_{1}-t_{2}} \frac{\left(b t_{1}-t_{2}\right) e^{\left(b t_{1}-t_{2}\right) x}}{e^{b t_{1}-t_{2}}-1} \\
& =e^{-d t_{1}} \alpha_{b}\left(t_{1}, t_{2}\right) \beta_{0}\left(x ; b t_{1}-t_{2}\right),
\end{aligned}
$$

from which the statement follows.
Proposition 7. For any integers $a, b \geq 1$, we have

$$
\begin{align*}
F_{a, b}\left(t_{1}, t_{2}, t_{3}\right)= & \alpha_{b}\left(t_{2}, t_{3}\right) \int_{0}^{1} \gamma\left(a x ; t_{1}\right) \beta_{0}\left(x ; b t_{2}-t_{3}\right) d x  \tag{11}\\
& +\sum_{c=1}^{b-1} \widetilde{\alpha}_{b, c}\left(t_{2}, t_{3}\right) \int_{\frac{c}{b}}^{1} \gamma\left(a x ; t_{1}\right) \beta_{0}\left(x ; b t_{2}-t_{3}\right) d x \\
& -\int_{0}^{1} \gamma\left(a x ; t_{1}\right)\left(\beta\left(b x ; t_{2}\right)+\beta\left(x ;-t_{3}\right)\right) d x .
\end{align*}
$$

Proof. Splitting the integral $\int_{0}^{1}=\sum_{d=0}^{b-1} \int_{\frac{d}{b}}^{\frac{d+1}{b}}$ in the definition of $F_{a, b}$ (see (9)) and then using Lemma 6, we have

$$
\begin{aligned}
& F_{a, b}\left(t_{1}, t_{2}, t_{3}\right) \\
&= \sum_{d=0}^{b-1} \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma\left(a x ; t_{1}\right) \beta\left(b x ; t_{2}\right) \beta\left(x ;-t_{3}\right) d x \\
&= \sum_{d=0}^{b-1} e^{-d t_{2}} \alpha_{b}\left(t_{2}, t_{3}\right) \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma\left(a x ; t_{1}\right) \beta_{0}\left(x ; b t_{2}-t_{3}\right) d x \\
&-\sum_{d=0}^{b-1} \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma\left(a x ; t_{1}\right)\left(\beta\left(b x ; t_{2}\right)+\beta\left(x ;-t_{3}\right)+1\right) d x \\
&= \sum_{d=0}^{b-1}\left(\alpha_{b}\left(t_{2}, t_{3}\right)+\sum_{c=1}^{d} \widetilde{\alpha}_{b, c}\left(t_{2}, t_{3}\right)\right) \int_{\frac{d}{b}}^{\frac{d+1}{b}} \gamma\left(a x ; t_{1}\right) \beta_{0}\left(x ; b t_{2}-t_{3}\right) d x \\
&-\int_{0}^{1} \gamma\left(a x ; t_{1}\right)\left(\beta\left(b x ; t_{2}\right)+\beta\left(x ;-t_{3}\right)+1\right) d x
\end{aligned}
$$

where for the last equality we have used Lemma 5 . Since $\int_{0}^{1} L i(a x ; t) d x=0$ holds, we have

$$
\begin{equation*}
\int_{0}^{1} \gamma\left(a x ; t_{1}\right) d x=0 \tag{12}
\end{equation*}
$$

Hence, the statement follows from and the interchange of order of summation $\sum_{d=1}^{b-1} \sum_{c=1}^{d}=\sum_{c=1}^{b-1} \sum_{d=c}^{b-1}$.

We now deal with the integral of the second term of the right-hand side of (11).

Proposition 8. For any integers $a, b \geq 1$ and $c \in\{0,1, \ldots, b-1\}$, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\frac{c}{b}}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ; 2 \pi i\left(b t_{2}-t_{3}\right)\right) d x \\
& \quad=-i \sum_{\substack{s \geq 1 \\
p, q \geq 0 \\
p+s: \mathrm{odd}}} \frac{(-1)^{s}(2 \pi i)^{q-1}}{q!a^{s}} S_{p+s+1}\left(\frac{a c}{b}\right) B_{q}\left(\frac{c}{b}\right) t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1} \\
& \quad+\sum_{\substack{s \geq 1 \\
p, q \geq 0 \\
p+s: \text { even }}} \frac{(-1)^{s}(2 \pi i)^{q-1}}{q!a^{s}}\left(\zeta(p+s+1) B_{q}-C_{p+s+1}\left(\frac{a c}{b}\right) B_{q}\left(\frac{c}{b}\right)\right) \\
& \quad \times t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1},
\end{aligned}
$$

where $S_{n}(x)$ and $C_{n}(x)$ are defined in (1).
Proof. For an integer $s \geq 1$, we let

$$
\gamma_{s}(x ; t)=\sum_{k \geq s} \frac{C l_{k}(x-[x])}{k!} t^{k}
$$

It is easily seen that for any integer $s \geq 2$ we have

$$
\frac{d}{d x} \gamma_{s}(a x ; t)=a t \gamma_{s-1}(a x ; t) \quad \text { and } \quad \frac{d}{d x} \beta_{0}(x ; t)=t \beta_{0}(x ; t) .
$$

By repeated use of the integration by parts and noting that $\gamma_{1}(x ; t)=\gamma(x ; t)$, we have

$$
\begin{aligned}
& \int_{\frac{c}{b}}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ; 2 \pi i\left(b t_{2}-t_{3}\right)\right) d x \\
&= \sum_{s_{s \geq 2}} \frac{\left(-2 \pi i\left(b t_{2}-t_{3}\right)\right)^{s-2}}{\left(2 \pi i a t_{1}\right)^{s-1}}\left[\gamma_{s}\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ; 2 \pi i\left(b t_{2}-t_{3}\right)\right)\right]_{\frac{c}{b}}^{1} \\
&= \sum_{\substack{s \geq 2 \\
p \geq s \\
q \geq 0}} \frac{(-1)^{s}(2 \pi i)^{p+q-1}}{p!q!a^{s-1}} \\
& \quad \times\left[C l_{p}(a x-[a x]) B_{q}(x)\right]_{\frac{c}{b}}^{1} t_{1}^{p-s+1}\left(b t_{2}-t_{3}\right)^{q+s-2} \\
&= \sum_{\substack{s \geq 1 \\
p, q \geq 0}} \frac{(-1)^{s+1}(2 \pi i)^{p+q+s}}{(p+s+1)!q!a^{s}} \\
& \quad \times\left[C l_{p+s+1}(a x-[a x]) B_{q}(x)\right]_{\frac{c}{b}}^{1} t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1}
\end{aligned}
$$

By definition, for any $x \in \mathbb{Q}$ and $k \geq 2$ we have

$$
C l_{k}(x-[x])= \begin{cases}-\frac{k!}{(2 \pi i)^{k-1}} C_{k}(x), & k: \text { odd } \\ -i \frac{k!}{(2 \pi i)^{k-1}} S_{k}(x), & k: \text { even }\end{cases}
$$

and hence, the above last line is computed as follows:

$$
\begin{aligned}
& i \sum_{\substack{s \geq 1 \\
p, q \geq 0 \\
p+s: \text { odd }}} \frac{(-1)^{s}(2 \pi i)^{q}}{q!a^{s}}\left(S_{p+s+1}(a) B_{q}(1)-S_{p+s+1}\left(\frac{a c}{b}\right) B_{q}\left(\frac{c}{b}\right)\right) \\
& \quad \times t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1} \\
& \quad+\sum_{\substack{s \geq 1 \\
p, q \geq 0 \\
p+s=\text { even }}} \frac{(-1)^{s}(2 \pi i)^{q}}{q!a^{s}}\left(C_{p+s+1}(a) B_{q}(1)-C_{p+s+1}\left(\frac{a c}{b}\right) B_{q}\left(\frac{c}{b}\right)\right) \\
& \quad \times t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1}
\end{aligned}
$$

which completes the proof.

## 4. Proof of Theorem 1

We can now complete the proof of Theorem 1 as follows.
Proof of Theorem 1. We compute the real part of the coefficient of $t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}}$ in the generating function $\frac{1}{2 \pi i} F_{a, b}\left(2 \pi i t_{1}, 2 \pi i t_{2}, 2 \pi i t_{3}\right)$ for positive integers $k$, $k_{1}, k_{2}, k_{3}$ with $k=k_{1}+k_{2}+k_{3}$ odd. By (11) with $t_{j} \rightarrow 2 \pi i t_{j}$, we have

$$
\begin{align*}
& \frac{1}{2 \pi i} F_{a, b}\left(2 \pi i t_{1}, 2 \pi i t_{2}, 2 \pi i t_{3}\right) \\
& =\alpha_{b}\left(2 \pi i t_{2}, 2 \pi i t_{3}\right)  \tag{13}\\
& \quad \times \frac{1}{2 \pi i} \int_{0}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ;-2 \pi i\left(t_{3}-b t_{2}\right)\right) d x
\end{align*}
$$

$$
\begin{align*}
& +\sum_{c=1}^{b-1} \widetilde{\alpha}_{b, c}\left(2 \pi i t_{2}, 2 \pi i t_{3}\right)  \tag{14}\\
& \times \frac{1}{2 \pi i} \int_{\frac{c}{b}}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ; 2 \pi i\left(b t_{2}-t_{3}\right)\right) d x \\
& -\frac{1}{2 \pi i} \int_{0}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right)\left(\beta\left(b x ;-2 \pi i\left(-t_{2}\right)\right)+\beta\left(x ;-2 \pi i t_{3}\right)\right) d x . \tag{15}
\end{align*}
$$

By (10), the coefficient of $t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}}$ in the last term (15) is a rational multiple
of $\zeta(k)$. For the first term (13), using (10) and (12), we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{0}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ;-2 \pi i\left(t_{3}-b t_{2}\right)\right) d x \\
& \quad \in \sum_{\substack{k_{1}, k_{2}, k_{3}>0 \\
k_{1}+k_{2}+k_{3} \text { :odd }}} \mathbb{Q} \zeta\left(k_{1}+k_{2}+k_{3}\right) t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}},
\end{aligned}
$$

where $\sum a_{r} t^{r} \in \sum V_{r} t^{r}$ means $a_{r} \in V_{r}$ for all $r$. We also have

$$
\alpha_{b}\left(2 \pi i t_{1}, 2 \pi i t_{2}\right) \in \sum_{r, s \geq 0} \mathbb{Q}(2 \pi i)^{r+s} t_{1}^{r} t_{2}^{s}
$$

Hence the real part of the coefficient of $t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}}$ in (13) can be expressed as $\mathbb{Q}$-linear combinations of $\pi^{2 n} \zeta(k-2 n)$ with $0 \leq n \leq \frac{k-3}{2}$. For the second term (14), using Proposition 8 (see also Remark 1), we have

$$
\begin{align*}
& \widetilde{\alpha}_{b, c}\left(2 \pi i t_{2}, 2 \pi i t_{3}\right)  \tag{16}\\
& \times \frac{1}{2 \pi i} \int_{\frac{c}{b}}^{1} \gamma\left(a x ; 2 \pi i t_{1}\right) \beta_{0}\left(x ; 2 \pi i\left(b t_{2}-t_{3}\right)\right) d x \\
&=-i \sum_{\substack{n_{2} \geq 1 \\
n_{3} \geq 0}} \sum_{\substack{s \geq 1 \\
p+q \geq 0 \\
p+s: \text { odd }}} \frac{(-1)^{s} \widetilde{A}_{b, c}\left(n_{2}, n_{3}\right)}{q!a^{s}} \\
& \times(2 \pi i)^{n_{2}+n_{3}+q-1} S_{p+s+1}\left(\frac{a c}{b}\right) B_{q}\left(\frac{c}{b}\right) \\
& \times t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1} t_{2}^{n_{2}} t_{3}^{n_{3}} \\
&+\sum_{\substack{n_{2} \geq 1 \\
n_{3} \geq 0}} \sum_{\substack{p \geq 1 \\
p+s, s \geq 0}} \frac{(-1)^{s} \widetilde{A}_{b, c}\left(n_{2}, n_{3}\right)}{q!a^{s}}(2 \pi i)^{n_{2}+n_{3}+q-1} \\
& \times\left(\zeta(p+s+1) B_{q}\right. \\
&\left.-C_{p+s+1}\left(\frac{a c}{b}\right) B_{q}\left(\frac{c}{b}\right)\right) t_{1}^{p+1}\left(b t_{2}-t_{3}\right)^{q+s-1} t_{2}^{n_{2}} t_{3}^{n_{3}},
\end{align*}
$$

where we note that in the above both summations, $p+s+1$ runs over integers greater than 1 . Since for any $x \in \mathbb{Q}$ and $k \geq 0$ we have $B_{k}(x) \in \mathbb{Q}$, the real part of the coefficient of $t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}}$ in the first term (resp. the second term) of the right-hand side of (16) is a $\mathbb{Q}$-linear combination of $\pi^{2 n+1} S_{k-2 n-1}\left(\frac{a c}{b}\right)$ with $0 \leq n \leq \frac{k-3}{2}$ (resp. $\pi^{2 n} C_{k-2 n}\left(\frac{a c}{b}\right)$ and $\pi^{2 n} \zeta(k-2 n)$ with $0 \leq n \leq \frac{k-3}{2}$ ). We therefore find that the real part of the coefficient of $t_{1}^{k_{1}} t_{2}^{k_{2}} t_{3}^{k_{3}}$ in the generating function $\frac{1}{2 \pi i} F_{a, b}\left(2 \pi i t_{1}, 2 \pi i t_{2}, 2 \pi i t_{3}\right)$ can be expressed as $\mathbb{Q}$-linear combinations
of $\pi^{2 n+1} S_{k-2 n-1}\left(\frac{a c}{b}\right)$ and $\pi^{2 n} C_{k-2 n}\left(\frac{a c}{b}\right)$ with $0 \leq n \leq \frac{k-3}{2}$ and $c \in \mathbb{Z} / b \mathbb{Z}$. Thus by Corollary 3 , we complete the proof.

REMARK 2. As mentioned in the introduction, the value $\zeta_{a, b}\left(k_{1}, k_{2}, k_{3}\right)$ is expressible as $\mathbb{Q}$-linear combinations of double polylogarithms $L i_{r, s}\left(z_{1}, z_{2}\right)$ defined in (3), where the expression is obtained from the partial fractional decomposition

$$
\frac{1}{x^{r} y^{s}}=\sum_{\substack{p+q=r+s \\ p, q \geq 1}} \frac{1}{(x+y)^{p}}\left(\binom{p-1}{s-1} \frac{1}{x^{q}}+\binom{p-1}{r-1} \frac{1}{y^{q}}\right) \quad\left(r, s \in \mathbb{Z}_{\geq 1}\right)
$$

and the orthogonality relation

$$
\frac{1}{N} \sum_{n \in \mathbb{Z} / N \mathbb{Z}} \mu_{N}^{d n}= \begin{cases}1, & N \mid d \\ 0, & N \nmid d,\end{cases}
$$

where $\mu_{N}=e^{2 \pi i / N}$ and $d \in \mathbb{Z}$. For example, one can check

$$
\begin{equation*}
\zeta_{1,3}(1,1,3)=\sum_{u \in \mathbb{Z} / 3 \mathbb{Z}} L i_{1,4}\left(\mu_{3}^{-u}, \mu_{3}^{u}\right)+\sum_{u \in \mathbb{Z} / 3 \mathbb{Z}} L i_{1,4}\left(\mu_{3}^{u}, 1\right) . \tag{17}
\end{equation*}
$$

From this, Theorem 1 might be proved by the parity theorem for double polylogarithms examined in [10, Eq. (3.2)]. Although we do not proceed with this in general, let us illustrate an example. As a special case of [10, Eq. (3.2)], one obtains

$$
\begin{aligned}
& L i_{1,4}\left(z_{1}, z_{2}\right)+L i_{1,4}\left(z_{1}^{-1}, z_{2}^{-1}\right) \\
& \quad=\sum_{n=1}^{5}(-1)^{n+1} L i_{n}\left(z_{1}\right) \mathcal{B}_{5-n}\left(z_{1} z_{2}\right)-L i_{1}\left(z_{1}\right) \mathcal{B}_{4}\left(z_{2}\right) \\
& \quad+\sum_{n=4}^{5}\binom{n-1}{3} L i_{n}\left(z_{2}^{-1}\right) \mathcal{B}_{5-n}\left(z_{1} z_{2}\right)-L i_{5}\left(z_{1} z_{2}\right),
\end{aligned}
$$

where for each integer $k \geq 0$ we set $\mathcal{B}_{k}(z)=\frac{(2 \pi i)^{k}}{k!} B_{k}\left(\frac{1}{2}+\frac{\log (-z)}{2 \pi i}\right)$. We note that $L i_{k}\left(\mu_{3}^{u}\right)=C_{k}\left(\frac{u}{3}\right)+i S_{k}\left(\frac{u}{3}\right)$ and $\mathcal{B}_{k}\left(\mu_{3}\right)=\frac{(2 \pi i)^{k}}{k!} B_{k}\left(\frac{1}{3}\right)$ since $\log \left(-\mu_{3}\right)=$ $-\frac{\pi i}{3}$. With this, the above formula gives

$$
\begin{aligned}
& \operatorname{Re}\left(L i_{1,4}\left(\mu_{3}^{-1}, \mu_{3}\right)+L i_{1,4}\left(\mu_{3}^{-2}, \mu_{3}^{2}\right)\right) \\
& \quad=\frac{1}{243}\left(-843 \zeta(5)+36 \pi^{2} \zeta(3)+4 \pi^{4} \log 3\right) \\
& \operatorname{Re}\left(L i_{1,4}\left(\mu_{3}, 1\right)+L i_{1,4}\left(\mu_{3}^{2}, 1\right)\right) \\
& \quad=\frac{1}{243}\left(972 \zeta(5)-12 \pi^{2} \zeta(3)-4 \pi^{4} \log 3-81 \pi S_{4}\left(\frac{1}{3}\right)-12 \pi^{3} S_{2}\left(\frac{1}{3}\right)\right), \\
& 2 L i_{1,4}(1,1)=4 \zeta(5)-\frac{1}{3} \pi^{2} \zeta(3)
\end{aligned}
$$

where we have used $C_{k}\left(\frac{1}{3}\right)=C_{k}\left(\frac{2}{3}\right)=\frac{1-3^{k-1}}{2 \cdot 3^{k-1}} \zeta(k)$ for $k \geq 2$ and $C_{1}\left(\frac{1}{3}\right)=$ $C_{1}\left(\frac{2}{3}\right)=-\frac{1}{2} \log 3$. Substituting the above formulas to (17), one gets (2). We have checked Theorem 1 for $(a, b)=(1,3)$ and $(2,3)$ in this direction.

## 5. The zeta function of the root system $G_{2}$

In this section, we give an affirmative answer to the question posed by Komori, Matsumoto and Tsumura [5, Eq. (7.1)].

The zeta-function associated with the exceptional Lie algebra $G_{2}$ is defined for complex variables $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{6}\right) \in \mathbb{C}^{6}$ by

$$
\zeta\left(\mathbf{s} ; G_{2}\right):=\sum_{m, n>0} \frac{1}{m^{s_{1}} n^{s_{2}}(m+n)^{s_{3}}(m+2 n)^{s_{4}}(m+3 n)^{s_{5}}(2 m+3 n)^{s_{6}}} .
$$

The function $\zeta\left(\mathbf{s} ; G_{2}\right)$ was first introduced by Komori, Matsumoto and Tsumura (see [4], [5]), where they developed its analytic properties and functional relations. They also examined explicit evaluations of the special values of $\zeta\left(\mathbf{k} ; G_{2}\right)$ at $\mathbf{k} \in \mathbb{Z}_{>0}^{6}$ (see [18] for $\mathbf{k} \in \mathbb{Z}_{>0}^{6}$ ), where we note that the series $\zeta\left(\mathbf{k} ; G_{2}\right)$ converges absolutely for $\mathbf{k} \in \mathbb{Z}_{>0}^{6}$. For example, they showed

$$
\zeta\left(2,1,1,1,1,1 ; G_{2}\right)=-\frac{109}{1296} \zeta(7)+\frac{1}{18} \zeta(2) \zeta(5) .
$$

Komori, Matsumoto and Tsumura [5, Eq. (7.1)] suggested a conjecture that the value $\zeta\left(k_{1}, \ldots, k_{6} ; G_{2}\right)$ with $k_{1}+\cdots+k_{6}$ odd lies in the polynomial ring over $\mathbb{Q}$ generated by $\zeta(k)\left(k \in \mathbb{Z}_{\geq 2}\right)$ and $L\left(k, \chi_{3}\right)\left(k \in \mathbb{Z}_{\geq 1}\right)$, where $L\left(s, \chi_{3}\right)$ is the Dirichlet $L$-function associated with the character $\chi_{3}$ defined by

$$
L\left(s, \chi_{3}\right)=\sum_{m>0} \frac{\chi_{3}(m)}{m^{s}}
$$

and the character $\chi_{3}$ is determined by $\chi_{3}(n)=1$ if $n \equiv 1 \bmod 3, \chi_{3}(n)=-1$ if $n \equiv 2 \bmod 3$ and $\chi_{3}(n)=0$ if $n \equiv 0 \bmod 3$. We remark that the second author [8] showed that the value $\zeta\left(k_{1}, \ldots, k_{6} ; G_{2}\right)$ with $k_{1}+\cdots+k_{6}$ odd can be written in terms of $\zeta(s), L\left(s, \chi_{3}\right), S_{r}\left(\frac{d}{N}\right), C_{r}\left(\frac{d}{N}\right)$ for $N=4,12$ and $0<d<$ $N,(d, N)=1$ (see also [5, §7]). The following theorem gives an affirmative answer to the question.

THEOREM 9. For any integers $k, k_{1}, \ldots, k_{6} \geq 1$ with $k=k_{1}+\cdots+k_{6}$ odd, the value $\zeta\left(k_{1}, \ldots, k_{6} ; G_{2}\right)$ can be expressed as $\mathbb{Q}$-linear combinations of $\zeta(2 n) \zeta(k-2 n)\left(0 \leq n \leq \frac{k-3}{2}\right)$ and $L\left(2 n+1, \chi_{3}\right) L\left(k-2 n-1, \chi_{3}\right) \quad(0 \leq n \leq$ $\left.\frac{k-3}{2}\right)$, where $\zeta(0)=-\frac{1}{2}$.

Proof. In [8, Theorem 2.3], the second author proved that for any integers $l_{1}, \ldots, l_{6} \geq 1$, the value $\zeta\left(l_{1}, \ldots, l_{6} ; G_{2}\right)$ can be expressed as $\mathbb{Q}$-linear combinations of $\zeta_{a, b}\left(n_{1}, n_{2}, n_{3}\right)$ with $(a, b)=(1,1),(1,2),(1,3),(2,3), n_{1}+n_{2}+n_{3}=$
$l_{1}+\cdots+l_{6}$ and $n_{1}, n_{2}, n_{3} \in \mathbb{Z}_{>0}$. As a consequence, it follows from Theorem 1 that the value $\zeta\left(k_{1}, \ldots, k_{6} ; G_{2}\right)$ can be written as $\mathbb{Q}$-linear combinations of $\pi^{2 n} C_{k-2 n}\left(\frac{d}{6}\right)$ and $\pi^{2 n+1} S_{k-2 n-1}\left(\frac{d}{6}\right)$ with $0 \leq n \leq \frac{k-3}{2}$ and $d \in \mathbb{Z} / 6 \mathbb{Z}$. Now consider the values $C_{k}\left(\frac{d}{6}\right)$ and $S_{k}\left(\frac{d}{6}\right)$. They are expressible as $\mathbb{Q}$-linear combinations of

$$
\zeta_{l}^{(d)}(k)=\sum_{\substack{m>0 \\ m \equiv d \\ \bmod l}} \frac{1}{m^{k}} \quad(d \in \mathbb{Z} / l \mathbb{Z}) .
$$

For $k \geq 2$, using the identities $\zeta(k)=\sum_{d \in \mathbb{Z} / l \mathbb{Z}} \zeta_{l}^{(d)}(k)$ and $\zeta_{l}^{(0)}(k) \in \mathbb{Q} \zeta(k)$, we have $C_{k}\left(\frac{1}{2}\right)=\zeta_{2}^{(0)}(k)-\zeta_{2}^{(1)}(k) \in \mathbb{Q} \zeta(k)$ and $C_{k}\left(\frac{1}{3}\right)=C_{k}\left(\frac{2}{3}\right)=\zeta_{3}^{(0)}(k)-$ $\frac{1}{2}\left(\zeta_{3}^{(1)}(k)+\zeta_{3}^{(2)}(k)\right) \in \mathbb{Q} \zeta(k)$. Furthermore, using the identity $\zeta_{a l}^{(a d)}(k)=$ $a^{-k} \zeta_{l}^{(d)}(k)$, we have

$$
\begin{aligned}
C_{k}\left(\frac{1}{6}\right) & =C_{k}\left(\frac{5}{6}\right) \\
& =\zeta_{6}^{(0)}(k)-\zeta_{6}^{(3)}(k)+\frac{1}{2}\left(\zeta_{6}^{(1)}(k)+\zeta_{6}^{(5)}(k)\right)-\frac{1}{2}\left(\zeta_{6}^{(2)}(k)+\zeta_{6}^{(4)}(k)\right) \\
& \in \mathbb{Q} \zeta(k)
\end{aligned}
$$

Thus, $C_{k}\left(\frac{d}{6}\right) \in \mathbb{Q} \zeta(k)$ holds for any $d \in \mathbb{Z} / 6 \mathbb{Z}$ and $k \geq 2$. Likewise, it is easily seen that $S_{k}\left(\frac{d}{6}\right) \in \mathbb{Q} \sqrt{3} L\left(k, \chi_{3}\right)$ holds. Then the result follows from the wellknown formula: $\zeta(2 n) \in \mathbb{Q} \pi^{2 n}, L\left(2 n+1, \chi_{3}\right) \in \mathbb{Q} \sqrt{3} \pi^{2 n+1}$ for any $n \in \mathbb{Z}_{\geq 0}$ (see [1, Theorem 9.6]).

Let us illustrate an example of the formula for $\zeta\left(k_{1}, \ldots, k_{6} ; G_{2}\right)$. Applying the partial fractional decomposition repeatedly to the form $(m+n)^{-k_{3}}(m+$ $2 n)^{-k_{4}}(m+3 n)^{-k_{5}}(2 m+3 n)^{-k_{6}}$, we get

$$
\begin{aligned}
& \zeta\left(1,1,1,1,1,2 ; G_{2}\right) \\
& \quad=\frac{1}{2} \zeta_{1,1}(5,1,1)-16 \zeta_{1,2}(5,1,1)+\frac{9}{2} \zeta_{1,3}(5,1,1)+9 \zeta_{2,3}(4,1,2)+18 \zeta_{2,3}(5,1,1) .
\end{aligned}
$$

Then, by Theorem 1 (actually we use Corollary 3 together with Propositions 4,7 and 8 ), we have

$$
\begin{aligned}
\zeta\left(1,1,1,1,1,2 ; G_{2}\right) & =\frac{2507}{1296} \zeta(7)-\frac{505}{648} \pi^{2} \zeta(5)+\frac{9}{4} \pi S_{6}\left(\frac{1}{3}\right) \\
& =\frac{2507}{1296} \zeta(7)-\frac{505}{108} \zeta(2) \zeta(5)+\frac{3}{8} L\left(1, \chi_{3}\right) L\left(6, \chi_{3}\right)
\end{aligned}
$$

where $L\left(1, \chi_{3}\right)=\frac{\pi}{3 \sqrt{3}}$.
Acknowledgments. The authors are grateful to Professors Kohji Matsumoto, Takashi Nakamura and Hirofumi Tsumura for initial advice and many useful comments.

## References

[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli numbers and zeta functions, Springer Monographs in Mathematics, Springer, Tokyo, 2014. MR 3307736
[2] J. G. Huard, K. S. Williams and N. Y. Zhang, On Tornheim's double series, Acta Arith. 75 (1996), no. 2, 105-117.
[3] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006), no. 2, 307-338.
[4] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semi-simple Lie algebras IV, Glasg. Math. J. 53 (2011), no. 1, 185-206. MR 2747143
[5] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-function associated with semi-simple Lie algebras V, Glasg. Math. J. 57 (2015), no. 1, 107-130. MR 3292681
[6] T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125 (2006), no. 3, 257-263.
[7] T. Nakamura, A simple proof of the functional relation for the Lerch type Tornheim double zeta function, Tokyo J. Math. 35 (2012), no. 2, 333-337.
[8] T. Okamoto, Multiple zeta values related with the zeta-function of the root system of type $A_{2}, B_{2}$ and $G_{2}$, Comment. Math. Univ. St. Pauli 61 (2012), no. 1, 9-27.
[9] T. Okamoto, On alternating analogues of the Mordell-Tornheim triple zeta values, J. Ramanujan Math. Soc. 28 (2013), no. 2, 247-269.
[10] E. Panzer, The parity theorem for multiple polylogarithms, J. Number Theory 172 (2017), 93-113. MR 3573145
[11] M. V. Subbarao and R. Sitaramachandra, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), no. 1, 245-255.
[12] L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314. MR 0034860
[13] H. Tsumura, On alternating analogues of Tornheim's double series, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3633-3641.
[14] H. Tsumura, Evaluation formulas for Tornheim's type of alternating double series, Math. Comp. 73 (2004), no. 245, 251-258.
[15] H. Tsumura, Combinatorial relations for Euler-Zagier sums, Acta Arith. 111 (2004), no. 1, 27-42.
[16] H. Tsumura, On Mordell-Tornheim zeta values, Proc. Amer. Math. Soc. 133 (2005), 2387-2393.
[17] H. Tsumura, On alternating analogues of Tornheim's double series. II, Ramanujan J. 18 (2009), no. 1, 81-90.
[18] J. Zhao, Multi-polylogs at twelfth roots of unity and special values of Witten multiple zeta function attached to the exceptional Lie algebra $\mathfrak{g}_{2}$, J. Algebra Appl. 9 (2010), no. 2, 327-337.
[19] X. Zhou, T. Cai and D. M. Bradley, Signed q-analogs of Tornheim's double series, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2689-2698.

Shin-ya Kadota, Graduate School of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya-shi, Aichi 464-8602, Japan

E-mail address: m13018c@math.nagoya-u.ac.jp
Takuya Okamoto, Department of Mathematics, College of Liberal Arts and Sciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

E-mail address: takuyaok@kitasato-u.ac.jp

Koji Tasaka, Department of Information Science and Technology, Aichi Prefectural University, 1522-3 Ibaragabasama, Nagakute, Aichi Prefecture 480-1198, Japan

E-mail address: tasaka@ist.aichi-pu.ac.jp


[^0]:    Received March 29, 2017; received in final form September 3, 2017.
    This work was partially supported by JSPS KAKENHI Grant Numbers 15 K 17517 and 16H07115.

    2010 Mathematics Subject Classification. Primary 11M32. Secondary 40B05.

