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STRUCTURE OF POROUS SETS IN CARNOT GROUPS

ANDREA PINAMONTI AND GARETH SPEIGHT

Abstract. We show that any Carnot group contains a closed
nowhere dense set which has measure zero but is not σ-porous

with respect to the Carnot–Carathéodory (CC) distance. In the

first Heisenberg group, we observe that there exist sets which are

porous with respect to the CC distance but not the Euclidean

distance and vice-versa. In Carnot groups, we then construct a

Lipschitz function which is Pansu differentiable at no point of a

given σ-porous set and show preimages of open sets under the
horizontal gradient are far from being porous.

1. Introduction

A Carnot group (Definition 2.1) is a simply connected Lie group whose Lie
algebra admits a stratification. Carnot groups have translations, dilations,
Haar measure and points are connected by horizontal curves (Definition 2.2),
which are used to define the Carnot–Carathéodory (CC) distance (Defini-
tion 2.3). With so much structure, the study of analysis and geometry in
Carnot groups is an active and interesting research area [1], [3], [13], [19], [28],
[30].

Many interesting geometric and analytic problems have been studied in the
context of Carnot groups. For example, a geometric notion of intrinsic Lips-
chitz function between subgroups of a general Carnot group was introduced
in [12] to study rectifiable sets [11], [18] and minimal surfaces [4], [5], [29].
Moreover, Carnot groups have been applied to study degenerate equations,
control theory and potential theory [1]. These problems are highly non-trivial
due to the complexity of the geometry of Carnot groups. For instance, any
Carnot group (except for Euclidean spaces themselves) contains no subset of
positive measure that is bi-Lipschitz equivalent to a subset of a Euclidean
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space [27]. This follows from Pansu’s theorem (Theorem 2.5), a generaliza-
tion of Rademacher’s theorem asserting that Lipschitz maps between Carnot
groups are differentiable almost everywhere [22], [17].

A set in a metric space is (upper) porous (Definition 2.8) if each of its points
sees nearby relatively large holes in the set on arbitrarily small scales. A set is
σ-porous if it is a countable union of porous sets. Properties and applications
of porous sets are surveyed in [32], [33]. Porous sets have applications to
differentiability in the linear setting. For example, they were recently used
in [26] to show that if n > 1 then there exists a Lebesgue null set N ⊂ R

n

such that every Lipschitz map f : Rn →R
n−1 is differentiable at a point of N .

Applications of porosity to differentiability also exist in the non-linear setting
of Carnot groups. For instance, [24] showed that if G is a Carnot group and
f : G→ R is a Lipschitz map, then there exists a σ-porous set A such that
if f is differentiable at x ∈G \A in all horizontal directions then f is Pansu
differentiable at x. Hence, it is also interesting to study porous sets and their
applications in Carnot groups.

In Section 3, we investigate the structure of porous sets themselves in
Carnot groups. Every σ-porous set in a metric space is of first category,
which means it is a countable union of nowhere dense sets. In R

n, σ-porous
sets also have Lebesgue measure zero. However, proving a set is σ-porous
gives a stronger result than proving it is of first category or has measure zero:
in R

n there exists a closed nowhere dense set of Lebesgue measure zero which
is not σ-porous [33, Theorem 2.3]. We show there is a natural analogue of
this result in Carnot groups (Theorem 3.2).

Any Carnot group can be represented in coordinates as a Euclidean space
R

n equipped with some additional structure. Hence, one can compare poros-
ity with respect to the CC and Euclidean distances. We show that, at least
in the first Heisenberg group, the two notions differ: for each distance, one
can construct a set which is porous with respect to the given distance but
not porous with respect to the other distance (Proposition 3.7 and Propo-
sition 3.10). This does not follow immediately from the fact that the two
distances are not Lipschitz equivalent: if (M,d) is a metric space then the
fractal metric dε, 0 < ε < 1, need not be Lipschitz equivalent to d but gives
the same family of porous sets (Remark 3.4).

In Section 4, we give another connection between porosity and differentia-
bility in Carnot groups. We adapt Euclidean arguments from [15] to show that
for any σ-porous set P in a Carnot group G, one can find a real-valued Lip-
schitz function on G which is not even Pansu subdifferentiable on P (Propo-
sition 4.6). As a consequence, a universal differentiability set in a Carnot
group cannot be σ-porous (Corollary 4.7). Universal differentiability sets are
sets which contain a point of differentiability for every real-valued Lipschitz
function. Such sets were investigated in [8], [9], [10] in Euclidean spaces and
in [23] in the Heisenberg group.
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In Section 5, we use the above mentioned non-differentiable functions and
arguments from [15] to investigate the horizontal gradient. The horizontal
gradient is defined like the ordinary gradient in Euclidean spaces, but using
only horizontal directional derivatives. We show that, as in the Euclidean
case, the preimage of an open set under the horizontal gradient mapping is
either empty or far from being porous (Theorem 5.2). In the Euclidean case,
this result is related to the so-called gradient problem. Assume n≥ 2, Ω⊂R

n

is an open set and f : Ω→ R is an everywhere differentiable function. The
gradient problem asks whether it is true or not that fixed Ω̃⊂ R

n open, the
set {p ∈Ω | ∇f(p) ∈ Ω̃} is either empty or of positive n-dimensional Lebesgue
measure. It is known that the answer is affirmative for n = 1 [6], [7] and
negative in higher dimensions [2]. We are not aware of any result of this type
in the context of Carnot groups.

2. Preliminaries

In this section, we define Carnot groups and porous sets. We refer the
interested reader to [1], [28] for an introduction to Carnot groups and [32],
[33] for information about porosity.

2.1. Carnot groups.

Definition 2.1. A simply connected finite dimensional Lie group G is a
Carnot group of step s if its Lie algebra (g, [·, ·]) is stratified of step s, which
means that there exist non-zero linear subspaces V1, . . . , Vs of g such that

g= V1 ⊕ · · · ⊕ Vs,

with

[V1, Vi] = Vi+1 if 1≤ i≤ s− 1, and [V1, Vs] = {0}.
Here

[V,W ] = span
{
[X,Y ] :X ∈ V,Y ∈W

}
,

where [X,Y ] denotes the Lie bracket in the Lie algebra.

2.2. Coordinates on Carnot groups. The exponential map exp: g→G

is defined by exp(X) = γ(1), where γ : [0,1]→G is the unique solution to the
initial value problem:

γ′(t) =X
(
γ(t)

)
, γ(0) = 0.

The exponential map exp: g→G is a diffeomorphism. Throughout the paper,
we fix a basis X1, . . . ,Xn of g adapted to the stratification, in which a basis of
Vi+1 follows a basis of Vi for each i. Definem= dim(V1) and noticeX1, . . . ,Xm

is then a basis of V1. Any x ∈G can be written uniquely as

x= exp(x1X1 + · · ·+ xnXn)
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for some x1, . . . , xn ∈ R. We identify x with (x1, . . . , xn) ∈ R
n and G with

(Rn, ·), where the group operation on Rn is determined by the Baker–
Campbell–Hausdorff formula on g. This is known as exponential coordinates
of the first kind. With this identification the Lebesgue measure Ln on R

n is
a Haar measure on G.

For any λ > 0, the dilation δλ : g→ g is defined as the linear map satisfying
δλ(X) = λiX wheneverX ∈ Vi. Dilations are extended to G so as to satisfy the
equality exp ◦ δλ = δλ ◦ exp. Dilations satisfy the equality δλ(xy) = δλ(x)δλ(y)
for x, y ∈G and λ > 0.

Define the projection p : Rn →R
m by p(x1, . . . , xn) = (x1, . . . , xm).

2.3. Carnot–Carathéodory distance.

Definition 2.2. An absolutely continuous curve γ : [a, b]→G is horizontal
if there exist u1, . . . , um ∈ L1[a, b] such that for almost every t ∈ [a, b]:

γ′(t) =
m∑
i=1

ui(t)Xi

(
γ(t)

)
.

Define the horizontal length of such a curve γ by L(γ) =
∫ b

a
|u(t)|dt, where

u= (u1, . . . , um) and | · | denotes the Euclidean norm on R
m.

Definition 2.3. The Carnot–Carathéodory distance (CC distance) be-
tween points x, y ∈G is defined by:

dc(x, y) = inf
{
L(γ) : γ : [0,1]→G horizontal joining x to y

}
.

The Chow–Rashevskii theorem implies that any two points of G can be
connected by horizontal curves [1, Theorem 9.1.3]. It follows that the CC
distance is indeed a distance on G. The following identities hold for x, y, z ∈G

and r > 0:

dc(zx, zy) = dc(x, y), dc
(
δr(x), δr(y)

)
= rdc(x, y).

For brevity, we write dc(x) instead of dc(x,0). Since G is identified with R
n,

we may compare the CC distance dc with the Euclidean distance de. These
distances induce the same topology on Rn but are not Lipschitz equivalent.

2.4. Pansu differentiability and directional derivatives.

Definition 2.4. A map L : G→R is group linear if the following identities
hold for every x, y ∈G and r > 0:

L(xy) = L(x) +L(y), L
(
δr(x)

)
= rL(x).

A map f : G→R is Pansu subdifferentiable at x0 ∈G if there exists a group
linear map L : G→R such that

(2.1) lim inf
h→0

f(x0h)− f(x0)−L(h)

dc(h)
≥ 0.
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Such a map f is Pansu differentiable at x0 if there exists a group linear
map L : G→R such that

lim
h→0

f(x0h)− f(x0)−L(h)

dc(h)
= 0.

If the map L in the definition of Pansu differentiability exists then it is
unique, called the Pansu differential, and we denote it by df(x0). For sim-
plicity we now state the celebrated Pansu theorem for scalar targets, though
a similar result holds when the target is any Carnot group [22].

Theorem 2.5 (Pansu’s theorem). Let f : G→R be a Lipschitz map. Then
f is Pansu differentiable almost everywhere.

We define horizontal directional derivatives of a Lipschitz function by com-
position with horizontal lines.

Definition 2.6. Suppose f : G→R, x ∈G and X ∈ V1. We say that f is
differentiable at x in direction X if the following limit exists:

Xf(x) = lim
t→0

f(x exp(tX))− f(x)

t
.

If x ∈ G and X ∈ V1 is horizontal, the map t 
→ x exp(tX) is Lipschitz.
Hence, if f : G→ R is Lipschitz, the composition t 
→ f(x exp(tX)) is a Lip-
schitz mapping from R to R so is differentiable almost everywhere. Thus
Lipschitz functions have directional derivatives along each horizontal line, at
almost every point and in the direction of the line. It follows from the def-
inition of dc that if f : G→ R is Lipschitz then |Xif(x)| ≤ Lip(f) whenever
1≤ i≤m and Xif(x) exists. Here we recall that X1, . . . ,Xm is our fixed basis
of V1, which we used to define horizontal length and CC distance.

Definition 2.7. Suppose f : G → R, x ∈ G and Xif(x) exists for every
1≤ i≤m. The horizontal gradient of f at x is defined by

∇Hf(x) =
(
X1f(x), . . . ,Xmf(x)

)
∈R

m.

As observed in [21, Remark 3.3], if f is Pansu differentiable at x0, then
Xif(x) exists for every 1≤ i≤m and

(2.2) df(x0)(h) =
〈
∇Hf(x0), p(h)

〉
.

Here 〈·, ·〉 denotes the Euclidean inner product on R
m.

2.5. Porous sets. When a metric space is clear from the context, we denote
the open ball of center x and radius r > 0 by B(x, r).

Definition 2.8. Let (M,d) be a metric space and E ⊂M .
Given λ ∈ (0,1) and a ∈E, we say E is λ-porous at a if there is a sequence

of points xn ∈M with xn → a such that

B
(
xn, λd(xn, a)

)
∩E =∅ for every n ∈N.

The set E is porous at a if it is λ-porous at a for some λ ∈ (0,1).
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The set E is porous if there is λ ∈ (0,1) such that E is λ-porous at a for
every point a ∈E, with λ independent of the point a.

A set is σ-porous if it is a countable union of porous sets.

Porous sets in metric spaces are nowhere dense and σ-porous sets in metric
spaces are of first category, which means they can be written as a countable
union of nowhere dense sets. However, in any non-empty topologically com-
plete metric space without isolated points, there exists a closed nowhere dense
set which is not σ-porous [33, Theorem 2.4].

Unless otherwise stated, porosity in a Carnot group will mean porosity
with respect to the CC distance (or a Lipschitz equivalent distance).

3. Geometry of porous sets in Carnot groups

In this section, we compare CC porosity with Euclidean porosity and other
notions of smallness of sets.

3.1. Measure and porosity in Carnot groups. We begin by observing
that porous sets in Carnot groups have measure zero. The simple proof does
not depend on the structure of Carnot groups; it is known that porous sets
have measure zero in any metric space equipped with a doubling measure.

Proposition 3.1. Porous sets in Carnot groups have measure zero.

Proof. Haar measure Ln on G equipped with the CC distance is doubling,
so the Lebesgue differentiation theorem holds [14, Theorem 1.8]. Given P ⊂G

Lebesgue measurable, applying the Lebesgue differentiation theorem to the
characteristic function of P implies that the density

lim
r↓0

Ln(P ∩B(x, r))

Ln(B(x, r))

is equal to 1 for almost every x ∈ P and equal to 0 for almost every x /∈ P .
Recall that a set is of class Gδ if it can be expressed as a countable inter-

section of open sets. We claim that to prove the theorem it suffices to show
that every Lebesgue measurable porous set has Lebesgue measure zero. This
follows from the fact that every porous set is contained in a porous set of
class Gδ . To see this fact, suppose P is porous with porosity constant c. Let
H = (G \ P )◦ and define

Q= (G \H)∩
∞⋂

n=1

Qn,

where

Qn =

{
x ∈G : ∃z ∈H,dc(z,x)<

1

n
,B

(
z, (c/2)d(z,x)

)
⊂H

}
.

The sets Qn are open while G \H is closed (hence Gδ) so Q is Gδ . It is easy
to check that Q is a porous set containing P .
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Now suppose P is a Lebesgue measurable porous set with Ln(P )> 0. By
the Lebesgue differentiation theorem, there exists x ∈ P such that

(3.1) lim
r↓0

Ln(P ∩B(x, r))

Ln(B(x, r))
= 1.

Since P is porous, there are 0< λ< 1 and xn → x such that:

(3.2) B
(
xn, λd(xn, x)

)
∩ P =∅ for every n ∈N.

Using (3.1) with radii 2d(xn, x)→ 0 and observing

B
(
xn, λd(xn, x)

)
⊂B

(
x,2d(xn, x)

)
,

equation (3.2) implies:

lim
n→∞

Ln(B(xn, λd(xn, x)))

Ln(B(x,2d(xn, x)))
= 0.

This contradicts the fact that Ln is doubling. Hence Ln(P ) = 0, which proves
the proposition. �

Proposition 3.1 implies that the collection of σ-porous sets is contained
in the collection of first category measure zero sets. In R

n there exists a
closed nowhere dense set of Lebesgue measure zero which is not σ-porous [33,
Theorem 2.3]. We now prove a similar statement in Carnot groups.

Theorem 3.2. There exists a closed nowhere dense set in G which has
measure zero but is not σ-porous.

Before proving Theorem 3.2, we prove the following lemma.

Lemma 3.3. Let (x, y) ∈R×Rn−1 =G. Then for every t ∈R, there exists
τ ∈Rn−1 such that

dc
(
(t, τ), (x, y)

)
= |t− x|.

Proof. Recall that we are using exponential coordinates of the first kind.
By [1, Proposition 2.2.22], we can write the group law of G as

(3.3) (p · q)i = pi + qi +Ri(p, q) for every p, q ∈G and i= 1, . . . , n,

whereRi(p, q) is a polynomial function depending only on pk and qk with k < i
and Ri ≡ 0 for all i≤m. Let y = (y2, . . . , yn). We will define τ = (τ2, . . . , τn)
by induction. Let τ2 := y2 and for 3≤ i≤ n define:

τi := yi +Ri

(
(t, τ)−1, (x, y)

)
.

Such a definition is justified because, since p−1 =−p for p ∈ G, the formula
for τi depends only on τj for j < i. Using (3.3), it is easy to see that (t, τ)−1 ·
(x, y) = (x− t,0, . . . ,0). The conclusion follows by noticing that

dc
(
(t, τ), (x, y)

)
= dc(x− t,0, . . . ,0) = |x− t|. �
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Proof of Theorem 3.2. Using [33, Theorem 2.3], choose a closed nowhere
dense set N ⊂R which has Lebesgue measure zero but is not σ-porous. Then

N ×R
n−1 ⊂R

n =G

is closed and nowhere dense in G (since the distances dc and de are topo-
logically equivalent) and clearly has Lebesgue measure zero. It remains to
show that N × R

n−1 is not σ-porous with respect to dc. Arguing as in [31,
Lemma 3.4], it suffices to check that if F ⊂ R and F × Rn−1 is porous in G

then F is porous in R. Fix a ∈ F . Since F ×R
n−1 is porous in G at (a,0),

there exists a constant 0 < c < 1 (independent of a) and sequences xk ∈ R,
yk ∈R

n−1, rk > 0 such that

(1) B((xk, yk), rk)∩ (F ×R
n−1) =∅ for all k ∈N.

(2) rk > cdc((a,0), (x
k, yk)) for all k ∈N.

(3) xk → a and yk → 0.

The definition of dc implies dc((a,0), (x
k, yk))≥ |xk − a|. Hence, (2) implies

rk > c|xk − a|. If t ∈ R and |t − xk| < rk then by Lemma 3.3, there exists
τ ∈R

n−1 such that (t, τ) ∈B((xk, yk), rk). Hence, (1) implies t /∈ F , so (xk −
rk, xk + rk)∩ F =∅. Combining these observations with (3) shows that F is
porous and concludes the proof. �

3.2. Comparison of Euclidean and CC porosity.

Remark 3.4. If d1 and d2 are Lipschitz equivalent distances, then a set
is porous with respect to d1 if and only if it is porous with respect to d2.
Notions of porosity may be the same even if the two distances are not Lipschitz
equivalent: it is easy to show that if (M,d) is a metric space then d and any
snowflaked metric dε, 0< ε< 1, give the same porous sets.

Recall that G is identified with Rn in coordinates, so on G we can consider
both the CC distance and the Euclidean distance. We next show that if G is
the first Heisenberg group then these two distances give incomparable families
of porous sets.

Definition 3.5. The first Heisenberg group H
1 is R

3 equipped with the
non-commutative group law:

(3.4) (x, y, t)
(
x′, y′, t′

)
=

(
x+ x′, y+ y′, t+ t′ − 2

(
xy′ − yx′)).

The Koranyi distance on H
1 is defined by:

(3.5) dk(a, b) =
∥∥a−1b

∥∥
k
, where

∥∥(x, y, t)∥∥
k
=

((
x2 + y2

)2
+ t2

)1/4
.

For brevity, we write dk(a) instead of dk(a,0).

The Koranyi distance is Lipschitz equivalent to the CC distance on H
1,

so a set is porous with respect to the Koranyi distance if and only if it is
porous with respect to the CC distance. When necessary, we use the notation
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Be(a, r) and Bk(a, r) to distinguish between balls in R
3 with respect to the

Euclidean or Koranyi distance. The following estimate is clear from (3.5):

(3.6) dk(x, y, t)≥max
(∣∣(x, y)∣∣,√|t|

)
.

Let C be the middle third Cantor set. Note C is (1/3)-porous as a subset
of [0,1] with the Euclidean distance. If α,β ∈ R and S ⊂ R, then we define
α + βS = {α + βs : s ∈ S}. If S ⊂ R is porous, then α + βS is also porous,
with the same porosity constant as S.

Lemma 3.6. For n,k ∈ N with 0 ≤ k ≤ 2n−1, let An,k be the translated
dilated Cantor set:

(3.7) An,k :=
(
2−n + k2−2n

)
+ 2−2nC.

Then:

(1) The intersection An,k ∩Am,l is at most one point if (n,k) �= (m, l).
(2) Each set An,k is (1/3)-porous as a subset of the interval[

2−n + k2−2n,2−n + (k+ 1)2−2n
]
.

(3) For every 0< t < 1:

[
t, t+ 4t2

]
∩

∞⋃
n=1

2n−1⋃
k=0

An,k �=∅.

Proof. The first two assertions are clear from the definition of An,k. To

prove the third, let t ∈ (0,1) then choose n ∈ N such that 2−n ≤ t < 2−(n−1).
Using (3.7), we see that the interval [t, t+2−2(n−1)] intersects An,k or An+1,k

for some k. Since

2−2(n−1) = 4 · 2−2n ≤ 4t2,

we deduce that [t, t+ 4t2] intersects An,k or An+1,k. This proves the lemma.
�

Proposition 3.7. Define the cone Λ by

Λ :=
{
(x, y, t) ∈H

1 : |t| ≤
∣∣(x, y)∣∣}.

Define

Pe := Λ∩
(
{0} ∪

∞⋃
n=1

2n−1⋃
k=0

{
(x, y, t) ∈H

1 :
∣∣(x, y)∣∣ ∈An,k

})
.

The set Pe is porous with respect to the Euclidean distance, but not porous
at the point 0 with respect to the CC distance.

We prove Proposition 3.7 in Claim 3.8 and Claim 3.9.

Claim 3.8. The set Pe is porous with respect to the Euclidean distance.
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Proof. We first verify that Pe is porous with respect to the Euclidean dis-
tance at 0. Since Pe ⊂Λ, it suffices to show

(3.8) Be

(
(0,0,1/n),1/3n

)
∩Λ=∅ for every n ∈N.

Let (x, y, t) ∈ Be((0,0,1/n),1/3n). Then |(x, y)| < 1/3n and |t| > 2/3n, in
particular |t|> |(x, y)|. Hence (x, y, t) /∈ Λ, proving (3.8).

Now we show Euclidean porosity at the remaining points of Pe: suppose
that (x, y, t) ∈ Pe \ {0}. Then there exists p ∈N and 0≤ k ≤ 2p − 1 such that
|(x, y)| ∈Ap,k. Since Ap,k is (1/3)-porous in [2−p + k2−2p,2−p + (k+ 1)2−2p]
at |(x, y)| and the sets Ap,k only meet at their endpoints, we may find rn > 0
with rn → |(x, y)| such that:

(3.9) Be

(
rn,

∣∣rn −
∣∣(x, y)∣∣∣∣/3)∩ (

Am,l ∪ {0}
)
=∅

for every m ∈N and every 0≤ l≤ 2m − 1.
Define (xn, yn) = rn(x, y)/|(x, y)|. Notice

(3.10)
∣∣(xn, yn)

∣∣ = rn and
∣∣(xn, yn)− (x, y)

∣∣ = ∣∣rn −
∣∣(x, y)∣∣∣∣.

Since rn → |(x, y)|, we have (xn, yn, t)→ (x, y, t). We claim that for n ∈N:

(3.11) Be

(
(xn, yn, t), de

(
(xn, yn, t), (x, y, t)

)
/3

)
∩ Pe =∅.

For this, suppose:

(a, b, c) ∈Be

(
(xn, yn, t), de

(
(xn, yn, t), (x, y, t)

)
/3

)
.

Using (3.10), we have

de
(
(xn, yn, t), (x, y, t)

)
=

∣∣(xn, yn)− (x, y)
∣∣ = ∣∣rn −

∣∣(x, y)∣∣∣∣.
Hence, using the above equality, the triangle inequality, and (3.10) again,∣∣∣∣(a, b)∣∣− rn

∣∣ ≤ ∣∣(a, b)− (xn, yn)
∣∣ ≤ ∣∣rn −

∣∣(x, y)∣∣∣∣/3.
This implies ∣∣(a, b)∣∣ ∈Be

(
rn,

∣∣rn −
∣∣(x, y)∣∣∣∣/3).

Using (3.9), we deduce that |(a, b)| �= 0 and |(a, b)| /∈ Am,l for any choice of
m ∈ N and 0≤ l ≤ 2m − 1. Hence (a, b, c) /∈ Pe, verifying (3.11). This shows
that Pe is Euclidean porous at (x, y, t) and completes the proof. �

Claim 3.9. The set Pe is not porous with respect to the CC distance at 0.

Proof. Let λ > 0. It suffices to show that if (x, y, t) ∈H
1 and dk(x, y, t) is

sufficiently small, then:

(3.12) Bk

(
(x, y, t), λdk(x, y, t)

)
∩ Pe �=∅.

Case 1: Suppose (x, y, t) /∈ Λ, so |(x, y)|< |t|. For each s > 0, define:

ps :=

(
x+

sx

|(x, y)| , y+
sy

|(x, y)| , t−
√
15s2

)
.
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Without loss of generality, we assume t > 0. In the case t < 0, one should
instead choose t+

√
15s2 as the final coordinate in the definition of ps. We

first notice that dk(ps, (x, y, t)) = 2s. Therefore for every 0< s < λ
√
t/2, we

have ps ∈Bk((x, y, t), λdk(x, y, t)). Since∣∣∣∣(x+
sx

|(x, y)| , y+
sy

|(x, y)|

)∣∣∣∣ = ∣∣(x, y)∣∣+ s,

we see ps ∈ Λ if and only if

t−
√
15s2 ≤

∣∣(x, y)∣∣+ s

so it suffices to choose s such that

t−
√
15s2 ≤ s.

If dk(x, y, t) is sufficiently small, which forces t to be small, this holds for every
s ∈ (λ

√
t/8, λ

√
t/2). We now show that ps ∈ Pe for some such s. This holds

provided the interval (∣∣(x, y)∣∣+ λ
√
t

8
,
∣∣(x, y)∣∣+ λ

√
t

2

)
intersects some set An,k. By making dk(x, y, t) small, we may assume that

|(x, y)|+ λ
√
t

8 lies in (0,1). By Lemma 3.6, it then suffices to prove that

(3.13)

(∣∣(x, y)∣∣+ λ
√
t

2

)
−

(∣∣(x, y)∣∣+ λ
√
t

8

)
− 5

(∣∣(x, y)∣∣+ λ
√
t

8

)2

≥ 0.

The factor 5 instead of 4 in (3.13) takes into account that Lemma 3.6 requires
a closed interval [θ, θ+4θ2] rather than an open one. To prove (3.13), let δ =
3λ/320 and assume |(x, y)|< δ, which implies |(x, y)|2 < δ|(x, y)|. Using also
the inequality (a+ b)2 ≤ 2a2 + 2b2, t, λ ∈ (0,1) and |(x, y)|< |t|, we estimate
as follows:(∣∣(x, y)∣∣+ λ

√
t

2

)
−

(∣∣(x, y)∣∣+ λ
√
t

8

)
− 5

(∣∣(x, y)∣∣+ λ
√
t

8

)2

>
7λ

√
t

32
− 10δ

∣∣(x, y)∣∣
>

7λ
√
t

32
− 10δ

√
t

≥ 0.

This verifies (3.13) so ps ∈ Pe for some s, verifying (3.12) and completing the
proof in this case.

Case 2: Suppose (x, y, t) ∈ Λ, so |t| ≤ |(x, y)|. For each s > 0, define

(3.14) ps =

(
x+

sx

|(x, y)| , y+
sy

|(x, y)| , t
)
.
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It is easy to show that dk(ps, (x, y, t)) = s so ps ∈ Bk((x, y, t), λdk(x, y, t))
whenever 0< s< λ|(x, y)|. Clearly also

(3.15)

∣∣∣∣(x+
sx

|(x, y)| , y+
sy

|(x, y)|

)∣∣∣∣ = ∣∣(x, y)∣∣+ s.

Since s > 0 and |t| ≤ |(x, y)|, we deduce that ps ∈ Λ.
For sufficiently small |(x, y)|, the interval (|(x, y)|, |(x, y)| + λ|(x, y)|) will

contain a subinterval of the form [θ, θ + 4θ2] for some θ ∈ (0,1), which by
Lemma 3.6 necessarily meets some set An,k. Using (3.14) and (3.15), this
yields (3.12) and proves the claim in this case. �

Proposition 3.10. Define the cusp Υ by

Υ :=
{
(x, y, t) ∈H

1 : |t| ≥ 2
∣∣(x, y)∣∣2}.

Define

Pc := Υ∩
(
{0} ∪

∞⋃
n=1

2n−1⋃
k=0

{
(x, y, t) ∈H

1 :
∣∣(x, y)∣∣ ∈An,k

})
.

The set Pc is porous with respect to the CC distance, but not porous at the
point 0 with respect to the Euclidean distance.

We prove Proposition 3.10 in Claim 3.11 and Claim 3.12.

Claim 3.11. The set Pc is porous with respect to the CC distance.

Proof. We first verify that Pc is porous with respect to the Koranyi distance
at 0. Since Pc ⊂Υ, it suffices to prove that

(3.16) Bk

(
(1/n,0,0),1/3n

)
∩Υ=∅ for every n ∈N.

If (x, y, t) ∈Bk((1/n,0,0),1/3n) then∣∣∣∣(x− 1

n
, y

)∣∣∣∣ ≤ 1

3n
and

∣∣∣∣t+ 2y

n

∣∣∣∣ ≤ 1

9n2
.

In particular:

2

3n
≤ x≤ 4

3n
, |y| ≤ 1

3n
and

∣∣∣∣t+ 2y

n

∣∣∣∣ ≤ 1

9n2
.

Therefore:

|t| ≤
∣∣∣∣t+ 2y

n

∣∣∣∣+ 2|y|
n

≤ 1

9n2
+

2

3n2
≤ x2

4
+

3x2

2
< 2

∣∣(x, y)∣∣2.
We conclude that (x, y, t) /∈Υ, verifying (3.16).

We now show CC porosity at the remaining points of Pc. Suppose that
(x, y, t) ∈ Pc \ {0}. Using the definition of Pc, there exists p ∈ N and 0≤ k ≤
2p − 1 such that |(x, y)| ∈Ap,k. Since Ap,k is (1/3)-porous as a subset of the
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interval [2−p + k2−2p,2−p + (k+1)2−2p] and the sets Ap,k only meet at their
endpoints, we may find rn > 0 with rn → |(x, y)| such that:

(3.17) Be

(
rn,

∣∣rn −
∣∣(x, y)∣∣∣∣/3)∩ (

Am,l ∪ {0}
)
=∅

for every m ∈N and every 0≤ l≤ 2m − 1.
Define (xn, yn) = rn(x, y)/|(x, y)|. Notice that |(xn, yn)|= rn and∣∣(xn, yn)− (x, y)

∣∣ = ∣∣rn −
∣∣(x, y)∣∣∣∣.

Clearly (xn, yn, t)→ (x, y, t). We claim that for every n ∈N:

(3.18) Bk

(
(xn, yn, t), dk

(
(xn, yn, t), (x, y, t)

)
/3

)
∩ Pc =∅.

For this, suppose

(a, b, c) ∈Bk

(
(xn, yn, t), dk

(
(xn, yn, t), (x, y, t)

)
/3

)
.

Using (3.4), we see:

dk
(
(xn, yn, t), (x, y, t)

)
=

∣∣(x− xn, y− yn)
∣∣ = ∣∣rn −

∣∣(x, y)∣∣∣∣.
Hence, ∣∣(a, b)− (xn, yn)

∣∣ ≤ dk
(
(xn, yn, t), (x, y, t)

)
/3

=
∣∣rn −

∣∣(x, y)∣∣∣∣/3.
We deduce that ∣∣(a, b)∣∣ ∈Be

(
rn,

∣∣rn −
∣∣(x, y)∣∣∣∣/3).

Using (3.17), we deduce that |(a, b)| �= 0 and |(a, b)| /∈ Am,l for any choice of
m ∈ N and 0≤ l ≤ 2m − 1. Hence (a, b, c) /∈ Pc, verifying (3.18) which proves
that Pc is porous with respect to the Koranyi metric. �

Claim 3.12. The set Pc is not porous with respect to the Euclidean distance
at the point 0.

Proof. Let λ > 0. It suffices to show that for any (x, y, t) ∈ H1 with
de(x, y, t) sufficiently small:

(3.19) Be

(
(x, y, t), λde(x, y, t)

)
∩ Pc �=∅.

Without loss of generality, assume t ≥ 0. It will be clear from the proof
that a similar argument works if t < 0. For 0≤ s < |(x, y)|, let

(3.20) qs :=

(
x− sx

|(x, y)| , y−
sy

|(x, y)| , t+ s

)
.

If t < 0, one can instead choose t− s as the final coordinate in the definition
of qs. Clearly de(qs, (x, y, t)) = s

√
2. Hence, s < λ|(x, y)|/

√
2 implies

qs ∈Be

(
(x, y, t), λde(x, y, t)

)
.

Next, notice

(3.21)

∣∣∣∣(x− sx

|(x, y)| , y−
sy

|(x, y)|

)∣∣∣∣ = ∣∣(x, y)∣∣− s.
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Using the definition of Υ, (3.20) and (3.21), we see qs ∈Υ if and only if

(3.22) t+ s≥ 2
(∣∣(x, y)∣∣− s

)2
.

Since t≥ 0, (3.22) holds whenever

(3.23) s≥ 2
(∣∣(x, y)∣∣− s

)2
.

Ensure (x, y, t) is chosen with de(x, y, t) small enough so that (3.23) holds if

s= λ|(x, y)|/2
√
2. Then (3.23) holds, and hence qs ∈Υ, whenever s satisfies

(3.24)
λ|(x, y)|
2
√
2

≤ s <
λ|(x, y)|√

2
.

Finally we observe that if de(x, y, t) is sufficiently small, then the interval(∣∣(x, y)∣∣− λ|(x, y)|√
2

,
∣∣(x, y)∣∣− λ|(x, y)|

2
√
2

)
will contain a subinterval of the form [θ, θ+4θ2] for some θ ∈ (0,1), hence by
Lemma 3.6 intersect some set An,k. Using (3.20), (3.21) and the definition of
Pc, this implies qs ∈ Pc for some s satisfying (3.24). For such s, we have

qs ∈Be

(
(x, y, t), λde(x, y, t)

)
∩ Pc,

which proves (3.19). �

Remark 3.13. We expect that in any Carnot group there exist sets which
are porous in each distance (CC or Euclidean) but not even σ-porous in the
other distance. Such constructions and their justifications may be compli-
cated, since it is harder to show a set is not σ-porous than to show it is
not porous: one may need to use Foran systems or similar techniques [32,
Lemma 4.3].

4. Non-differentiability on a σ-porous set

In this section, we construct a Lipschitz function which is subdifferentiable
at no point of a given σ-porous set in a Carnot group (Theorem 4.6). We first
give basic properties of (Pansu) subdifferentiability (Definition 2.4), which are
simple adaptations of similar statements in Banach spaces [15].

Proposition 4.1. The following statements hold:

(1) f : G→ R is Pansu differentiable at a ∈ G if and only if f and −f are
both Pansu subdifferentiable at a.

(2) Suppose f and g are Pansu subdifferentiable at a and λ > 0. Then f + g
and λf are Pansu subdifferentiable at a.

(3) If

limsup
h→0

f(ah) + f(ah−1)− 2f(a)

dc(h)
> 0

then −f is not Pansu subdifferentiable at a.
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(4) f : R→R is subdifferentiable at a if and only if f+(a)≥ f−(a), where

f+(a) = lim inf
t→0+

f(a+ t)− f(a)

t

denotes the lower right Dini derivative, and

f−(a) = limsup
t→0−

f(a+ t)− f(a)

t

denotes the upper left Dini derivative.
(5) Suppose L : G→ R is a non-zero group linear map. If H : R→ R is not

subdifferentiable at L(a), then H ◦L is not Pansu subdifferentiable at a.
(6) If f : G→R attains a local minimum at a point x0 ∈G, then f is Pansu

subdifferentiable at x0.

Proof. For (1), clearly Pansu differentiability of f implies subdifferentiabil-
ity of f and −f . We check the opposite implication. Suppose f and −f are
Pansu subdifferentiable. Then there exist group linear maps L1,L2 : G→ R

such that

lim inf
h→0

f(x0h)− f(x0)−L1(h)

dc(h)
≥ 0,(4.1)

lim inf
h→0

f(x0)− f(x0h)−L2(h)

dc(h)
≥ 0.(4.2)

Adding (4.1) and (4.2) yields

(4.3) lim inf
h→0

−L1(h)−L2(h)

dc(h)
≥ 0.

For each v ∈G, let h= δt(v). Group linearity of L1 and L2 implies

(4.4)
−L1(h)−L2(h)

dc(h)
=

−L1(v)−L2(v)

dc(v)
.

Letting t → 0 and using (4.3) and (4.4) yields −L1(v) − L2(v) ≥ 0. Hence,
L1(v) + L2(v) ≤ 0 for every v ∈ G. Replacing v by v−1 yields the opposite
inequality L1(v)+L2(v)≥ 0 for every v ∈G. Hence, L2 =−L1. Pansu differ-
entiability of f follows directly from this equality, (4.1) and (4.2).

Statement (2) is trivial.
Suppose the condition in (3) holds but −f is Pansu subdifferentiable at a

with corresponding map L. Since L is group linear, L(h−1) =−L(h). Hence,

−f(ah) + f(a)−L(h)

dc(h)
+

−f(ah−1) + f(a)−L(h−1)

dc(h)

=−f(ah) + f(ah−1)− 2f(a)

dc(h)
.
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Consequently either

lim inf
h→0

−f(ah) + f(a)−L(h)

dc(h)
< 0

or

lim inf
h→0

−f(ah−1) + f(a)−L(h−1)

dc(h)
< 0.

This contradicts Pansu subdifferentiability of −f at a, proving (3).
Statement (4) is exactly as stated in [15].
We now prove (5). Since H is not subdifferentiable at L(a), we know by

(4) that H+(L(a))<H−(L(a)). By [1, Theorem 19.2.1], every element of G
is a product of elements of the form exp(X) with X ∈ V1. Hence, since L is a
non-zero group linear map, there exists X ∈ V1 such that L(exp(X)) �= 0. To
show H ◦ L is not Pansu subdifferentiable at a, we show f : R→ R given by
f(t) =H(L(a exp(tX))) is not subdifferentiable at 0. Notice:

f(t)− f(0)

t
=

H(L(a exp(tX)))−H(L(a))

t

=
H(L(a) + tL(exp(X)))−H(L(a))

tL(exp(X))
·L

(
exp(X)

)
.

If L(exp(X))> 0, then

f+(0) =H+

(
L(a)

)
L

(
exp(X)

)
and

f−(0) =H−(
L(a)

)
L

(
exp(X)

)
.

Hence f+(0) < f−(0), so f is not subdifferentiable at 0. If L(exp(X)) < 0,
then

f+(0) =H−(
L(a)

)
L

(
exp(X)

)
and

f−(0) =H+

(
L(a)

)
L

(
exp(X)

)
,

so again f+(0) < f−(0). We conclude that f is not subdifferentiable at 0.
Hence, (5) holds.

We now verify (6). If f has a local minimum at x0, then f(x0h)≥ f(x0)
for all h ∈G with dc(h) sufficiently small. Therefore:

f(x0h)− f(x0)

dc(h)
≥ 0 for h ∈G \ {0} with dc(h) sufficiently small,

and (6) follows. �

The following lemma [15] will be used in Section 5. There is no similar
statement if R is replaced by R

n (n > 1) or Hn: these spaces admit measure
zero sets containing points of (Pansu) differentiability for every real-valued
Lipschitz function [25], [23], [16].
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Lemma 4.2. Let Z ⊂ R have Lebesgue measure zero. Then there exists a
Lipschitz function on R which is subdifferentiable at no point of Z.

In Banach spaces which admit a suitable bump function, one can construct
a Lipschitz function which is differentiable at no point of any given σ-porous
set. We show that the same is true in a general Carnot group. Our proof is
a modification of [15, Lemma 2]. The next lemma is [15, Lemma 3], where
the set is assumed to be ‘uniformly porous’. In the present paper ‘uniformly
porous’ simply means ‘porous’, since our definition of porosity already requires
the relative size of holes (i.e., the parameter λ in Definition 2.8) to be uniform
over the porous set. We denote the closed ball of center x and radius r > 0 in
a metric space by B(x, r).

Lemma 4.3. Let M be a metric space and E be a closed porous subset of
M . Then there exists C > 1 and S ⊂ M × (0,1) such that the family B =
{B(x, r) : (x, r) ∈ S} is disjoint,

⋃
B ∩E =∅, and for each δ > 0:⋃

B ∪
⋃{

B(x,Cr) : (x, r) ∈ S, r < δ
}
=M.

Definition 4.4. A bump function b : G→R is a Lipschitz function which
is everywhere Pansu differentiable, has compact support, is non-negative and
is not identically zero.

Lemma 4.5. There exists a bump function b : G→R with Lip(b)≤ 1.

Proof. Let b : Rn →R be a non-negative C1 function (in the classical sense)
with compact support which is not identically zero. We can choose b to have
Lipschitz constant as small as we desire, without changing the support of b.
Classically C1 functions are Pansu differentiable with continuously varying
derivative [11, Remark 5.9], so b is also Pansu differentiable.

The CC distance is bounded below by a multiple of the Euclidean distance
on compact sets [20], so b is also Lipschitz with respect to the CC distance in
the domain. Since the Euclidean Lipschitz constant could be made arbitrarily
small, we can ensure the CC Lipschitz constant is at most 1. Finally, the CC
distance and the Euclidean distance induce the same topology [20], so b has
compact support also with respect to the CC distance. �

Theorem 4.6. Let E be a σ-porous subset of G. Then there is a Lipschitz
function f : G→R which is Pansu subdifferentiable at no point of E.

Proof. Let b be a bump function on G. By composing with group trans-
lations and dilations if necessary, we may assume that b(0) = β > 0, b is sup-
ported in B(0,1) and b is 1-Lipschitz. Write E =

⋃∞
i=1Ei where each set Ei

is porous. We apply Lemma 4.3 to each set Ei considered as a subset of the
metric space Mi =G \ (Ei \Ei). Then Ei is porous and closed in Mi. Choose
Si and Ci > 1 corresponding to Ei ⊂Mi using Lemma 4.3.
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For each i, the family B∗
i = {B(x, r) : (x, r) ∈ Si} is disjoint, where the

balls are defined in G (not the subspace Mi). Indeed, if two members of
B∗
i did intersect in G then, using Lemma 4.3 and the definition of Mi, this

intersection must be in Ei. Since the intersection is open, it would contain a
point of Ei ⊂M which is impossible.

Lemma 4.3 implies that for every δ > 0,⋃{
B(x,Cir) : (x, r) ∈ Si, r < δ

}
⊃Ei.

For each i, define fi : G→R by:

fi(x) =

{
0 if x /∈

⋃
B∗
i ,

rb(δ1/r(y
−1x)) if x ∈B(y, r), (y, r) ∈ Si.

Since the CC distance is invariant under left translations, compatible with
dilations and b is 1-Lipschitz, it follows x 
→ rb(δ1/r(y

−1x)) is also 1-Lipschitz.
Each map fi is a supremum of 1-Lipschitz functions, hence 1-Lipschitz. Since
also Si ⊂G× (0,1), we have 0≤ fi ≤ 2. The maps fi are Pansu differentiable
on

⋃
B∗
i because b is Pansu differentiable on G. Clearly also fi(x) = rβ for

(x, r) ∈ Si.
Suppose x ∈ Ei. Then for arbitrarily small r > 0, we find (z, r) ∈ Si such

that x ∈ B(z,Cir). Hence dc(x, z) ≤ Cir and fi(z) = rβ, which implies that
fi(z)/dc(x, z)≥ β/Ci. We can write z = xh, where h= x−1z and dc(h)≤Cir.
Since Ei ∩

⋃
B∗
i =∅, we know fi(x) = 0. Letting r→ 0 gives:

(4.5) limsup
h→0

fi(xh) + fi(xh
−1)− 2fi(x)

dc(h)
≥ β

Ci
> 0.

If x ∈
⋃
B∗
i then Pansu differentiability of fi at x implies:

(4.6) lim
h→0

fi(xh) + fi(xh
−1)− 2fi(x)

dc(h)
= 0.

If x /∈
⋃
B∗
i then fi(x) = 0 implies

(4.7) lim inf
h→0

fi(xh) + fi(xh
−1)− 2fi(x)

dc(h)
≥ 0.

Define f : G→R by

f(x) =
∞∑
i=1

fi(x)

2i
.

Since each fi is 1-Lipschitz, f is 1-Lipschitz. Let j ∈N and x ∈Ej . Then, for
any J > j,

limsup
h→0

f(xh) + f(xh−1)− 2f(x)

dc(h)

≥ limsup
h→0

1

2j
fj(xh) + fj(xh

−1)− 2fj(x)

dc(h)
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+ lim inf
h→0

∑
1≤i≤J
i 
=j

1

2i
fi(xh) + fi(xh

−1)− 2fi(x)

dc(h)

−
∞∑

i=J+1

2

2i

≥ β

Cj
− 1

2J−1

> 0

for J sufficiently large, using (4.5), (4.6), (4.7) and that each fi is 1-Lipschitz.
Proposition 4.1(3) then asserts that −f is not Pansu subdifferentiable on E,
which proves the theorem. �

A universal differentiability set in G is a subset A⊂G such that every Lip-
schitz function f : G→R is Pansu differentiable at a point of A. Theorem 4.6
gives the following corollary showing that, as in the Euclidean case, universal
differentiability sets are far from being porous.

Corollary 4.7. A universal differentiability set in a Carnot group cannot
be σ-porous.

5. The horizontal gradient

We next use Theorem 4.6 and arguments from [15] to prove Theorem 5.2.
Roughly, this states that preimages of open sets under the horizontal gradient
are far from being σ-porous. We first prove a useful lemma. Recall that m is
the dimension of the horizontal layer V1 of G.

Lemma 5.1. Let B(z, r)⊂G be an open ball and E ⊂B(z, r). Fix param-
eters v, r, ρ, θ > 0 such that 8mθ < ρrv. Let b : G→ R be a 1-Lipschitz bump
function satisfying b(0) = v and supported in B(0,1). Suppose there exists a
continuous function F : B(z, r)→R such that:

• |F (x)| ≤ θ for each x ∈B(z, r).
• The horizontal gradient ∇HF (x) ∈ R

m exists at each x ∈ B(z, r), and
|∇HF (x)|> ρ for each x ∈B(z, r) \E.

Then every Lipschitz function h : G→R is Pansu subdifferentiable at a point
of E.

Proof. Let b̃(x) := b(δ1/r(z
−1x)). Clearly b̃(z) = v and b̃ is (1/r)-Lipschitz

and supported in B(z, r). Since 8mθ < ρrv, we can choose η satisfying 4θ/v <
η < ρr/2m. Define

G(x) := F (x)− ηb̃(x).

If x ∈ ∂B(z, r), then b̃(x) = 0. Using also |F (x)| ≤ θ, we see

(5.1)
∣∣G(x)

∣∣ = ∣∣F (x)− ηb̃(x)
∣∣ ≤ θ for x ∈ ∂B(z, r).
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Moreover,

(5.2) G(z) = F (z)− ηb̃(z)≤ θ− ηv ≤−3θ.

Let h : G→ R be a Lipschitz function. We intend to prove that h is Pansu
subdifferentiable at a point of E, for which we may assume that h is not
identically zero on B(z, r). Define

a := sup
B(z,r)

|h|, c := min

{
θ

2a
,

ρ

4mLip(h)

}
.

Then h̃(x) := ch(x) satisfies∣∣h̃(x)∣∣ ≤ θ/2 for x ∈B(z, r),(5.3)

h̃ is (ρ/4m)-Lipschitz on B(z, r).(5.4)

Let H(x) :=G(x) + h̃(x) for x ∈B(z, r). By (5.1) and (5.3), we see

(5.5) H(x)≥−3θ/2 for x ∈ ∂B(z, r).

Using (5.2) and (5.3), we get

(5.6) H(z)≤−5θ/2.

Putting together (5.5) and (5.6) we infer that H attains its minimum at a
point x0 ∈B(z, r). By Proposition 4.1(6), H is Pansu subdifferentiable at x0.

Since G is Pansu differentiable at x0, h̃ is Pansu subdifferentiable at x0.
We claim that x0 ∈E. Suppose x0 /∈E. Then by the properties of F in the

statement of the lemma, we know |∇HF (x0)| > ρ. By the definition of the
horizontal gradient, there is 1≤ i≤m such that |XiF (x0)|> ρ/m. Without
loss of generality we suppose XiF (x0) < −ρ/m: otherwise in what follows
consider directional derivatives in direction −Xi instead of in direction Xi.
Since b̃ is (1/r)-Lipschitz and 4θ/v < η < ρr/2m, we have∣∣Xi(ηb̃)(x0)

∣∣ ≤ Lip(ηb̃)< ρ/2m.

Thus, since G= F − ηb̃,

XiG(x0) =XiF (x0)−Xi(ηb̃)(x0)<−ρ/2m.

To conclude, notice H =G+ h̃, XiG(x0)<−ρ/2m and Lip(h̃)≤ ρ/4m. This
implies that H does not attain its minimum at x0, a contradiction. Hence
x0 ∈E, so h is Pansu subdifferentiable at a point of E. �

Theorem 5.2. Let D ⊂G be an open set and f : D→ R be Pansu differ-
entiable. Denote g(x) =∇Hf(x) for x ∈D and suppose G⊂ R

m is an open
set such that g−1(G) �=∅. Then the following statements hold:

(1) g−1(G) is porous at none of its points.
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(2) If T ⊂ G is open and T ∩ g−1(G) �= ∅, then L(T ∩ g−1(G)) has positive
Lebesgue measure for every non-zero group linear L : G→R. In particu-
lar, the one-dimensional Hausdorff measure of T ∩ g−1(G) with respect to
the CC metric is positive.

(3) If T ⊂G is open and T ∩ g−1(G) �=∅, then T ∩ g−1(G) is not σ-porous.

Remark 5.3. Properties (1)–(3) of Theorem 5.2 hold if and only if the
following is true:

(4) Suppose a ∈ g−1(G) and B(zn, rn) is a sequence of open balls such that
zn → a and rn > cdc(zn, a) for some c > 0 and all n. Then there exists n0

such that for all n≥ n0:
(a) L(g−1(G) ∩B(zn, rn)) has positive Lebesgue measure for every non-

zero group linear map L : G→R.
(b) g−1(G)∩B(zn, rn) is not σ-porous.

Proof of Remark 5.3. We first assume (4) and prove (1)–(3). Suppose that
a ∈ g−1(G), zn → a and rn > cd(zn, a) for some fixed c and every n ∈N. Then
(4b) asserts that g−1(G) ∩B(zn, rn) is not σ-porous for all sufficiently large
n, in particular it is non-empty. Hence g−1(G) cannot be porous at a. This
proves (1).

Now let T ⊂ G be open and T ∩ g−1(G) �= ∅. Choose a ∈ T ∩ g−1(G), a
sequence zn → a with zn �= a and let rn = dc(zn, a)/2. Then (4) asserts that
for sufficiently large n, L(g−1(G)∩B(zn, rn)) has positive Lebesgue measure
for every group linear map L and g−1(G) ∩B(zn, rn) is not σ-porous. Since
T is open, we have

g−1(G)∩B(zn, rn)⊂ g−1(G)∩ T

for sufficiently large n. This yields (2) and (3). The statement about Hausdorff
measure in (2) follows because group linear maps are Lipschitz, so the image of
a set of one-dimensional Hausdorff measure zero would have one-dimensional
Hausdorff measure zero.

We now assume (1)–(3) and prove (4). Suppose a ∈ g−1(G) and B(zn, rn)
is a sequence of open balls such that zn → a and rn > cdc(zn, a) for some
c > 0 and all n. By (1), B(zn, rn) ∩ g−1(G) �= ∅ for all sufficiently large n.
Properties (2) and (3) applied with T = B(zn, rn) then give (4a) and (4b)
respectively. �

Proof of Theorem 5.2. Suppose a, zn, rn, c are as in Remark 5.3(4). Since
making rn smaller makes the statement stronger, we may assume rn → 0.
Choose a 1-Lipschitz bump function b : G → R supported in B(0,1) which
satisfies b(0) = v for some v > 0. Since G is open and g(a) ∈G, there exists ρ >
0 such that |g(x)−g(a)|> ρ for any x /∈ g−1(G). Using Pansu differentiability
of f at a and (2.2), which expresses the Pansu derivative in terms of the
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horizontal gradient, we may find δ > 0 such that dc(x,a)< δ implies∣∣f(x)− f(a)−
〈
g(a), p

(
a−1x

)〉∣∣ ≤ ρvdc(x,a)

16m(1 + 1/c)
.

Let

F (x) := f(x)− f(a)−
〈
g(a), p

(
a−1x

)〉
.

Choose n0 such that B(zn, rn) ⊂ B(a, δ) for n > n0. Fix n > n0. For every
x ∈B(zn, rn) we have, using rn > cdc(zn, a) as in Remark 5.3(4),∣∣F (x)

∣∣ ≤ ρvdc(x,a)

16m(1 + 1/c)

≤ ρv(rn + dc(zn, a))

16m(1 + 1/c)

<
ρv(rn + rn/c)

16m(1 + 1/c)

=
ρvrn
16m

.

For x /∈ g−1(G) we have |∇HF (x)|= |g(x)− g(a)|> ρ. Now the assumptions
of Lemma 5.1 hold with z = zn, r = rn, θ = ρvrn/16m and E = B(zn, rn) ∩
g−1(G). Hence every real-valued Lipschitz map on G is Pansu subdifferen-
tiable at a point of E.

To prove Remark 5.3(4a), suppose L(E) has measure zero for some non-
zero group linear map L : G→R. Using Lemma 4.2 we can choose a Lipschitz
function H : R → R which is subdifferentiable at no point of L(E). Hence
h=H ◦ L is a Lipschitz function which, by Proposition 4.1(5), is not Pansu
subdifferentiable at any point of E. This contradicts Lemma 5.1.

To prove Remark 5.3(4b), suppose E is σ-porous. Then by Theorem 4.6
there exists a Lipschitz function which is Pansu subdifferentiable at no point
of E. This again contradicts Lemma 5.1. �
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