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STRIP MAPS OF SMALL SURFACES ARE CONVEX

FRANÇOIS GUÉRITAUD

Abstract. The strip map is a natural map from the arc com-
plex of a bordered hyperbolic surface S to the vector space of

infinitesimal deformations of S. We prove that the image of the

strip map is a convex hypersurface when S is a surface of small
complexity: the punctured torus or thrice punctured sphere.

1. Introduction

Let S be a compact orientable surface of genus g ≥ 0 with p≥ 1 boundary
components, where 2g+ p≥ 3. The arc complex of S is the complex X whose
vertices are the isotopy classes of non-boundary-parallel embedded arcs in S
with endpoints in ∂S, and whose (k − 1)-cells (for 2≤ k ≤ 6g − 6 + 3p=:N )
correspond to k-tuples of mutually nonisotopic arcs that can be embedded in
S disjointly. In this paper, we study some realizations of X in RN arising
from hyperbolic geometry.

The top-dimensional cells of X correspond to so-called hyperideal trian-
gulations of S, namely, collections of arcs subdividing S into disks each of
which is bounded by three segments of ∂S and three arcs. Elements of X can

always be represented in barycentric coordinates in the form
∑N

i=1 λiαi where
the λi are nonnegative reals summing to 1 and the αi are arcs of a hyperideal
triangulation. Note that X is infinite unless S is the thrice punctured sphere.

A cell of X (of any dimension) is called small if the arcs corresponding to
its vertices fail to decompose S into disks. For example, vertices of X are
small cells but top-dimensional cells are not. An important result of Harer
and (independently) Penner [3], [7] is the following: the complement X ⊂X
of the union of all small cells is homeomorphic to an open (N − 1)-ball. As
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X is open and dense in X we may thus, up to boundary effects, think of the
infinite complex X as (essentially) a ball.

It is an interesting question whether this triangulation of the ball can be
realized by affine simplices in RN−1 as a tiling of, say, a convex region. One
of the main results of [1] (Th. 1.7 there) is an affirmative answer:

Proposition 1.1. The projectivized strip map (defined below) associated
to a hyperbolic metric on S restricts to an embedding of X into P(RN ), whose
image is a convex open set with compact closure in some affine chart.

1.1. The strip map. Let F be the space of hyperbolic metrics on S with
totally geodesic boundary, seen up to isotopy. Then F , also called the Fricke–
Teichmüller space, is diffeomorphic to an open N -ball. Let g ∈ F be a fixed

metric and x =
∑N

i=1 λiαi a point of X . We consider for each arc α ∈X
(0)

its geodesic representative in (S, g), still denoted α, that exits ∂S perpen-
dicularly: in particular, the (representatives of the) αi are disjoint. Suppose

moreover that for each α ∈X
(0)

we are given a point pα ∈ α, called the waist.
To any nonnegative reals c1, . . . , cN ≥ 0, we can then associate a deformation

Strip(g,
∑N

i=1 ciαi) ∈ F , as follows:

• Glue funnels to ∂S, turning (S, g) into an infinite-area hyperbolic surface
S′ without boundary.

• For each 1≤ i≤N , cut S′ open along the geodesic α′
i that extends αi.

• Insert along α′
i a strip of H2 of width ci, that is, the region bounded by two

geodesics of H2 perpendicular to a segment of length ci at its endpoints.
Make sure these endpoints become glued to the two copies of the waist
pαi ∈ α′

i obtained after cutting α′
i open.

• Define Strip(g,
∑N

i=1 ciαi) as the convex core of the new surface with N
strips inserted.

We may now define a continuous map associated to g ∈ F and to the chosen
system of waists (pα)α∈X

(0) :

f : X −→ T[g]F
N∑
1

λiαi �−→
d

dt

∣∣∣∣
t=0

Strip

(
g,

N∑
i=1

tλiαi

)
,

where the λi still implicitly sum to 1. This map f , called the (infinitesimal)
strip map, is the main object of interest in this paper. Its projectivization

f :X −→ P(T[g]F)� P
(
RN

)
is the projectivized strip map mentioned in Proposition 1.1. The strip con-
struction goes back at least to Thurston [8]; see also [6].

Remarkably, the set f(X) is actually independent of the choices of waists
(although f(X) is not). In fact [1, Th. 1.7] says that f(X) coincides with the
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projectivization of the space of infinitesimal deformations of the hyperbolic
metric g on S such that all closed geodesics become, in a strict sense, longer to
first order. This has important consequences concerning the structure of the
deformation space of Margulis spacetimes (quotients of R2,1 by free groups
acting properly discontinuously), and motivates a more detailed study of f .

1.2. Convex hypersurfaces. Proposition 1.1 implies the following: for
any two top-dimensional simplices of X with vertex lists (α,β1, . . . , βN−1)
and (α′, β1, . . . , βN−1), there exist reals A,A′,B1, . . . ,BN−1 such that

• (f(α),f(β1), . . . ,f(βN−1)) is a basis of RN ;

• Af(α) +A′f(α′) =
∑N−1

i=1 Bif(βi);

•
∑N−1

i=1 Bi > 0 and A,A′ > 0.

(The first two conditions already imply that (A,A′,B1, . . . ,BN−1) are unique
up to scaling.) The sign condition on A, A′, Bi just says that f :X → P(RN )
does not “fold” one top-dimensional simplex back over its neighbor. The
following conjecture appears in [1]:

Conjecture 1.2. For an appropriate choice of waists (pα)α∈X
(0) , the im-

age of f |X in T[g]F is a convex hypersurface, with codimension-1 edges looking
salient from the origin. By Proposition 1.1, this reduces to showing (see Fig-
ure 1) that the numbers A,A′,Bi defined above satisfy also

A+A′ <
N−1∑
i=1

Bi.

Since X is dense in X , restriction to X is inessential in Conjecture 1.2; it is
only meant to ensure the image is a (noncomplete) topological submanifold.
Conjecture 1.2 would give a realization of X within the simplicial decompo-

sition arising from the convex hull of a discrete set f(X
(0)

). It is not clear a
priori that such convex realizations should exist, even given Proposition 1.1.

Figure 1. A convex hypersurface in R3.
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Note that Conjecture 1.2 has a well-studied finite counterpart: the complex
of diagonal subdivisions of a (finite, planar, convex) n-gon is finite, and is
indeed realized as the cell decomposition of the (dual) associahedron, a now
classical polytope in Rn−3: see, for example, [5] and the references therein.
In this note, we prove:

Theorem 1.3. Conjecture 1.2 is true for S a once punctured torus or a
thrice punctured sphere.

The proof will be a rather explicit computation. The once punctured torus
and the thrice punctured sphere are called the small (orientable) surfaces;
their arc complexes are planar triangle complexes recalled in Section 2.2. As
these complexes are dual to trees, it is not hard to realize them in the bound-
aries of convex (finite or infinite) polyhedra of R3, so Theorem 1.3 is not a
new realizability result. However:

• It is interesting to note that the strip map gives a natural realization.
• In the case of the punctured torus, we can extend Theorem 1.3 to singular
hyperbolic metrics (Theorem 4.1), replacing the boundary component with
a cone point of angle θ ∈ (0,2π). Proposition 1.1 was already extended to
that singular context in [2]. Theorem 4.2 also treats the intermediate case
of a cusped metric (θ = 0).

• In the case of the thrice punctured sphere, we will see that a naive choice
of waists, such as the midpoints of the arcs, does in general not work for
Conjecture 1.2. This could shed light on the general case.

Remark 1.4. The strip maps defined in [1] are somewhat more general
than in Conjecture 1.2. Namely, they open up geodesic arcs that do not nec-
essarily exit ∂S perpendicularly, and there is also an extra positive parameter
(the “width”) for each arc, adjusting the rate at which the strip opens up.
Modifying widths would postcompose f with a cellwise linear map. Widths
are set to 1 in Conjecture 1.2 to make the statement more appealing, but for
general surfaces it is an open problem to find even one choice of hyperbolic
metric, geodesic arcs, waists, and widths that makes the image of f convex
(other than in a weak sense, for example, f valued in an affine hyperplane).
For small surfaces, whose arc complexes are dual to trees, the existence of
such choices follows trivially from Proposition 1.1, by just endowing long arcs
with large enough widths; however it seems challenging to describe the full
set of choices that work.

1.3. Plan. Section 2 contains reminders about the geometry of strip defor-
mations, the arc complexes of the small surfaces, and hyperbolic geometry
(Killing fields and the Minkowski model). Section 3 proves Theorem 1.3 for
the thrice punctured sphere, and Section 4 for the once punctured torus and
its cone-singular generalization. Section 5 shows some illustrations.
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2. Background

2.1. The sine formula. To estimate the effect of a strip deformation on the
metric of S, it is convenient to compute how it affects the lengths of various
geodesics. Here we give a formula: the proof is similar to the classical cosine
formula for earthquake deformations [4], and can be found in [1, Section 2.1].

For simplicity, we restrict to strip deformations f(α) along a single arc α:

the general case f(
∑N

1 λiαi) is then recovered by linearity. Let γ ⊂ S be
a closed geodesic, and d	γ : T[g]F → R the differential of its length function.
Suppose that γ intersects α at points q1, . . . , qn lying at distances r1, . . . , rn ≥ 0
from the waist pα, measured along the arc α. Then

(2.1) d	γ
(
f(α)

)
=

n∑
i=1

sin
(
�qi(α,γ)

)
cosh(ri),

where �qi(α,γ) ∈ (0, π) denotes the angle, at the point qi, between the direc-
tions of α and γ.

This formula shows for example that a strip deformation along a very long
arc α will have a huge lengthening effect on the boundary length of S—more
precisely, on the lengths of the boundary components of S that α intersects
but that lie far away from the waist pα.

2.2. Arc complexes of small surfaces. In a (hyperideal) triangulation τ
of the surface S, whenever an arc α separates two distinct regions, removing
α creates a hyperideal quadrilateral of which α was a diagonal. The trian-
gulation obtained by inserting back the other diagonal is called the diagonal
flip of τ at α. Two distinct top-dimensional faces of the arc complex X share
a codimension-1 face exactly when the two corresponding triangulations of S
are related by a diagonal flip.

2.2.1. The thrice punctured sphere. The thrice punctured sphere S has one
triangulation τ obtained by connecting all pairs of distinct punctures together.
It also has three more triangulations, obtained from τ by flipping one of its
3 edges. In total, the arc complex X has 6 vertices, 9 one-cells (3 of them
inner), and 4 two-cells (the triangulations). The full mapping class group of
S has order 12 and projects to the automorphism group of X , which is the
order-6 dihedral group. The kernel is the reflection of S preserving the arcs
of τ pointwise. The dual of X is a 3-branched star, and X is obtained from
X by removing the 6 vertices and 6 outer edges. See Figure 2.

2.2.2. The once punctured torus. Up to the action of the mapping class group
GL2(Z), the punctured torus S of interior � (R2 �Z2)/Z2 has only one hy-
perideal triangulation, obtained, for example, by projecting to S the three
segments of R2 � Z2 connecting the origin to (1,0), (0,1), and (1,1). The
resulting arc complex X is dual to an infinite planar trivalent tree, with one



24 F. GUÉRITAUD

Figure 2. The arc complexes X of the two small surfaces.

vertex for each rational number p/q ∈ P1(Q) (corresponding to the segment
from the origin to (p, q)). The mapping class group maps onto the auto-
morphism group of X , with kernel {Id,−Id}. The dual of X is an infinite
3-valent tree, and X is obtained from X by removing all vertices. See Fig-
ure 2.

2.3. Lorentzian geometry. We see G := PSL2(R) as the isometry group
of the hyperbolic plane H2, and the Lie algebra g := psl2(R) as the space of
Killing vector fields on H2. The Killing form on g, multiplied by 1

2 , makes

g isometric to Minkowski space (R2,1, 〈·|·〉). Viewing H2 as one sheet (call
it “future”) of the negative-unit hyperboloid of g, we can then identify the
isometry action of G on H2 with the adjoint action. For Y ∈ g, we write
‖Y‖ :=

√
〈Y|Y〉 and let dH2 be the hyperbolic distance function.

Fact 2.1. The following are classical:

(1) If Y ,Z ∈H2 ⊂ g, then ‖Y −Z‖= 2sinh(dH2(Y ,Z)/2).
(2) If Y ,Z ∈ g satisfy ‖Y‖2 = ‖Z‖2 = 1 and the hyperbolic half-planes PY :=

{u ∈ H2 | 〈u|Y〉 ≥ 0} and PZ := {u ∈ H2 | 〈u|Z〉 ≥ 0} are disjoint, then
‖Y −Z‖= 2cosh(dH2(PY , PZ)/2).

(3) If Y ,Z ∈ g are future-pointing lightlike (i.e., isotropic) vectors represent-
ing ideal points y, z ∈ ∂∞H2, a Killing field U ∈ g belongs to R>0Y−R>0Z
if and only if U represents an infinitesimal translation of axis perpendic-
ular to the hyperbolic line yz, with y to the left and z to the right of the
axis. The velocity of that Killing field along its axis is then just ‖U‖.

2.4. Convexity criterion. We can use Killing fields to express the local
convexity of the hypersurface f(X) at a codimension-1 face, as follows.
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2.4.1. The thrice punctured sphere. For (S, g) a hyperbolic thrice punctured
sphere, let α, β, γ be the arcs of the triangulation τ of Section 2.2.1 and let
δ be the arc obtained by flipping α in τ .

Note that (α,β, γ) and (β,γ, δ) are top-dimensional faces of the arc com-
plex X . Let us consider local convexity at the edge f([β,γ]) = f([α,β, γ]) ∩
f([β,γ, δ]), corresponding to the flip that replaces α with δ. By the discussion1

preceding Conjecture 1.2, there exists a relationship of the form

(2.2) Bf(β) +Cf(γ)−Af(α)−Df(δ) = 0 ∈ T[g]F
for some (A,B,C,D) ∈ R4 � {0}, unique up to scalar multiplication, and we
can assume B +C > 0 and A,D > 0. Convexity at f([β,γ]) is the property

(2.3) A+D<B +C.

Lift all arcs α, β, γ, δ to H2, obtaining a tiling T of H2 into infinitely many
triangles (or “tiles”), each with one right angle and two hyperideal vertices.
This tiling is equivariant with respect to a holonomy representation

ρ : π1(S)→ PSL2(R)� Isom+
(
H2

)
.

The relationship (2.2) expresses the fact that appropriate infinitesimal strip
deformations on β, γ can cancel out appropriate infinitesimal strip deforma-
tions on α, δ, yielding the trivial deformation of S. This can be interpreted
(see [1, Section 4]) as an assignment of a Killing field to each tile, via a map

ψ : T → psl2(R)�Kill
(
H2

)
satisfying the following properties:

(i) Equivariance: for any tile t ∈ T and any η ∈ π1(S), we have ψ(η · t) =
Ad(ρ(η))(ψ(t)); in other words ψ defines a tilewise Killing field on the
quotient S of H2;

(ii) Vertex consistency: if t1, t2, t3, t4 are the tiles adjacent to a lift of the
vertex α∩ δ, numbered clockwise, then ψ(t1)−ψ(t2)+ψ(t3)−ψ(t4) = 0;
in other words, the ψ(ti) form a parallelogram in psl2(R);

(iii) Edge increments: suppose the geodesic line λ of H2 is a lift of the arc
β (resp. γ, α, δ), and p ∈ λ is the lift of the corresponding waist. If λ
separates two adjacent tiles t, t′ ∈ T , then the “increment” ψ(t)−ψ(t′) is
a Killing field representing an infinitesimal translation whose axis is the
perpendicular to λ through the lifted waist p, and whose signed velocity
(measured towards t) is the real number B (resp. C, −A, −D).

The increment condition (iii) expresses the fact that the relative motion of
adjacent tiles is given by some strip deformation. The vertex condition (ii) can
be rephrased thus: the point α∩ δ cuts α in two halves, but the increment of
ψ (i.e., relative motion) across either half is the same. Condition (i) expresses

1 Proposition 1.1, which informs this discussion, is also easily verifiable by hand via (2.1)

here, using the three boundary lengths as coordinates for F .
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the fact that the linear combination of all 4 (signed) strip deformations is
trivial in T[g]F .

We can turn this Killing-field interpretation around:

Criterion 2.2. Conversely, if we exhibit an assignment ψ of Killing fields
to tiles, satisfying (i)–(ii)–(iii) for some reals A, B, C, D with A,D > 0,
then local convexity of f(X) at the edge f([β,γ]) (where f is defined for the
waists induced by the translation axes of the increments of ψ) amounts to the
inequality (2.3) above: A+D<B +C.

In the rest of the paper, we will therefore check convexity of f by exhibiting
special Killing fields and computing their velocities A, B, C, D.

2.4.2. The once punctured torus. The discussion of Section 2.4.1 is essentially
unchanged when S is a hyperbolic once-punctured torus and α,β, γ the arcs of
a triangulation. The only difference is that the tiles are no longer right-angled
in general, because α need not intersect its flip δ perpendicularly (unless β, γ
have equal lengths). This loss is mitigated by the fact that α, δ intersect at
their midpoints, which becomes a natural choice of waist.

3. Proof of Theorem 1.3 for the thrice punctured sphere

In this section S is the thrice punctured sphere.

3.1. A bad choice of waists: Midpoints. We begin by remarking that,
for some hyperbolic metrics g on S, picking waists at the midpoints of the
arcs would not define a strip map f :X → T[g]F with convex image. Indeed,
suppose (S, g) has boundary components a, b, c of lengths 0< 	a  1 = 	b = 	c.
Let α, β, γ, δ denote the the arcs bc, ca, ab, aa respectively, where an arc
is referred to by the two boundary components it connects. Then the length
	(α) is on the order of 1, and 	(β) = 	(γ)� 1: see Figure 3.

Figure 3. A thrice punctured sphere with a short loop.
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We know that there exist reals A, B, C, D with A,D > 0 satisfying (2.2).
By symmetry, we can assume B = C = 1. Let us prove that A +D > 2 =
B +C, in violation of local convexity (2.3).

The Fricke–Teichmüller space F is coordinatized by the three boundary
lengths 	a, 	b, 	c, hence the range T[g]F of f admits a dual basis (d	a,d	b,d	c).
By (2.1), the length of b is not affected by the infinitesimal deformations f(δ)
and f(β), that is, d	b(f(δ)) = d	b(f(β)) = 0, because b ∩ δ = b ∩ β = ∅. It
is affected at roughly unit rate by f(α) because the arc α has length on
the order of 1 and intersects b. But it is affected at a huge rate by f(γ)
because the waist on γ is far away from b. So the identity d	b(f(β)+f(γ)) =
d	b(Af(α) +Df(δ)), true by (2.2), can only hold if A is itself huge. Thus,
A+D> 2, proving that f has nonconvex image.

3.2. A good choice of waists. In a general hyperbolic thrice-punctured
sphere S, the arcs α, δ intersect orthogonally (at the midpoint of δ but not of
α): we pick this point for the waists pα and pδ , and do the same for the pair
formed by β (resp. γ) and its flip. Let us prove that under this choice, f has
convex image.

The following is a hyperbolic generalization of a classical Euclidean fact.

Lemma 3.1. Let α0, α1, α2 be lines in H2 bounding half-planes with disjoint
closures in H2 ∪ ∂∞H2 (i.e., the sides of a hyperideal triangle). Let βi be the
common perpendicular of αi+1 and αi−1 (indices modulo 3). The height hi is
the common perpendicular to βi and αi, intersecting αi at the foot pi. Then
the heights hi are the inner angle bisectors of the triangle p0p1p2.

Proof. By a compactness argument, there exist points p′i ∈ αi such that
the triangle p′0p

′
1p

′
2 has minimum possible perimeter. By Snell’s law, αi is the

outer angle bisector at the vertex p′i: so it is enough to prove that p′i = pi.
In Minkowski space (R2,1, 〈·|·〉), embed H2 as the upper unit hyperboloid.

Let vi ∈ R2,1 be the unit spacelike vector (〈vi|vi〉 = 1) such that 〈p′i+1|vi〉 =
0= 〈p′i−1|vi〉 and 〈p′i|vi〉> 0. By symmetry, αi = ker〈·|vi+1 + vi−1〉 ∩H2, and

ker〈·|vi+1 − vi−1〉 ∩H2 is the line h′
i perpendicular to αi at p

′
i.

Let (w0,w1,w2) be the dual basis to (v0, v1, v2), that is, 〈wi|vj〉= δij . Then
wi+1 +wi−1 −wi pairs to 0 against vi + vi+1 and vi + vi−1 and vi+1 − vi−1.
This means that αi−1, αi+1 and h′

i have a common perpendicular (necessarily
βi). Therefore, h′

i = hi, hence p′i = pi as desired. (We may also note that all
three heights hi = h′

i run through the point of H2 collinear with w0+w1+w2,
since that vector pairs to 0 against vi+1 − vi−1.) �

We now return to the thrice punctured sphere S. Let α, β, γ be the arcs
connecting distinct boundary components; the waists pα, pβ , pγ are the feet
of the heights of the hyperideal triangle with sides α, β, γ. The point pα = pδ
is also the midpoint of the flipped arc δ, and δ is also the height crossing α.

Denote by 2â, 2b̂, 2ĉ the interior angles of the triangle pαpβpγ (Figure 4).
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Figure 4. Four colored tiles t1, . . . , t4 of a 3-punctured
sphere S, in the universal cover. The white lines are heights.
The axes 	i of all four Killing fields ψ(ti) run through pα.

The arcs β, γ, α, δ subdivide S into four (quotient) tiles t1, t2, t3, t4.
Each tile ti is a right-angled pentagon containing pα as a vertex, and either
pβ or pγ as an interior point of the opposite edge. Let 	i ⊂ ti be the segment
connecting these two points, oriented towards pα. Assign to each tile ti the
Killing field ψ(ti) defining a unit-velocity infinitesimal translation along 	i.
Note that ψ respects the symmetry of S defined by reflection in the edges
α, β, γ. We claim that ψ (or strictly speaking, its lift to H2) satisfies the
convexity Criterion 2.2:

• Equivariance is true by construction of the lift;
• Vertex consistency follows from Lemma 3.1: the points ψ(t1), . . . , ψ(t4) form
a rectangle in psl2(R), hence in particular a parallelogram;

• The local increment ψ(t) − ψ(t′) across any edge separating tiles t, t′ is
an (infinitesimal) loxodromy of axis perpendicular to t ∩ t′, in the correct
direction, passing through the correct waist. Indeed:
– The increment across (either half of) α is, by symmetry, a translation of
velocity A := 2cos â, along an axis perpendicular to α at pα, pushing the
adjacent tiles towards each other.

– The increment across (either half of) δ is a translation of velocity D :=
2 sin â along an axis perpendicular to δ at pδ = pα, pushing the adjacent
tiles towards each other.
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– Using symmetry across β, the increment at the edge β is a translation of

velocity B := 2cos b̂ along an axis perpendicular to β at pβ , pushing the
adjacent tiles away from each other.

– Similarly, the increment across γ is a translation of velocity C := 2cos ĉ
along an axis perpendicular to γ at pγ , pushing the adjacent tiles away
from each other.

• The convexity inequality (2.3) to be checked thus becomes 2cos â+2sin â <

2cos b̂+ 2cos ĉ. This holds true: indeed

cos b̂+ cos ĉ > 1 + cos(b̂+ ĉ)> 1 + cos(π/2− â)> cos â+ sin â,

where the first bound is due to concavity of cos, and the second to π
2 >

â+ b̂+ ĉ (since 2â, 2b̂, 2ĉ are the angles of a hyperbolic triangle).

This proves Theorem 1.3 for the thrice punctured sphere.

4. Proof of Theorem 1.3 for the once punctured torus

In the remainder of the paper, S is a once punctured torus. Let α, β, γ
be the edges of a hyperideal triangulation of S, and δ the edge obtained by
flipping α.

The waist pα of α, still defined as the point α∩ δ, is necessarily fixed under
the hyperelliptic involution: pα is now the midpoint of α and of δ.

4.1. Loxodromic commutator. Let a, b, c, d denote the half-lengths of
α, β, γ, δ. Let S′ denote the surface S extended by a funnel glued along ∂S.
Place a lift p of pα = pδ at the center of the projective model of H2 in P(R2,1).
Lifts of the edges β, γ then define a fundamental domain of S′, equal to the
intersection of H2 with a parallelogram Π (Figure 5).

Figure 5. Left: lengths in a fundamental domain (right-
angled 8-gon) of the punctured torus S made of 4 tiles
t1, . . . , t4 in H2. Dark dots in H2 are waists. Right: Killing
field assignments in the 8 tiles (abbreviating sinh to sh).
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The boundary of S lifts to lines truncating the corners of Π. These lines
are dual to unit spacelike vectors A, D, A′, D′ projecting to the vertices of
Π, such that α⊂ span(A,A′) and δ ⊂ span(D,D′). We may assume that the
counterclockwise order of vertices of Π goes: [A], [D], [A′], [D′]. In R2,1, the
third (p-parallel) coordinates of A, D, A′, D′ are respectively, sinha, sinhd,
sinha, sinhd; thus

(4.1)
(
A+A′) sinhd= (

D+D′) sinha.
The lifts of the edges α, δ subdivide Π ∩ H2 into four tiles (t1, t2, t3, t4) =
(pAD, pDA′, pA′D′, pD′A) (see Figure 5), adjacent respectively to tiles
t′1, . . . , t

′
4 outside Π. We pick the following assignment of Killing fields:

ψ(t1) := A sinhd−D sinha, ψ(t3) :=A′ sinhd−D′ sinha,

ψ(t2) := D sinha−A′ sinhd, ψ(t4) :=D′ sinha−A sinhd.

Note that the ψ(ti) are infinitesimal translations whose axes run perpendic-
ular2 to the sides of Π, into Π, because the 4 vectors on the right-hand sides
belong to the correct 2-plane quadrants by Fact 2.1(3). We extend ψ by sym-
metry under the π-rotations σ1, σ2, σ3, σ4 around the waists (midpoints) of
the outer edges of t1, t2, t3, t4, seen as lifts of β, γ, β, γ, respectively. This
forces each edge increment ψ(ti)−ψ(t′i) to have its axis run through the cor-
responding edge midpoint Fix(σi), that is, the correct waist. Note that the
π-rotation σ1 around the hyperbolic midpoint of [AD], for example, swaps the
unit spacelike vectors A and D, because it swaps the corresponding boundary
components of the lift of S. This entails

ψ
(
t′1
)
:= D sinhd−A sinha, ψ

(
t′3
)
:=D′ sinhd−A′ sinha,

ψ
(
t′2
)
:= A′ sinha−D sinhd, ψ

(
t′4
)
:=A sinha−D′ sinhd.

We may now check the convexity Criterion 2.2 for ψ. Equivariance is true
by construction: indeed ψ is equivariant with respect to σ1, . . . , σ4 as well as
the π-rotation σ around p, and the image of the holonomy representation is
generated by the σσi.

Consistency at the vertex α∩ δ is the relationship ψ(t1) + ψ(t3) = ψ(t2) +
ψ(t4), which follows from (4.1) (actually both sides vanish).

The increment at the edge β, or AD, is ψ(t1)− ψ(t′1) = (A−D)(sinha+
sinhd), an infinitesimal loxodromy with axis perpendicular to AD (at the
waist), pulling the tile t1 away from t′1, that is, pointing into Π. By Fact 2.1,
its velocity is

B := ‖A−D‖(sinha+ sinhd) = 2cosh b(sinha+ sinh b).

2 Moreover, all four infinitesimal translation axes run through p, because all four vectors

ψ(ti) have vanishing third coordinate; but we will not use this fact.
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The increment at the edge γ, or DA′, is ψ(t2) − ψ(t′2) = (D − A′)(sinha +
sinhd), an infinitesimal loxodromy with axis perpendicular to DA′, pulling t2
away from t′2. Its velocity is

C :=
∥∥D−A′∥∥(sinha+ sinhd) = 2cosh c(sinha+ sinh b).

The increment at the edge α, or pA, is ψ(t1)−ψ(t4) = (A−A′) sinhd (using
(4.1)), an infinitesimal loxodromy with axis perpendicular to AA′, pulling t1
towards t4. Its velocity is

A :=
∥∥A−A′∥∥ sinhd= 2cosha sinhd.

Finally, the increment at the edge δ, or pD, is ψ(t2)−ψ(t1) = (D−D′) sinha
(using (4.1)), an infinitesimal loxodromy with axis perpendicular to DD′,
pulling t2 towards t1. Its velocity is

D :=
∥∥D−D′∥∥ sinha= 2coshd sinha.

It remains to check convexity via (2.3), namely A+D<B +C, i.e.

coshd sinha+ cosha sinhd < (cosh b+ cosh c)(sinha+ sinhd) i.e.,

sinh(a+ d)

sinha+ sinhd
< cosh b+ cosh c.

(4.2)

Let us prove (4.2). If θ denotes the angle formed by the diagonals α and δ of
Π, then a classical trigonometric formula gives (up to permutation)

cosh(2b) = sinha sinhd− cosha coshd cosθ,

cosh(2c) = sinha sinhd+ cosha coshd cosθ.

In particular, cosh(2b) + cosh(2c) depends only on a and d, not on θ. Since

the map x �→
√

x+1
2 , taking cosh(2u) to coshu, is concave, it follows that the

infimal possible value μ of cosh b+ cosh c (with a, d fixed) is approached for
extremal θ, that is, when {cosh(2b), cosh(2c)} = {1,2 sinha sinhd− 1}: thus

μ= 1+
√
sinha sinhd. The following are equivalent:

sinh(a+ d)

sinha+ sinhd
< 1 +

√
sinha sinhd,

sinha(2 sinh2 d
2 ) + sinhd(2 sinh2 a

2 )

sinha+ sinhd
<

√
sinha sinhd,

2 sinh2 d
2

sinhd
+

2sinh2 a
2

sinha
<

√
sinha

sinhd
+

√
sinhd

sinha
.

The last inequality is true: its left-hand side is tanh d
2 + tanh a

2 < 2, while
its right hand side is ≥ 2. This proves convexity, hence Theorem 1.3 for S a
one-holed torus.
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4.2. Elliptic commutator. Let g be an incomplete hyperbolic metric on
the once-punctured torus S whose completion admits a cone singularity of
angle θ ∈ (0,2π). The holonomy representation of g takes the two generators
u, v of π1(S) to two loxodromics with elliptic commutator. In fact, the fixed
points of [u, v], [v,u−1], [u−1, v−1], [v−1, u] in H2 form the vertices of a convex
quadrilateral, equal to a fundamental domain of (S, g) (the generators u±1, v±1

identify opposite sides in pairs). Any element of the arc complex of S is
realized as an embedded geodesic loop α in S, connecting the singularity to
itself.

We can extend to this context the strip construction along α defined in
Section 1.1. The main difference is that there are no funnels to extend the
metric g into: instead, we should remove from (S, g) a neighborhood of the
puncture p, then cut along α and insert an appropriate narrow trapezoid of
H2, and finally extend the new metric all the way to a new cone singularity p′.
The position of p′ is forced by the gluing parameters; see Figure 6.

The strip map f is therefore still well-defined, valued in the tangent space
at the (smooth) point [g] to the representation variety of π1(S). Thus, Con-
jecture 1.2 (convexity of f ) still makes sense, as does the convexity Criterion
2.2 (the only difference is that the Killing fields ψ(·) live on the universal cover
of the regular part of S, which is no longer isometric to H2: but they still
make sense as tilewise Killing fields in the quotient S).

Theorem 4.1. Conjecture 1.2 continues to hold for S a punctured torus
with cone singularity.

Proof. We adapt the method from Section 4.1. Let S be a hyperbolic
punctured torus with cone singularity. We still call α, β, γ the edges (running
from the singularity to itself) of a triangulation of S, and δ the flip of α. The
waist of α is its midpoint, where it intersects δ.

Figure 6. Procedure for inserting a strip into a cone metric
along an arc α. In S, since both endpoints of α are at the
singularity p, we should actually consider a combination of
two such procedures.
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Let a, b, c, d denote the half-lengths of α, β, γ, δ. Place a lift p of pα = pδ
at the center of the projective model of H2 in P(R2,1). Lifts of the edges β, γ
then define a fundamental domain of S, equal to a parallelogram Π⊂H2.

Define unit timelike vectors A, D, A′, D′ projecting to the vertices of Π,
such that α⊂ span(A,A′) and δ ⊂ span(D,D′). In R2,1, the third (p-parallel)
coordinates of A, D, A′, D′ are respectively, cosha, coshd, cosha, coshd;
thus

(4.3)
(
A+A′) coshd= (

D+D′) cosha.
The lifts of the edges α, δ subdivide Π into four tiles (t1, t2, t3, t4) =
(pAD, pDA′, pA′D′, pD′A), adjacent respectively, to t′1, . . . , t

′
4 (each sharing

an edge with Π). We pick the following assignment of Killing fields (the pic-
ture is identical with Figure 5, except [A], [D], [A′], [D′] lie inside the disk
H2, and cosh and sinh are exchanged):

ψ(t1) := A coshd−D cosha, ψ(t3) :=A′ coshd−D′ cosha,

ψ(t2) := D cosha−A′ coshd, ψ(t4) :=D′ cosha−A coshd.

Note that these are infinitesimal translations whose axes run perpendicular
to the sides of Π, because the vectors on the right-hand side belong to the
correct 2-plane quadrants (Fact 2.1(3)). We extend ψ by symmetry under the
π-rotations around the waists (midpoints) of β, γ. Note that the π-rotation
around the hyperbolic midpoint of [AD], for example, swaps the unit timelike
vectors A and D. This entails

ψ
(
t′1
)
:= D coshd−A cosha, ψ

(
t′3
)
:=D′ coshd−A′ cosha,

ψ
(
t′2
)
:= A′ cosha−D coshd, ψ

(
t′4
)
:=A cosha−D′ coshd.

We may now check Criterion 2.2 for ψ. Equivariance (relative to the holo-
nomy representation of the regular part of S) is true by construction. Vertex
consistency ψ(t1) + ψ(t3) = ψ(t2) + ψ(t4) follows from (4.3).

The increment at the edge β, or AD, is ψ(t1)− ψ(t′1) = (A−D)(cosha+
coshd), an infinitesimal loxodromy with axis perpendicular to AD (at the
waist), pulling the tile t1 away from t′1, that is, pointing into Π. By Fact 2.1,
its velocity is

B := ‖A−D‖(cosha+ coshd) = 2sinh b(cosha+ coshd).

The increment at the edge γ, or DA′, is ψ(t2) − ψ(t′2) = (D − A′)(cosha +
coshd), an infinitesimal loxodromy with axis perpendicular to DA′, pulling
t2 away from t′2. Its velocity is

C :=
∥∥D−A′∥∥(cosha+ coshd) = 2sinh c(cosha+ coshd).

The increment at the edge α, or pA, is ψ(t1)−ψ(t4) = (A−A′) coshd (using
(4.3)), an infinitesimal loxodromy with axis perpendicular to AA′, pulling t1
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towards t4. Its velocity is

A :=
∥∥A−A′∥∥ coshd= 2sinha coshd.

Finally, the increment at the edge δ, or pD, is ψ(t2)−ψ(t1) = (D−D′) cosha
(using (4.3)), an infinitesimal loxodromy with axis perpendicular to DD′,
pulling t2 towards t1. Its velocity is

D :=
∥∥D−D′∥∥ cosha= 2sinhd cosha.

It remains to check convexity via (2.3), namely A+D<B +C, that is,

sinhd cosha+ sinha coshd < (sinh b+ sinh c)(cosha+ coshd) that is,

sinh(a+ d)

cosha+ coshd
=

sinh a+d
2

cosh a−d
2

< sinh b+ sinh c.
(4.4)

Let us prove (4.4). If θ denotes the angle formed by the diagonals α and δ of
Π, then a classical trigonometric formula gives (up to permutation)

cosh(2b) = cosha coshd− sinha sinhd cosθ,

cosh(2c) = cosha coshd+ sinha sinhd cosθ.

In particular, cosh(2b) + cosh(2c) depends only on a and d, not on θ. Since

the map x �→
√

x−1
2 , taking cosh(2u) to sinhu, is concave, it follows that the

infimal possible value of sinh b+ sinh c (with a, d fixed) is approached when
θ → 0 or θ → π, hence sinh b+ sinh c→ sinh a+d

2 + sinh |a−d
2 |. This is clearly

≥ sinh a+d
2 / cosh a−d

2 (with equality when a = d, but bear in mind that the
infimal value is not achieved: θ /∈ {0, π}). Theorem 4.1 is proved. �

4.3. Parabolic commutator.

Theorem 4.2. Conjecture 1.2 continues to hold for S a one-cusped torus.

Proof. The case of a cusp (parabolic commutator) can be recovered as a
limit case of an elliptic commutator. Namely, given a one-cusped torus S with
arcs α, β, γ, δ satisfying the combinatorics above, we can find a fundamental
domain in H2 equal to an ideal quadrilateral Π whose diagonals intersect at p.
Denote by pA, pD, pA′, pD′ the diagonal rays issued from p, isometrically
parametrized (respectively) by functions mA,mD,mA′ ,mD′ : [0,+∞) → H2.
Let H ⊂ H2 be the preimage of a fixed small horoball neighborhood of the
cusp. Then there exist reals a, d > 0 such that H2 �H contains exactly the
initial segment mA([0, a]) (resp. mD([0, d]), mA′([0, a]), mD′([0, d])) of the ray
pA (resp. pD, pA′, pD′).

Given t > 0, the convex quadrilateral

Πt :=
(
mA(a+ t),mD(d+ t),mA′(a+ t),mD′(d+ t)

)
of H2 has opposite edges of equal lengths. The isometries taking opposite
edges of Πt to one another define a representation ρt : π1(S)→ PSL2(R) equal
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to the holonomy of a cone metric converging to the initial cusped metric as
t → +∞. Let at, bt, ct, dt be the semi-arc lengths in this cone metric; in
particular at = a+ t and dt = d+ t.

The member ratio of (4.4) is

sinh at+dt

2 / cosh at−dt

2

sinh bt + sinh ct
=

sinh(a+d
2 + t)/ cosh a−d

2

sinh bt + sinh ct
< 1.

To prove convexity of the strip map f , we only need to bound this ratio away
from 1 (and take limits as t→+∞). If a �= d, this comes from the relationship
sinh bt +sinh ct ≥ sinh at+dt

2 +sinh |at−dt

2 | proved at the end of Section 4.2. If

a= d, then up to permutation

cosh(2bt) = cosh2 at − sinh2 at cosθ = 1+ sinh2 at(1− cosθ),

cosh(2ct) = cosh2 at + sinh2 at cosθ = 1+ sinh2 at(1 + cosθ),

where θ is the angle (independent of t) formed by the diagonals of Πt, hence

sinh bt + sinh ct = sinhat

(√
1− cosθ

2
+

√
1 + cosθ

2

)

= sinhat

(
sin

θ

2
+ cos

θ

2

)
.

Since sin θ
2 + cos θ

2 > 1, this gives the desired bound. �

5. Illustrations

Figure 7 was made with the help of the Wolfram Mathematica software.
It shows three views of the image of the strip map f :X → T[g]F � R3, each
for two different hyperbolic tori (S, g): one singular, and one bordered (the
“intermediate” picture for S cusped does not look qualitatively different).
More precisely:

• In the panels on the left, the hyperbolic torus (S, g) has a cone singularity,
connected to itself by 3 disjoint arcs of lengths x, y, z such that

(ξ, η, ζ) :=

(
cosh

x

2
, cosh

y

2
, cosh

z

2

)
= (1.02,1.04,1.07).

The peripheral trace is τ = ( ξ
2+η2+ζ2−1

ξηζ )2 − 2 � 1.98869, making the area

of S equal to 2arccos τ
2 � 0.212809 (this is also 2π minus the cone angle).

• In the panels on the right, (S, g) has a geodesic boundary, connected to
itself by 3 disjoint arcs of lengths x, y, z such that

(ξ, η, ζ) :=

(
sinh

x

2
, sinh

y

2
, sinh

z

2

)
= (2,3,4).

The peripheral trace is τ = −( ξ
2+η2+ζ2+1

ξηζ )2 − 2 = −3.5625, making the

boundary length of S equal to 2arccosh −τ
2 � 2.36057.
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Figure 7. Three views of f(X), with two parameter settings.
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• The top row shows f(X) in R3 as seen from the origin. Note that it is a
convex shape, a consequence of Proposition 1.1: more precisely an “infinite
polygon” whose sides stand in natural bijection with P1Q, or with the
isotopy classes of simple closed curves in S.

• The middle row shows f(X)⊂ R3 in perspective, truncated by some cube
with one corner at the origin. Convexity at every bending edge (Theo-
rem 1.3) is clearly visible at the truncation locus. Note that f(X) is un-
bounded: a unit-rate strip deformation supported on a long arc has a huge
effect on the metric g. Divergence is more drastic in the (nonsingular) sur-
face on the right, because its arcs are longer. The empty-looking sectors
are not an artefact: they correspond to the straight edges bordering the
polygons in the previous row, that is, they are again indexed in P1Q. Each
such empty sector lies in a plane containing the origin (in fact 3 of these
planes are faces of the cube).

• In the bottom row, in order to show the full image f(X) and still emphasize
convexity, we composed f with a somewhat arbitrary projective transfor-
mation Φ of P3R⊃ R3, taking the origin to infinity. The plane at infinity
is sent by Φ to the plane containing the tips of all the “teeth”. The gaps
between the teeth now lie in planes containing the point Φ(0) at infinity.

References
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