
Illinois Journal of Mathematics
Volume 59, Number 4, Winter 2015, Pages 999–1023
S 0019-2082

THUE EQUATIONS AND LATTICES

JEFFREY LIN THUNDER

Abstract. We consider Diophantine equations of the kind
|F (x, y)| =m, where F (X,Y ) ∈ Z[X,Y ] is a homogeneous poly-
nomial of degree at least 3 that has non-zero discriminant, m

is a fixed positive integer and x, y are relatively prime integer

solutions. Our results improve upon previous theorems due to

Bombieri and Schmidt and also Stewart. We further provide

reasonable heuristics for conjectures of Schmidt and Stewart re-
garding such equations.

1. Introduction

Suppose F (X,Y ) ∈ Z[X,Y ] is a homogeneous polynomial of degree d ≥ 3
that has non-zero discriminant and m is a positive integer. In this paper we
are concerned with the number of primitive, that is, x and y are relatively
prime, solutions (x, y) ∈ Z2 to the Thue equation

(1)
∣∣F (x, y)

∣∣=m.

Thue in [9] famously showed that the number of such solutions is necessarily
finite under the hypothesis that F is irreducible over Q. In fact, his method
enabled one to derive an upper bound on the number of solutions, an upper
bound that would depend on m and the polynomial F . Indeed, Lewis and
Mahler in [4] provided just such a bound. Their bound was an explicit function
of m, d and the height of F . Previous to the result of Lewis and Mahler, Siegel
had made the conjecture that an upper bound could be obtained that was
independent of the particular coefficients of the polynomial F . Evertse proved
this conjecture in his doctoral thesis (see [3]). A few years later Bombieri and
Schmidt [2] improved markedly on Evertse’s bound, showing that the number
of primitive solutions to (1) is no more than some fixed (absolute) constant
multiple of d1+ω(m), where ω(m) denotes the number of distinct prime factors
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of m. Given that typically ω(m) is roughly log logm for large m, Schmidt
posited (see [7, Chapter 3, conjecture]) that the number of primitive solutions
to (1) should be bounded above by some multiple (possibly depending on F )
of a power of logm when m> 1.

Two years after the publication of Bombieri and Schmidt’s result, Stewart
[8] provided a bound that was often (depending on the prime factorization of
the parameter m) much stronger than the bound of Bombieri and Schmidt.
Stewart’s main result involved a somewhat complicated quantity, but one can
easily state the following consequence. In what follows, D(F ) denotes the
discriminant of F .

Theorem (Stewart). Suppose F (X,Y ) ∈ Z[X,Y ] is a homogeneous poly-
nomial of degree d≥ 3 with non-zero discriminant and content 1. Let ε > 0.
Suppose m is a positive integer and m′ is a divisor of m relatively prime to
D(F ) that satisfies (m′)1+ε ≥m(2/d)+ε/|D(F )|1/d(d−1). Then the number of
primitive solutions to (1) is at most(

5600d+
1400

ε

)
dω(m′).

The constants 5600 and 1400 here carry no particular importance beyond
specificity. The major improvement over the result of Bombieri and Schmidt is
that the quantity ω(m′) is possibly much smaller than ω(m). See [5] for related
improvements. In the same paper, Stewart explicitly constructed forms of
various degrees to demonstrate lower bounds for the number of primitive
solutions to (1). In so doing he was lead to the following conjecture (see
Section 6 of [8]): there is an absolute constant c1 such that, for all forms F as
in the theorem above, there is a positive c2 (depending on F ) such that (1)
has at most c1 primitive solutions for all m≥ c2.

We will prove that primitive solutions to (1) occur in certain sublattices of
determinant almost m (the “almost” due to possible common prime factors
of m and the discriminant D(F )). Moreover, for F of degree at least 4 and m
sufficiently large we will show that the existence of a primitive solution to (1)
in such a sublattice implies that either the primitive solution gives rise to an
exceptional approximation in the sense of Thue–Siegel–Roth or the sublattice
has an exceptionally small first successive minima in the sense of Minkowski.
In order to state our main results, we introduce a bit of notation.

Denote the set of places of Q by M(Q). For any v ∈ M(Q) we let | · |v
denote the usual v-adic absolute value on Q and Qv denote the topological
completion of Q with respect to this absolute value, though we will continue
to use | · | for the usual Euclidean absolute value. We fix algebraic closures
Qv for each of these and assume that our original v-adic absolute value on Q
is extended to Qv in the usual manner. We follow the standard convention of
identifying the finite places with positive primes.
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Any form (i.e., homogeneous polynomial) F (X,Y ) ∈Q[X,Y ] factors com-
pletely into a product of linear forms over some splitting field:

F (X,Y ) =

d∏
i=1

Li(X,Y ).

This splitting field may be embedded into any Qv ; we abuse notation some-
what and write the above for the factorization of F over Qv for all places
v ∈M(Q). These linear factors are only unique up to a scalar multiple, of
course. As usual, we say a linear form Li(X,Y ) is defined over Qv if all pos-
sible quotients of coefficients are in Qv . For any form F (X,Y ) ∈ Z[X,Y ] and
place v ∈M(Q), set cF (v) to be the number of linear factors that are defined
over Qv . For any integer m> 1, set

cF (m) =
∏
p|m

p prime

cF (p).

Finally, given a form F with non-zero discriminant and positive integer m,
we will often deal with two particular divisors of m determined by the prime
factors common to m and D(F ). For notational convenience, we will set mF

to be the largest divisor of m such that |mF |p < |D(F )|p for all primes p|mF

(assuming m �D(F ) so that such a divisor exists) and

DF (m) =
∏

p prime

|m|p<|D(F )|p

|D(F )|1/2p

|m|p
.

We have DF (mF ) =DF (m) directly from the definitions.

Theorem 1. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree
d≥ 2 with non-zero discriminant and content 1 and suppose m is a positive
integer with |m|p < |D(F )|p for all primes p|m. Then the primitive x ∈ Z2

with m|F (x) are contained in cF (m) sublattices of Z2 of determinant DF (m).
In particular, for all positive m � D(F ) the primitive solutions to (1) lie in
cF (mF ) sublattices of Z2 of determinant DF (m).

We note here that there are no solutions to (1) if cF (mF ) = 0. In other
words, cF (mF ) = 0 implies that there is some local obstruction to solving (1).

One way we may utilize Theorem 1 to bound the number of primitive
solutions to (1) is if there is a sufficiently large divisor m′ of m (akin to that
in Stewart’s result) with cF (m

′) small. In fact, given a sublattice Λ⊆ Z2 of
relatively large determinant, we can provide an upper bound not just on the
number of primitive solutions to (1), but even to the related inequality

(1′)
∣∣F (x, y)

∣∣≤m.
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Theorem 2. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree
d ≥ 3 with non-zero discriminant and content 1. Suppose m is a positive
integer and Λ ⊆ Z2 is a sublattice with det(Λ) = Am2/d/|D(F )|1/d(d−1) for
some A > 0. If A ≥ 54, then the number of primitive points in Λ that are
solutions to (1′) is less than

2 + 2d

(
13 +

31

log(d− 1)
+

log( 2 logmd logA + 2)

log(d− 1)

)
.

If A< 54, then the number of solutions is less than

2 · 54
A

(
2 + 2d

(
13 +

31

log(d− 1)
+

log( logm
2d log 5 + 2)

log(d− 1)

))
.

Corollary. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of de-
gree d ≥ 3 with non-zero discriminant and content 1. Suppose m is a posi-
tive integer and m′ is a divisor of m relatively prime to D(F ) that satisfies
m′ = Am2/d/|D(F )|1/d(d−1) for some A ≥ 1. Then the number of primitive
solutions (x, y) ∈ Z2 to (1′) with m′|F (x, y) is less than

2500d

(
59 +

log(2 + logm/(1 + logA))

log(d− 1)

)
cF

(
m′).

Proof. One readily checks that for d≥ 3, (d/2) logA≥ 1 + logA if A≥ 54

and 2d log 5 ≥ 1 + logA if 1 ≤ A < 54. The rest follows from Theorems 1
and 2. �

Comparing the corollary with the result of Stewart above, our constants are
in the same ballpark even though we are estimating more than just the solu-
tions to (1). Moreover, we can easily replace the 2500 with 2 once A≥ 54. Our

major novelty is replacing Stewart’s dω(m′) term with the explicit cF (m
′) and

the implicit information on the underlying lattice(s). Clearly cF (m
′)≤ dω(m′)

always, but will typically be much smaller, though we remark that a thorough
reading of Stewart’s proof shows that one could use cF (m

′) there (indeed, the
proof in [2] shows that their d1+ω(m) term may be replaced with dcF (m)).
Also, for large m the estimate in Stewart’s result tends to a multiple (depend-

ing on F ) of dω(m′) logm as the divisor m′ approaches m2/d/|D(F )|1/d(d−1),
whereas our estimate is bounded above by a multiple of cF (m

′) log logm.
Again, the most important observation here regards the lattices. It is this
that allows us to provide concrete support for the conjectures of Stewart and
Schmidt above.

We will prove Theorems 1 and 2 in the next two sections. In Section 4
we will use Theorem 1 together with gap arguments to provide reasonable
heuristics for Stewart’s conjecture above when the degree d ≥ 5, and for a
strong form of Schmidt’s conjecture when d= 4.
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2. Lattices arising from Thue equations

Our goal in this section is to prove Theorem 1. For the remainder of
this paper, we will use a bold-faced font to denote the coefficient vector of
a form (e.g., F for the coefficient vector of a form F ). We let ‖ · ‖p denote

the supremum norm for vectors over Qp for primes p and let ‖ · ‖ denote the
usual Euclidean norm for vectors over C. Given a form F (X,Y ) with its

factorization into linear forms, F (X,Y ) =
∏d

i=1Li(X,Y ), we set

H(F ) =

d∏
i=1

‖Li‖.

We note that

‖F‖p =
d∏

i=1

‖Li‖p

for all primes p by Gauss’ lemma.
Our first step in the proof of Theorem 1 is the following non-archimedean

version of [10, Lemma 4]. In what follows, for any vector v we denote the
transpose (column vector) by vtr.

Lemma 1. Let K be a topologically complete field with respect to a non-
archimedean absolute value | · |′ and L1(X), . . . ,Ln(X) ∈K[X] be n linearly
independent linear forms in n variables. Let ‖ · ‖′ denote the supremum norm
on Kn. Suppose x ∈Kn and j is such that

|Lj(x)|′
‖Lj‖′

≥ |Li(x)|′
‖Li‖′

for i= 1, . . . , n. Then

|Lj(x)|′
‖Lj‖′

≥ ‖x‖′|det(Ltr
1 , . . . ,L

tr
n )|′∏n

i=1 ‖Li‖′
.

Proof. The statement is obvious if x = 0, so suppose otherwise. Then
without loss of generality, we may assume ‖Li‖′ = 1 for all i and ‖x‖′ = 1.
Let T denote the n× n matrix with rows Li and write

m= min
y∈Kn

‖y‖′=1

{∥∥Tytr
∥∥′}, M= max

y∈Kn

‖y‖′=1

{∥∥Tytr
∥∥′}.

Suppose ‖Txtr
1 ‖′ =m and ‖x1‖′ = 1. Choose x2, . . . ,xn ∈Kn, all of length 1,

that also satisfy |det(xtr
1 , . . . ,x

tr
n )|′ = 1. We then have∣∣det(T )∣∣′ = ∣∣det(T )∣∣′∣∣det(xtr

1 , . . . ,x
tr
n

)∣∣′ = ∣∣det(Txtr
1 , . . . , Tx

tr
n

)∣∣′
≤

n∏
l=1

∥∥Txtr
l

∥∥′
≤ mMn−1.
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Since ‖Li‖′ = 1 for all i and the absolute value is non-archimedean we have
M ≤ 1, so that m ≥ |det(T )|′. On the other hand, by our choice of j we
also have |Lj(x)|′ ≥ |Li(x)|′ for all i= 1, . . . , n. Since ‖ · ‖′ is the supremum
norm, these n inequalities (and the definition of T ) imply that |Lj(x)|′ ≥
‖Txtr‖′ ≥m. Thus∣∣Lj(x)

∣∣′ ≥m≥
∣∣det(T )∣∣′ = ∣∣det(Ltr

1 , . . . ,L
tr
n

)∣∣′. �

Lemma 2. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree
d≥ 2 with non-zero discriminant and write

F (X,Y ) =

d∏
i=1

Li(X,Y ),

where Li(X,Y ) is a linear form for all i= 1, . . . , d. Suppose x ∈Q2. Then for
any place v ∈M(Q), if i0 is an index with

|Li0(x)|v
‖Li0‖v

= min
1≤i≤d

{
|Li(x)|v
‖Li‖v

}
,

then

|Li0(x)|v
‖Li0‖v

≤

⎧⎨
⎩

2d−1|F (x)|H(F )d−2

‖x‖d−1|D(F )|1/2 if v =∞,

|F (x)|v‖F‖d−2
v

‖x‖d−1
v |D(F )|1/2v

otherwise.

Further, if v = p is a prime with

|F (x)|p
‖F‖p

<
‖x‖dp|D(F )|p
‖F‖2(d−1)

p

,

then the index i0 above is unique and Li0 is defined over Qp.

Proof. By Lemma 1 if v �=∞ and [10, Lemma 4] if v =∞, we have

(2)
|Li(x, y)|v
‖Li‖v

≥

⎧⎪⎨
⎪⎩

‖x‖|det(Ltr
i0

,Ltr
i )|

2‖Li0‖‖Li‖ if v =∞,

‖x‖v|det(Ltr
i0

,Ltr
i )|v

‖Li0‖v‖Li‖v
otherwise

for all i �= i0, since the linear forms L1(X,Y ), . . . ,Ld(X,Y ) are pairwise lin-
early independent (because the discriminant is non-zero). We also have
Hadamard’s inequality

|det(Ltr
i ,L

tr
j )|v

‖Li‖v‖Lj‖v
≤ 1

for all places v ∈M(Q) and all indices i, j.
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If v =∞, then by (2), Hadamard’s inequality and the definition of H(F )
we get

|F (x)|
H(F )

=
|F (x)|

‖L1‖ · · · ‖Ld‖
=

d∏
i=1

|Li(x)|
‖Li‖

≥ |Li0(x)|
‖Li0‖

∏
i �=i0

‖x‖|det(Ltr
i0
,Ltr

i )|
2‖Li0‖‖Li‖

=
‖x‖d−1|Li0(x)|

2d−1‖Li0‖
∏
i �=i0

|det(Ltr
i0
,Ltr

i )|
‖Li0‖‖Li‖

≥ ‖x‖d−1|Li0(x)|
2d−1‖Li0‖

∏
i>j

|det(Ltr
i ,L

tr
j )|

‖Li‖‖Lj‖

=
‖x‖d−1|Li0(x)|

2d−1‖Li0‖
|D(F )|1/2
H(F )d−1

.

If v �=∞ then in a similar manner but using Gauss’ lemma with ‖F‖v in place
of H(F ) above, we see that

|F (x)|v
‖F‖v

≥ ‖x‖d−1
v |Li0(x)|v
‖Li0‖v

|D(F )|1/2v

‖F‖d−1
v

.

This proves the first part of the lemma.
Now suppose v = p a prime and there is an index i1 �= i0 with

|Li1(x)|p
‖Li1‖p

= min
1≤i≤d

{
|Li(x)|p
‖Li‖p

}
.

Then Lemma 1 would also give

(3)
|Li0(x)|p
‖Li0‖p

≥
‖x‖p|det(Ltr

i0
,Ltr

i1
)|p

‖Li0‖p‖Li1‖p
.

Using (2), (3) and Hadamard’s inequality yields

|F (x)|p
‖F‖p

=
|F (x)|p

‖L1‖p · · · ‖Ld‖p
=

d∏
i=1

|Li(x)|p
‖Li‖p

≥ ‖x‖dp
|det(Ltr

i1
,Ltr

i0
)|p

‖Li0‖p‖Li1‖p
∏
i �=i0

|det(Ltr
i0
,Ltr

i )|p
‖Li0‖p‖Li‖p

≥ ‖x‖dp
∏
i �=j

|det(Ltr
i ,L

tr
j )|p

‖Li‖p‖Lj‖p

=
‖x‖dp|D(F )|p

‖L1‖2(d−1)
p · · · ‖Ld‖2(d−1)

p

=
‖x‖dp|D(F )|p
‖F‖2(d−1)

p

.
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Therefore if
‖F (x)‖p
‖F‖p

<
‖x‖dp|D(F )|p
‖F‖2(d−1)

p

the index i0 is unique. Finally, to see that Li0 is defined over Qp, suppose
this were not the case. Then without loss of generality (i.e., possibly in-
troducing a scalar multiple) there would be a σ in the Galois group of Qp

over Qp with σ(Li0) = Li1 for some i1 �= i0 between 1 and d. We then have
|Li1(x)|p = |Li0(x)|p and ‖Li1‖p = ‖Li0‖p (see [1, Chapter 2, Theorem 7]),
which contradicts what we have already proven. �

Lemma 3. Suppose p is a prime and L(X,Y ) ∈ Zp[X,Y ] is a linear form
with ‖L‖p = 1. Then for all integers c≥ 0 the set

Sp :=
{
z ∈ Z2

p :
∣∣L(z)∣∣

p
≤ p−c

}
is a Zp-submodule with index [Z2

p : Sp] = pc.

Proof. Suppose z1,z2 ∈ Sp and z ∈ Zp. Then∣∣L(z1 + z2)
∣∣
p
=
∣∣L(z1) +L(z2)

∣∣
p
≤max

{∣∣L(z1)∣∣p, ∣∣L(z2)∣∣p}≤ p−c

and ∣∣L(zz1)∣∣p = ∣∣zL(z1)∣∣p = |z|p
∣∣L(z1)∣∣p ≤ p−c,

so that Sp is a Zp-module.
Write L(X,Y ) = a1X + a2Y . Then ‖L‖p =max{|a1|p, |a2|p}= 1. Suppose

first that |a1|p = 1 and set z1 = (1,0) and z2 = (a2,−a1). Then z1,z2 ∈ Z2
p

and so Z2
p ⊇ {xz1 + yz2 : x, y ∈ Zp}. On the other hand, given (b1, b2) ∈ Z2

p we
can write

(b1, b2) =
(
b1 + b2a2a

−1
1

)
z1 − b2a

−1
1 z2.

Since |a1|p = 1, a−1
1 ∈ Zp and so b1 + b2a2a

−1
1 , b2a

−1
1 ∈ Zp. We thus see that

we have the reverse inclusion as well: Z2
p ⊆ {xz1 + yz2 : x, y ∈ Zp}. Hence,

Z2
p = {xz1 + yz2 : x, y ∈ Zp}. Now using L(z2) = 0 and |L(z1)|p = |a1|p = 1,

we see that

Sp =
{
xz1 + yz2 : x, y ∈ Zp, |x|p ≤ p−c

}
.

This shows that the index [Z2
p : Sp] is the index of {x ∈ Zp : |x|p ≤ p−c} in Zp,

which is pc.
If |a1|p < 1, then we must have |a2|p = 1 and in this case we set z1 = (0,1).

The proof in this case is exactly as above but with a−1
2 ∈ Zp now. �

Lemma 4. Let P be a finite set of prime numbers and for every p ∈ P let
Lp(X,Y ) ∈ Zp[X,Y ] be a linear form with ‖Lp‖p = 1. For each p ∈ P let ap
be a non-negative integer and set

Sp =
{
(x, y) ∈ Z2

p :
∣∣Lp(x, y)

∣∣
p
≤ p−ap

}
.
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Set Sp = Z2
p for all primes p /∈ P . Then

Λ :=
⋂

p prime

Q2 ∩ Sp

is a sublattice of Z2 with

det(Λ) =
∏
p∈P

pap .

Proof. Since Sp = Z2
p for all but finitely many primes p, by [12, Chapter V,

Theorem 2] Λ is the unique sublattice of Z2 whose closure in Q2
p for all primes

p is Sp. (Using the notation of that result, set k =Q, E =Q2, L= Z2, M =Λ,
Lp = Z2

p and Mp = Sp for all primes p.) We thus may compute the index of

Λ in Z2 via [12, Chapter V, Theorem 4, Corollary 1]:[
Z2 : Λ

]
=

∏
p prime

[
Z2
p : Sp

]
.

Now det(Λ) = [Z2 : Λ] by definition and [Z2
p : Sp] = pap if p ∈ P by Lemma 3.

If p /∈ P then [Z2
p : Sp] = [Z2

p : Z
2
p] = 1 by construction. The lemma follows. �

Proof of Theorem 1. If x ∈ Z2 with m|F (x) and p is a prime dividing m,
then |F (x)|p ≤ |m|p < |D(F )|p. If x is a primitive point and the content of F
is 1, then by Lemma 2 there is a unique linear factor Lp(X,Y ) ∈Qp[X,Y ] of
F with

|Lp(x)|p
‖Lp‖p

≤ |F (x)|p
|D(F )|1/2p

≤ |m|p
|D(F )|1/2p

since now ‖x‖p = 1 = ‖F‖p. After possibly rescaling may assume without
loss of generality that our linear factor Lp(X,Y ) ∈ Zp[X,Y ], ‖Lp‖p = 1, and
whence ∣∣Lp(x)

∣∣
p
≤ |F (x)|p

|D(F )|1/2p

≤ |m|p
|D(F )|1/2p

.

We do this for all primes p dividing m and then invoke Lemma 4, obtaining
a sublattice Λ of Z2 that contains our primitive point x and has determinant

det(Λ) =
∏

p prime

p|m

|D(F )|1/2p

|m|p
=DF (m).

On the other hand, there are cF (p) possible linear factors Lp(X,Y ) here
for each prime p by definition, whence cF (m) possible sublattices when we
consider all primes dividing m. �
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3. Proof of Theorem 2

If F (X,Y ) is any form and Λ = Zz1 ⊕ Zz2 is a lattice, then considering
solutions z ∈ Λ to (1′) is the same as considering solutions (x, y) ∈ Z2 to the
inequality |FΛ(x, y)| ≤m, where the form FΛ(X,Y ) := F (Xz1 + Y z2). The
choice of basis is not unique here of course. We may also view FΛ(X,Y ) as
a composition F ◦ T , where T ∈GL2(R) sends the canonical basis of Z2 to a
basis of Λ. Note that a different choice of basis amounts to multiplying T by
an element of GL2(Z).

In addition to H(F ), our proof will involve two additional heights; we define

M(F ) = min
T∈GL2(Z)

H(F ◦ T ) and

m(F ) = min
T∈GL2(R)

|det(T )|=1

H(F ◦ T ).

We remark that in general (see [11, Lemma 1]) for any form F of degree d
and any T ∈GL2(R),

D(F ◦ T ) =D(F )det(T )d(d−1),

m(F ◦ T ) = m(F )
∣∣det(T )∣∣d/2,(4)

M(F ) ≥ m(F )≥
∣∣D(F )

∣∣1/2(d−1)
.

In particular, we see that |D(FΛ)|, m(FΛ) and M(FΛ) are all well-defined
(i.e., are independent of the particular choice of basis). For a given positive
integer m we set M(FΛ,m) to be the minimum of H(FΛ) over all bases z1,z2
of Λ with z1 a solution to (1′), assuming such a primitive solution exists.

The main idea for determining solutions to (1′) is to say that some linear
factor of F must be relatively small for a given solution. For example, suppose

we rewrite F (X,Y ) = a
∏d

i=1(X − αiY ). Now if (x, y) ∈ Z2 is any solution to
(1′) with y �= 0, then

(5) |αi − x/y| ≤ d2d−1mH(F )d−2

|y|d|D(F )|1/2 = d2d−1
(
H(F )/m

)d−2 md−1

|D(F )|1/2
1

|y|d

for some index i by [6, Chapter 3, Lemmas 3A and 3B]. Considering the
inequality (5), one can see that the major goal is to estimate those solutions
x= (x, y) to (1′) with |y| small, so that any remaining solutions may be dealt
with using gap arguments and ultimately a quantitative version of Roth’s
theorem. We will use the following as the main part of our proof of Theorem 2.

Proposition. Suppose F (X,Y ) ∈ Z[X,Y ] is a form of degree d≥ 3 with
non-zero discriminant and content 1, m is a positive integer and Λ⊆ Z2 is a
lattice with det(Λ) = Am2/d/|D(F )|1/d(d−1). If Λ contains a primitive solu-
tion to (1′), then M(FΛ,m)≥ Ad/2m and if A≥ 54 the number of primitive
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solutions to (1′) in Λ is less than

2 + 2d

(
13 +

log 2103353

log(d− 1)
+

log 293352

log(d− 5/4)

+
log( logm

log(M(FΛ,m))−logm + 2)

log(d− 1)

)
.

The proof of the proposition will rely on a few lemmas, though we note
that the inequalities M(FΛ,m) ≥ M(FΛ) ≥ Ad/2m follow directly from the
definitions, (4) and the hypotheses. We assume Λ = Zz0 ⊕ Zz′0 where z0 is a
primitive solution to (1′) and M(FΛ,m) =H(FΛ). We will write

F (X,Y ) =
d∏

i=1

Li(X,Y ),

FΛ(X,Y ) =

d∏
i=1

(
XLi(z0) + Y Li

(
z′0
))

= F (z0)

d∏
i=1

(X + αiY ),

where αi = Li(z
′
0)/Li(z0). For notational convenience, in what follows we

will denote the quantity M(FΛ,m)/m by B. The hypothesis that A ≥ 54

thus implies that B ≥ 52d.
With the above conventions in place, we see by (4) and (5) that for any

solution z= xz0 + yz′0 ∈ Λ to (1′) with y �= 0 there is some index i with

|αi − x/y| ≤ d2d−1md−1Bd−2

|y|d|D(FΛ)|1/2
(6)

=
d2d−1md−1Bd−2

|y|d|D(F )|1/2 det(Λ)d(d−1)/2

≤ d2d−1Bd−2

|y|d(54)d(d−1)/2

<
Bd−2

2|y|d .

We may utilize a standard gap principle argument to estimate those solutions
with |y|>B (see Lemma 7 below). Eventually we come to the point where a
quantitative version of Roth’s theorem is invoked (Lemma 8). But before we
do that, we deal with those solutions where |y| is smaller. The following is a
variation on [6, Chapter 3, Lemma 5B].

Lemma 5. For every primitive lattice point z = xz0 + yz′0 ∈ Λ with y �= 0
that is a solution to (1′), there are ψ1(z), . . . , ψd(z) ∈ [0,1] that, if not zero,

are at least 1/(2d), satisfy
∑d

i=1ψi(z)≥ 1/2, and also

|Li(z0)|
|Li(z)|

≥
(
Bψi(z) − 2

)
|y|

for all i= 1, . . . , d.
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Proof. We first claim that 2|Li0(z0)| ≤ |Li0(z)| for some index i0. In-
deed, if this were not the case then Λ′ := Zz0 ⊕ Zz is a sublattice of Λ and
FΛ′(X,Y ) := F (Xz0 + Y z) satisfies

H(FΛ′)2 =

d∏
i=1

∣∣Li(z0)
∣∣2 + ∣∣Li(z)

∣∣2

<

d∏
i=1

5
∣∣Li(z0)

∣∣2 ≤ 5dm2

since z0 is a solution to (1′). But now by (4) and the hypotheses we have a
contradiction:

5d/2m>H(FΛ′)≥m
(
F ′)

= m(F )det
(
Λ′)d/2

≥ m(F )det(Λ)d/2

≥
∣∣D(F )

∣∣1/2(d−1)
det(Λ)d/2

≥ 52dm.

With the claim shown, choose an index i0 with 2|Li0(z0)| ≤ |Li0(z)|. Since
z is a primitive lattice point there is a z′ ∈ Λ with Λ = Zz⊕Zz′. Further, we
may add any integer multiple of z to z′ here. Thus, we may choose z′ such
that α := (Li0(z

′)/Li0(z)) satisfies |α| ≤ 1/2. We now write z0 = zz+ z′z′

for some z, z′ ∈ Z with |z′|= [Λ : Zz0⊕Zz] = |y|. For any linear form L(X,Y )
we have

L(z0)

L(z)
= z + z′

L(z′)

L(z)
.

In particular, using L= Li0 we see that |z+ z′α| ≤ 1/2, and for all i= 1, . . . , d

|Li(z0)|
|Li(z)|

=

∣∣∣∣z + z′
Li(z

′)

Li(z)

∣∣∣∣(7)

=

∣∣∣∣z′
(
Li(z

′)

Li(z)
− α

)
+ z + z′α

∣∣∣∣
≥

∣∣∣∣z′
(
Li(z

′)

Li(z)
− α

)∣∣∣∣− ∣∣z + z′α
∣∣

≥
∣∣z′∣∣(∣∣∣∣Li(z

′)

Li(z)

∣∣∣∣− 1

2

)
− 1

2

≥ |y|
(∣∣∣∣Li(z

′)

Li(z)

∣∣∣∣+ 1− 2

)
.
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Since |F (z)| ≤m and Λ= Zz⊕Zz′,

d∏
i=1

(
1 +

∣∣∣∣Li(z
′)

Li(z)

∣∣∣∣
)
≥

d∏
i=1

√
1 +

∣∣∣∣Li(z′)

Li(z)

∣∣∣∣
2

(8)

=
1

|F (z)|

d∏
i=1

√∣∣Li(z)
∣∣2 + ∣∣Li

(
z′
)∣∣2

≥ M(FΛ,m)

|F (z)|
≥ B.

We define ψi(z) by

Bψi(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B if |Li(z

′)
Li(z)

|+ 1≥B,

1 if |Li(z
′)

Li(z)
|+ 1<B1/(2d),

|Li(z
′)

Li(z)
|+ 1 otherwise.

Now by construction 0≤ ψi(z)≤ 1 for all i= 1, . . . , d and any ψj(z)≥ 1/2d if

it isn’t zero. We have
∑d

i=1ψi(z)≥ 1 if any ψj(z) = 1, so suppose ψi(z)< 1
for all i= 1, . . . , d. Then by (8)

B1/2
d∏

i=1

Bψi(z) >
∏

1≤i≤d

ψi(z)=0

(
1 +

∣∣∣∣Li(z
′)

Li(z)

∣∣∣∣
) ∏

1≤i≤d

ψi(z)>0

Bψi(z)

=
∏

1≤i≤d

(
1 +

∣∣∣∣Li(z
′)

Li(z)

∣∣∣∣
)

≥ B.

This shows that
∑d

i=1ψi(z)≥ 1/2 in all cases. Also by construction Bψi(z) ≤
|Li(z

′)
Li(z)

|+1 for all i, so that the remaining desired inequalities follow from (7).

�

Lemma 6. For all c > 0 there are less than 2d(2c+ 1) primitive solutions
z= xz0 + yz′0 ∈ Λ to (1′) with y �= 0 and |y| ≤Bc.

We thus are able to rather efficiently estimate solutions where |y| ≤ Bc

for any fixed constant c. In particular, though it’s certainly possible to
improve upon particular aspects of Lemma 5, there wouldn’t be much to
gain (the exception being if one could improve upon B, specifically, if one
could replace B by a larger quantity in terms of m or F ). However, we re-
mark that the hypothesis det(Λ) ≥ 54m2/d|D(F )|1/d(d−1) can be relaxed to
det(Λ)≥ 54(m/m(F ))2/d, both in Lemma 5 and here in Lemma 6.
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Proof. By Lemma 5

(9)
|Li(z)|
|Li(z0)|

= |αi − x/y| ≤ 1

(Bψi(z) − 2)|y|2

for all solutions z= xz0 + yz′0 ∈ Λ to (1′) with y �= 0 and all i= 1, . . . , d.
Let S denote the set of primitive solutions z= xz0 + xz′0 ∈ Λ to (1′) with

1≤ y ≤Bc. For the moment fix an index i and consider the sum
∑

ψi(z) over
all z ∈ S . Obviously we may restrict to solutions with ψi(z) �= 0; we arrange
these solutions zl = xlz0 + ylz

′
0, l = 1, . . . , n so that yl ≤ yl+1 for all l. Then

by Lemma 5 and (9)

1

|ylyl+1|
≤

∣∣∣∣xl

yl
− xl+1

yl+1

∣∣∣∣
≤

∣∣∣∣αi −
xl

yl

∣∣∣∣+
∣∣∣∣αi −

xl+1

yl+1

∣∣∣∣
≤ 1

(Bψi(zl) − 2)|yl|2
+

1

(Bψi(zl+1) − 2)|yl+1|2

≤ 1

(Bψi(zl) − 2)|yl|2
+

1

(Bψi(zl+1) − 2)|ylyl+1|
,

whence

(10) |yl+1| ≥
(
Bψi(zl) − 2

)(
1−

(
Bψi(zl+1) − 2

)−1)|yl|.
Since ψi(zl) ≥ 1/2d for all our zl and B ≥ 52d, we have Bψi(zl) ≥ 5 and

thus Bψi(zl) − 3≥Bψi(zl) log 2/ log 5. We now repeatedly apply (10) to get

Bc ≥ |yn|
≥

(
Bψi(z1) − 2

)(
Bψi(z2) − 3

)
· · ·

(
Bψi(zn−1) − 3

)(
1−

(
Bψi(zn) − 2

)−1)|y1|
>

(
n−1∏
l=1

(
Bψi(zl) − 3

))
×
(
1− (1/3)

)

≥ (2/3)
n−1∏
l=1

Bψi(zl) log 2/ log 5.

Taking logarithms yields

c+ logB(3/2)>

n−1∑
l=1

ψi(zl) log 2/ log 5,

and since ψi(zn)≤ 1,

c+ logB(3/2) + log 2/ log 5>

n∑
l=1

ψi(zl) log 2/ log 5 =
∑
z∈S

ψi(z) log 2/ log 5.
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Finally, by Lemma 5 and this last inequality

|S| ≤
∑
z∈S

d∑
i=1

2ψi(z)

=

d∑
i=1

∑
z∈S

2ψi(z)

<

d∑
i=1

2c+ 2 logB(3/2) + 2 log 2/ log 5

≤
d∑

i=1

2c+ 2 log(3/2)/ log
(
52d

)
+ 2 log 2/ log 5

=

d∑
i=1

2c+ log(3/2)/d log 5 + 2 log 2/ log 5

≤
d∑

i=1

2c+ log(3/2)/3 log 5 + 2 log 2/ log 5

< d(2c+ 1).

The same argument works for estimating the number of primitive solutions
xz0 + yz′0 to (1′) with 1≤−y ≤Bc. �

Lemma 7. For all C2 > C1 > B, the number of primitive solutions z =
xz0 + yz′0 ∈ Λ to (1′) with C1 ≤ |y| ≤C2 is less than

2d

(
1 +

log(logC2/ log(C1/B))

log(d− 1)

)
.

Proof. We will use (6). Suppose xz0 + yz′0, x
′z0 + y′z′0 ∈ Λ are primitive

solutions to (1′) with both

|αi − x/y|< Bd−2

2|y|d ,
∣∣αi − x′/y′

∣∣< Bd−2

2|y′|d

for some index i. Suppose further that y′ ≥ y > 0. Then by the inequalities
above

1

|yy′| ≤
∣∣∣∣xy − x′

y′

∣∣∣∣
≤

∣∣∣∣αi −
x

y

∣∣∣∣+
∣∣∣∣αi −

x′

y′

∣∣∣∣
<

Bd−2

2|y|d +
Bd−2

2|y′|d ≤ Bd−2

|y|d ,
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so that |y′| ≥ |y|d−1/Bd−2. Hence, if x1z0 + y1z
′
0, x2z0 + y2z

′
0, . . . are primi-

tive solutions to (1′) as above with C1 ≤ y1 ≤ y2 ≤ · · · ≤ C2, then repeatedly
applying the above inequality yields

C2 ≥ yl+1 ≥
y
(d−1)l

1

B((d−1)l−1+···+1)(d−2)
≥ C

(d−1)l

1

B(d−1)l−1
> (C1/B)(d−1)l

for all l≥ 1. We take logarithms twice to get

log(logC2/(logC1/B))

log(d− 1)
> l.

Taking into account the d possible indices i and employing the same argument
for solutions with y < 0 gives the lemma. �

Lemma 8. There are fewer than

2d

(
6 +

log 293352

log(d− 5/4)

)
primitive z= xz0 + yz′0 ∈ Λ solutions to (1′) with

|y| ≥max
{
B4(d−1),

(
8dM(FΛ,m)

)2103353}
.

Proof. We note that the αi are conjugate algebraic numbers with absolute
height h(αi) satisfying

h(αi)
d =H(FΛ) =M(FΛ,m)

(see [6, Chapter 3, Lemma 2A], for example). Given a solution as in the
lemma, using the hypothesis |y| ≥B4(d−1) and (6) yields

|αi − x/y| ≤ d2d−1Bd−2

|y|d(11)

<
Bd−1

2|y|d ≤ 1

2|y|d−1/4

for some index i. We claim that

(12) |αi − x/y|<
(
h(x/y)

)−√
2d(1+1/20)

,

where h(x/y) =
√
x2 + y2 is the (absolute) height of x/y. To see this, we first

note that |x/y| < |αi|+ 1, so that h(x/y) < (|αi|+ 2)|y| ≤ 3h(αi)
d|y|. Since

d≥ 3, one readily verifies that d− 1/4≥
√
2d(1 + 1/10). Using this we easily

get (3h(αi)
d)d−1/4 < (3h(αi)

d)
√
d < y

√
2d/20 (with quite a bit of room to spare,

in fact). In addition, we also get

yd−1/4 ≥
(

h(x/y)

3h(αi)d

)d−1/4

> h(x/y)
√
2d(1+1/10)y−

√
2d/20
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≥ h(x/y)
√
2d(1+1/10)h(x/y)−

√
2d/20

= h(x/y)
√
2d(1+1/20).

Therefore, (12) follows from (11).
According to [6, Chapter 2, Theorem 6] (with m= 2 and χ= 1/20 there),

the rational solutions x/y to (12) satisfy h(x/y) ≤ (8h(αi))
d2103353 or w ≤

h(x/y)< w293352d2

for some w > 1. The first option here is ruled out for us
by hypothesis since h(x/y)≥ |y|. Hence, it remains to estimate the number

of primitive solutions (x, y) to (11) with w/(3h(αi)
d) ≤ |y| < w293352d2

. We
clearly may assume that w ≥ (8h(αi))

4d.
Suppose (x0, y0), (x1, y1), . . . are the primitive solutions to (11) with yi > 0

and arranged so that 0< y0 ≤ y1 ≤ · · · . We then have

1

|ylyl+1|
≤

∣∣∣∣xl

yl
− xl+1

yl+1

∣∣∣∣
≤

∣∣∣∣αi −
xl

yl

∣∣∣∣+
∣∣∣∣αi −

xl+1

yl+1

∣∣∣∣
<

1

2|yl|d−1/4
+

1

2|yl+1|d−1/4

≤ 1

|yl|d−1/4
,

so that |yl+1| ≥ |yl|d−5/4 for all l ≥ 0. Moreover, since w ≥ (8dh(αi)
d)4 and

d≥ 3 we have

wd−2 ≥
(
8h(αi)

)4d
>
(
3h(αi)

d
)2(d−2)

B2(d−2) ≥
(
3h(αi)

dB
)d−1

,

so that also by (11)

y1 ≥
yd−1
0

Bd−1
≥
(

w

3h(αi)dB

)d−1

>
wd−1

wd−2
=w.

We thus have yl ≥ w(d−5/4)l−1

for all l ≥ 1. Now since all yl < w293352d2

and
d≥ 3, we must have

l < 1 +
log 293352d2

log(d− 5/4)
< 5 +

log 293352

log(d− 5/4)
.

Considering the d possible indices i above and accounting for those solu-
tions with y < 0 in the same manner completes the proof. �

Proof of the proposition. We first set c = 2 in Lemma 6 to see that the
number of primitive solutions z= xz0 + yz′0 ∈ Λ to (1′) with 1≤ |y| ≤ B2 is
less than 10d. Next we set C1 =B2 and C2 =B4(d−1) in Lemma 7 to see that
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the number of solutions with B2 ≤ |y| ≤B4(d−1) is less than

2d

(
1 +

log(logB4(d−1)/ logB)

log(d− 1)

)
= 2d

(
2 + log 4/ log(d− 1)

)
.

If on the other hand, we set C2 = (8dM(FΛ,m))2
103353 , then (recall B ≥ 52d >

8d) the number of solutions with B2 ≤ |y| ≤ (8dM(FΛ,m))2
103353 is less than

2d

(
1 +

log(2103353 log(8dM(FΛ,m))/ logB)

log(d− 1)

)

< 2d

(
1 +

log(2103353(1 + log(M(FΛ,m))/ logB))

log(d− 1)

)

= 2d

(
1 +

log(2103353(2 + logm/ logB))

log(d− 1)

)

= 2d

(
1 +

log 2103353

log(d− 1)
+

log(2 + logm/ logB)

log(d− 1)

)
.

Therefore the number of solutions with

B2 ≤ |y| ≤max
{
B4(d−1),

(
8dM(FΛ,m)

)2103353}
is less than

2d

(
2 +

log 2103353

log(d− 1)
+

log(2 + logm/ logB)

log(d− 1)

)
.

Combining this with Lemma 8, the number of solutions with y �= 0 is less than

10d+ 2d

(
8 +

log 2103353

log(d− 1)
+

log 293352

log(d− 5/4)
+

log(2 + logm/ logB)

log(d− 1)

)
.

Of course we also have the two solutions ±z0 as well, giving the proposition.
�

Proof of Theorem 2. Suppose first that A≥ 54. We may assume that there
is a primitive solution (x, y) ∈ Λ to (1′). We apply the proposition, noting that

log
(
M(FΛ,m)/m

)
≥ log

(
Ad/2

)
,

log(2103353)

log(d− 1)
+

log(293352)

log(d− 5/4)
<

31

log(d− 1)

since d≥ 3. For A< 54 we use the proposition in conjuction with Lemma 2C
(and Remark 2D) of [6, Chapter 3] as follows. Let p be any prime satisfying
(54/A) ≤ p ≤ 2(54/A) − 1 and let F be a form as in the proposition except
that A< 54. Then there are p+ 1 forms G with |D(G)|= |D(F )|pd(d−1) and
any primitive integer solution (x, y) to (1′) is a primitive integral solution to
|G(x, y)| ≤m for one of these forms G. Since

det(Λ) =
Am2/d

|D(F )|1/d(d−1)
=

Am2/dp

|D(G)|1/d(d−1)
≥ 54m2/d

|D(G)|1/d(d−1)
,
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we may apply the proposition to these p+ 1≤ 2(54/A) forms G to prove the
case of Theorem 2 when A< 54. �

4. Heuristics for the conjectures of Stewart and Schmidt

When considering the conjectures of Stewart and Schmidt, it is convenient
to segregate off the solutions that arise from exceptionally good Diophantine
approximations. Specifically, write the form F as a product of linear forms as
before:

F (X,Y ) =
d∏

i=1

Li(X,Y ).

For ε > 0, we say a non-zero x ∈ Z2 is ε-exceptional if

|Li(x)|
‖Li‖

<
1

‖x‖1+ε

for some index i. In other words the ε-exceptional points are the points dealt
with by Roth’s theorem. It is well known that the number of such exceptional
points is bounded above by an explicit function of ε and F (see [6, Chapter 2,
Theorem 9B], for example), thus justifying the “exceptional” moniker.

According to Lemma 2 in Section 2 above, any solution x to (1′) must be
ε-exceptional once ‖x‖ is (up to constants depending on F ) about m1/(d−2−ε).
If d≥ 5, this implies via Theorem 1 that primitive solutions to (1) which are
not ε-exceptional are lattice points of relatively small length. At the expense
of an added log logm factor, we can deal with solutions to (1′) with length
down to about m1/(d−2) (see Lemma 9 below), and at the further expense
of an arbitrarily small power of logm, we can even deal with solutions to
(1) with length down to about m1/(d−2)/(logm)δ for a given fixed positive δ.
This is explicitly carried out in the case d= 4 in Theorem 4 below. For forms
of degree 4 this implies, via Theorem 1 once more, that with no more than
(logm)ε exceptions our primitive solutions to (1) are once again lattice points
of relatively small length.

In what follows we will make the above notions precise and then show
(Theorem 5) that this gives good evidence for Stewart’s conjecture when the
degree d≥ 5 and a strong form of Schmidt’s conjecture when the degree d=
4. The proofs for the following results will be given after the statement of
Theorem 5 so as to not interupt the flow of thought.

Theorem 3. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree
d≥ 5 with non-zero discriminant and content 1, m be a positive integer and
0< ε< d− 4. Suppose 0< 2δ < d− 4− ε, m′|m is a divisor of m satisfying

(
2DF

(
m′)/π)1+δ ≥ 2d−1mH(F )d−2

|D(F )|1/2
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and Λ⊆ Z2 is a lattice with det(Λ) =DF (m
′). If there is a primitive solution

x ∈ Λ to (1′) that is not ε-exceptional, then λ2 > λ1 and

‖x‖= λ1 ≤
(
2DF

(
m′)/π)(1+δ)/(d−2−ε)

,

where λ1 ≤ λ2 are the successive minima of Λ with respect to the unit disk.

Corollary. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of de-
gree d≥ 5 with non-zero discriminant and content 1, m be a positive integer
not dividing D(F ) and 0< ε< d− 4. If

2DF (m)/π >

(
2d−1mH(F )d−2

|D(F )|1/2

)2/(d−2−ε)

then the primitive solutions to (1) that are not ε-exceptional lie in cF (mF )
sublattices of determinant DF (m). Moreover, given one of these sublattices
Λ there is at most one pair ±x ∈ Λ of primitive solutions to (1) that are not
ε-exceptional, and this can only be the case if the first minima λ1 of Λ satisfies

‖x‖= λ1 ≤
(
2d−1mH(F )d−2

|D(F )|1/2

)1/(d−2−ε)

.

Theorem 4. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of de-
gree 4 with non-zero discriminant and content 1, m be a positive integer,
0 < ε < 1 and 0 < δ. If m′ �D(F ) is any divisor of m satisfying DF (m

′) >
(logm)3δ , then the number of primitive solutions x to (1) that satisfy

‖x‖ ≥ e1/34m1/2H(F )

|D(F )|1/4(logm)δ

and are not ε-exceptional is less than

8

(
1 + cF

(
m′

F

)
+

log log(23/2m1/2H(F )/|D(F )|1/4)
log 3

)
.

If further

2DF (m)/π >
e2/316mH(F )2

|D(F )|1/2(logm)2δ
,

then any remaining primitive solutions to (1) that are not ε-exceptional lie in
cF (mF ) sublattices Λ of determinant DF (m). Given one of these sublattices
Λ there is at most one pair ±x ∈ Λ of such primitive solutions and this can
only be the case if the first minima λ1 of Λ satisfies ‖x‖= λ1.

Take a form F as in Theorem 2. Note that for any given ε > 0, if m is
sufficiently large we have no ε-exceptional primitive solutions to (1). Suppose
first that the degree d ≥ 5. Choose a positive γ < (1/2) − 1/(d − 2), set
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δ = (1/2) − 1/(d − 2) − γ and let ε be given by 1
d−2−ε = 1

d−2 + δ
2 . For m

sufficiently large (depending on F and γ) we have m �D(F ) and(
2d−1mH(F )d−2

|D(F )|1/2

)1/(d−2−ε)

=

(
2d−1mH(F )d−2

|D(F )|1/2

)1/(d−2)+δ/2

≤
(
2DF (m)/π

)1/(d−2)+δ

=
(
2DF (m)/π

)1/2−γ

and no ε-exceptional primitive solutions to (1). Now by the corollary to The-
orem 3 and Theorem 1 , all primitive solutions to (1) are in certain sublattices
Λ of determinant DF (m), each such sublattice can contain at most one pair
of primitive solutions ±x, and this only if the first minima of the sublattice
satisfies ‖x‖= λ1 ≤ (det(Λ))(1/2)−γ .

Now suppose the degree of the form F is 4 and choose ε, γ > 0. For m
sufficiently large (depending on F ) there are no 1/2-exceptional primitive
solutions to (1). For m sufficiently large (depending on F and γ), any divisor
m′ of m with m′ > (logm)7γ satisfies m′ �D(F ) and DF (m

′)> (logm)6γ . For
m sufficiently large (depending on ε and γ), the least divisor m′ of m greater

than (logm)7γ satisfies 4ω(m′) ≤ 16(logm)ε, so that cF (m
′)≤ 16(logm)ε. For

m sufficiently large (depending on F and ε)

log log(23/2m1/2H(F )/|D(F )|1/4)
log 3

≤ (logm)ε.

Finally, for m sufficiently large (depending on F and γ)

(
2DF (m)/π

)1/2
>

DF (m)1/2

(logDF (m))γ

≥ e1/34m1/2H(F )

|D(F )|1/4(logm)2γ
.

Now by Theorem 4 (setting δ there to be 2γ here), with fewer than 8 +
136(logm)ε possible exceptions, the primitive solutions to (1) are in certain
sublattices Λ of determinant DF (m), each such sublattice can contain at most
one pair ±x of primitive solutions, and this only if the first minima of the
sublattice satisfies ‖x‖= λ1 ≤ (det(Λ))1/2(log det(Λ))−γ .

Therefore, with no exceptions if d≥ 5 and at most 8 + 136(logm)ε excep-
tions if d = 4, we are reduced to primitive solutions that are lattice points
of exceptionally small length in one of our sublattices. Such sublattices are
definitely atypical.

Theorem 5. Let m be a positive integer and N denote the number of
sublattices Λ ⊆ Z2 of determinant m. If γ > 0 and N ′ denotes the number
of sublattices Λ of determinant m with a primitive x ∈ Λ satisfying ‖x‖ ≤
m1/2m−γ , then the proportion N ′/N < 6πm−2γ . If m> 1 and N ′′ denotes the
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number of sublattices Λ of determinant m with a primitive x ∈ Λ satisfying
‖x‖ ≤m1/2 logm−γ , then the proportion N ′′/N < 6π(logm)−2γ .

Via the discussion above, we believe that the corollary to Theorem 3 in con-
junction with Theorem 5 lend credence to Stewart’s (and whence Schmidt’s)
conjecture when the degree d≥ 5, and together Theorems 4 and 5 lend cre-
dence to a strong form of Schmidt’s conjecture when the degree d= 4.

Proof of Theorem 3. Recall the hypotheses(
2DF

(
m′)/π)1+δ ≥ 2d−1mH(F )d−2

|D(F )|1/2 ,

(13)
1 + δ < 1 +

d− 4− ε

2
=

d− 2− ε

2
.

Now any solution x ∈ Z2 to (1′) with ‖x‖d−2−ε > (2DF (m
′)/π)1+δ is neces-

sarily ε-exceptional, since then by Lemma 2 and (13)

|Li(x)|
‖Li‖

≤ 2d−1mH(F )d−2

‖x‖d−1|D(F )|1/2

≤ 2d−1mH(F )d−2

‖x‖1+ε‖x‖d−2−ε|D(F )|1/2

<
1

‖x‖1+ε

2d−1mH(F )d−2

(2DF (m′)/π)1+δ|D(F )|1/2

≤ 1

‖x‖1+ε

for some index i. If Λ ⊆ Z2 is a sublattice with det(Λ) = DF (m
′) and we

denote the successive minima of Λ with respect to the unit disk by λ1 ≤ λ2,
then by Minkowski’s theorem

(14) λ2
2 ≥ λ1λ2 ≥

(
22/2!

)det(Λ)
π

= 2DF

(
m′)/π.

Now suppose x ∈ Λ is a primitive solution to (1′) that is not ε-exceptional.
By (13) and what we just showed ‖x‖2 < 2DF (m

′)/π, so that by (14) we must
have ‖x‖< λ2. This inequality uniquely determines x up to scalar multiple
by the definition of successive minima, and since x is primitive we necessarily
have ‖x‖= λ1. This completes the proof. �

Proof of the corollary to Theorem 3. Set m′ =mF and δ so that(
2DF (m)/π

)1+δ
=

2d−1mH(F )d−2

|D(F )|1/2 .

Note that δ < (d− 4− ε)/2 by hypothesis, so that we may apply Theorem 3.
The result follows immediately from Theorems 1 and 3. �

Our proof of Theorem 4 requires the following.
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Lemma 9. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree
d ≥ 3 with non-zero discriminant and content 1. Suppose m is a positive
integer and d− 2> ε > 0. Then the number of primitive solutions x ∈ Z2 to
(1′) that are not ε-exceptional and satisfy

‖x‖ ≥ e21/(d−2)

(
2d−1mH(F )d−2

|D(F )|1/2

)1/(d−2)

is no more than

2d

(
1+

log(ε/(d− 2− ε)) + log log(2d−1mH(F )d−2/|D(F )|1/2)− log(d− 2)

log(d− 1)

)
.

Proof. For notational convenience set

B =

(
2d−1mH(F )d−2

|D(F )|1/2

)1/(d−2)

.

As in the proof of Theorem 3, any solution x to (1′) is necessarily ε-exceptional
if

‖x‖>B(d−2)/(d−2−ε) =Bε/(d−2−ε)B.

Write F (X,Y ) =
∏d

i=1Li(X,Y ) as a product of linear forms. According to
Lemma 2, given any solution x to (1′) there is an index i such that

(15)
|Li(x)|
‖Li‖

≤ Bd−2

‖x‖d−1
.

Fix an index i for the moment and denote the primitive solutions to (1′) in
the statement of the lemma that satisfy (15) by ±xj , j = 1,2, . . . and arrange

these so that e21/(d−2)B ≤ ‖x1‖ ≤ ‖x2‖ ≤ · · · . We claim that

(16) 2‖xj+1‖ ≥ ‖xj‖
(
‖xj‖/B

)d−2

for all indices j.
To see our claim, consider the two linear forms Mj and Mj+1 given by

Mj(w) = xj · w and Mj+1(w) = xj+1 · w. Since xj �= ±xj+1 are distinct
primitive points by construction, these two linear forms are linearly indepen-
dent. Note that Mj(Li) = Li(xj) and Mj+1(Li) = Li(xj+1). According to
[10, Lemma 4], we must have one of the following inequalities:

|Li(xj)|
‖xj‖

≥
‖Li‖|det(xtr

j ,x
tr
j+1)|

2‖xj‖‖xj+1‖
,

|Li(xj+1)|
‖xj+1‖

≥
‖Li‖|det(xtr

j ,x
tr
j+1)|

2‖xj‖‖xj+1‖
.

This in conjunction with (15) and the hypothesis ‖xj‖ ≤ ‖xj+1‖ shows that

(17)
∣∣det(xtr

j ,x
tr
j+1

)∣∣≤ 2‖xj+1‖Bd−2

‖xj‖d−1
.

Since xj and xj+1 are linearly independent integral points, the determinant
here is at least 1, whence inequality (16).
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Via (16) and a simple induction argument, we see that for all j ≥ 1 we must

have ‖xj‖ ≥ e(d−1)j−1

21/(d−2)B. In particular, since xj is not ε-exceptional

by hypothesis we must have e(d−1)j−1 ≤Bε/(d−2−ε), so that

j − 1≤ log(ε/(d− 2− ε)) + log logB

log(d− 1)
.

Considering the d possible indices i completes the proof. �

Proof of Theorem 4. Set

B =
23/2m1/2H(F )

|D(F )|1/4

as in the proof of Lemma 9 (with d = 4 now). Assuming ε < 1 (so that
ε/(d− 2− ε) < 1) one readily verifies via Lemma 9 that there are less than
8(1+ log logB/ log 3) primitive solutions x to (1) with ‖x‖ ≥ e21/2B that are
not ε-exceptional. For any divisor m′ �D(F ) of m, all primitive solutions x
to (1), in particular those solutions with

(18)
e1/321/2B

(logm)δ
≤ ‖x‖< e21/2B,

lie in cF (m
′) sublattices of determinant DF (m

′) by Theorem 1. We claim
that any sublattice Λ with det(Λ)≥ (logm)3δ can contain at most 4 pairs ±x
of such primitive solutions. Indeed, our form F has 4 linear factors, so given
any five pairs ±xj , 1≤ j ≤ 5, of primitive solutions to (1′) there are distinct
indices j1 �= j2 with ‖xj1‖ ≤ ‖xj2‖ satisfying∣∣det(xtr

j1 ,x
tr
j2

)∣∣≤ 2‖xj2‖B2

‖xj1‖3

by (17). If both of these solutions satisfy (18), we have∣∣det(xtr
j1 ,x

tr
j2

)∣∣ ≤ 2‖xj2‖
‖xj1‖

B2

‖xj1‖2

< 2e2/3(logm)δe−2/32−1(logm)2δ

= (logm)3δ.

But if both xj1 and xj2 are in the sublattice Λ, then this determinant is
necessarily at least as large as det(Λ). This proves our claim, whence the
estimate for the number of primitive solutions in Theorem 4. The remainder
of the theorem follows exactly as in the proof of Theorem 3. �

Proof of Theorem 5. The number of sublattices Λ⊆ Z2 with determinant
m is equal to

∑
n|m n (see [6, Section 3], for example), thus the number

N of such lattices satisfies m < N � m log logm (though we will only use
the lower bound here). Given a positive integer m and a primitive (x, y) ∈
Z2 with m> (π/2)‖(x, y)‖2, we claim there is exactly one sublattice Λ⊆ Z2
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with det(Λ) = m containing (x, y). Indeed, for such a sublattice we must
have ‖(x, y)‖ < λ2 by (14). This determines (x, y) up to a scalar multiple,
and since (x, y) is a primitive point we must have ‖(x, y)‖= λ1 and whence
Λ = Z(x, y) ⊕ Z(x′, y′) for some (x′, y′) ∈ Z2 with xy′ − x′y = m = det(Λ).
Since (x, y) is a primitive point, there is an (x′, y′) ∈ Z2 with xy′ − x′y =m.
Moreover, from elementary number theory any other such point is of the form
(x′, y′) + n(x, y) for some integer n. Therefore all such sublattices have the
same basis, so that there is only one such sublattice.

Now suppose γ > 0. If m2γ ≤ π/2 then there is nothing to prove since now
6π logm−2γ > 6πm−2γ ≥ 12 (clearly larger than either proportion N ′/N or
N ′′/N ). Suppose that (π/2)m1−2γ <m. By what we have shown, the number
N ′ of sublattices Λ⊆ Z2 with det(Λ) =m that contain a primitive (x, y) with
‖(x, y)‖ ≤m1/2m−γ is equal to the number of such primitive points. Clearly
this is no greater than the total number of integral points in the disk with
radius m1/2m−γ , which in turn is no greater than 6πm1−2γ . (The number

of integral points in the disk of radius r ≥ 1 is no more than π(r +
√
2)2 ≤

6πr2.) Thus N ′ ≤ 6πm1−2γ and so the proportion N ′/N < 6πm−2γ . A similar
argument works to bound the proportion N ′′/N . �
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