HOLOMORPHIC FUNCTIONAL CALCULUS ON UPPER TRIANGULAR FORMS IN FINITE VON NEUMANN ALGEBRAS

K. DYKEMA, F. SUKOCHEV AND D. ZANIN

Abstract

The decompositions of an element of a finite von Neumann algebra into the sum of a normal operator plus an s.o.t.quasinilpotent operator, obtained using the Haagerup-Schultz hyperinvariant projections, behave well with respect to holomorphic functional calculus.

This note concerns the decomposition theorem for elements of a finite von Neumann algebra, recently proved in [2]. In that paper, given a von Neumann algebra \mathcal{M} with a normal, faithful, tracial state τ, by using the hyperinvariant subspaces found by Haagerup and Schultz [3] and their behavior with respect to Brown measure, for every element $T \in \mathcal{M}$ we constructed a decomposition $T=N+Q$ where $N \in \mathcal{M}$ is a normal operator whose Brown measure agrees with that of T and where Q is an s.o.t.-quasinilpotent operator. An element $Q \in \mathcal{M}$ is said to be s.o.t.-quasinilpotent if $\left(\left(Q^{*}\right)^{n} Q^{n}\right)^{1 / n}$ converges in the strong operator topology to the zero operator-by Corollary 2.7 in [3], this is equivalent to the Brown measure of Q being concentrated at 0 . In fact, N is obtained as the conditional expectation of T onto the (abelian) subalgebra generated by an increasing family of Haagerup-Schultz projections.

The Brown measure [1] of an element T of a finite von Neumann algebra is a sort of spectral distribution measure, whose support is contained in the spectrum $\sigma(T)$ of T. We will use ν_{T} to denote the Brown measure of T. The Brown measure behaves well under holomorphic (or Riesz) functional calculus. Indeed, Brown proved (Theorem 4.1 of [1]) that if h is holomorphic

[^0]on a neighborhood of the spectrum of T, then $\nu_{h(T)}=\nu_{T} \circ h^{-1}$ (the pushforward measure by the function h).

In this note, we prove the following theorem.
Theorem 1. Let T be an element of a finite von Neumann algebra \mathcal{M} (with fixed normal, faithful tracial state τ) and let $T=N+Q$ be a decomposition from [2], with N normal, $\nu_{N}=\nu_{T}$ and Q s.o.t.-quasinilpotent.
(i) Let h be a complex-valued function that is holomorphic on a neighborhood of the spectrum of T. Then

$$
h(T)=h(N)+Q_{h}
$$

where Q_{h} is s.o.t.-quasinilpotent.
(ii) If $0 \notin \operatorname{supp} \nu_{T}$ (so that N is invertible), then

$$
T=N\left(I+N^{-1} Q\right)
$$

and $N^{-1} Q$ is s.o.t.-quasinilpotent.
The key result for the proof is Lemma 22 of [2], which allows us to reduce to the case when N and Q commute. Before using this, we require a few easy results about s.o.t.-quasinilpotent operators on Hilbert space.

Lemma 2. Let \mathfrak{A} be a unital algebra and let $N, Q \in \mathfrak{A}, T=N+Q$ and suppose that both N and T are invertible. Then

$$
T^{-1}=N^{-1}-T^{-1} Q N^{-1}
$$

Proof. We have

$$
T^{-1}-N^{-1}=T^{-1}(N-T) N^{-1}=-T^{-1} Q N^{-1}
$$

Lemma 3. Let A and Q be bounded operators on a Hilbert space \mathcal{H} such that $A Q=Q A$ and suppose Q is s.o.t.-quasinilpotent. Then $A Q$ is s.o.t.quasinilpotent.

Proof. We have $(A Q)^{n}=A^{n} Q^{n}$ and

$$
\left((A Q)^{*}\right)^{n}(A Q)^{n}=\left(Q^{*}\right)^{n}\left(A^{*}\right)^{n} A^{n} Q^{n} \leq\|A\|^{2 n}\left(Q^{*}\right)^{n} Q^{n}
$$

By Loewner's theorem, for $n \geq 2$ the function $t \mapsto t^{2 / n}$ is operator monotone and we have

$$
\left(\left((A Q)^{*}\right)^{n}(A Q)^{n}\right)^{2 / n} \leq\|A\|^{4}\left(\left(Q^{*}\right)^{n} Q^{n}\right)^{2 / n}
$$

Thus, for $\xi \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\|\left(\left((A Q)^{*}\right)^{n}(A Q)^{n}\right)^{1 / n} \xi\right\|^{2} & =\left\langle\left(\left((A Q)^{*}\right)^{n}(A Q)^{n}\right)^{2 / n} \xi, \xi\right\rangle \\
& \leq\|A\|^{4}\left\langle\left(\left(Q^{*}\right)^{n} Q^{n}\right)^{2 / n} \xi, \xi\right\rangle \\
& =\|A\|^{4}\left\|\left(\left(Q^{*}\right)^{n} Q^{n}\right)^{1 / n} \xi\right\|^{2}
\end{aligned}
$$

Since Q is s.o.t.-quasinilpotent, this tends to zero as $n \rightarrow \infty$.

Proposition 4. Let N and Q be bounded operators on a Hilbert space and suppose $N Q=Q N$ and Q is s.o.t.-quasinilpotent. Let $T=N+Q$. Let h be a function that is holomorphic on a neighborhood of the union $\sigma(T) \cup \sigma(N)$ of the spectra of T and N. Then $h(T)$ and $h(N)$ commute, and $h(T)-h(N)$ is s.o.t.-quasinilpotent.

Proof. If λ is outside of $\sigma(T) \cup \sigma(N)$, then by Lemma 2,

$$
\begin{equation*}
(T-\lambda)^{-1}=(N-\lambda)^{-1}-(T-\lambda)^{-1} Q(N-\lambda)^{-1} \tag{1}
\end{equation*}
$$

Let C be a contour in the domain of the complement $\sigma(T) \cup \sigma(N)$, with winding number 1 around each point in $\sigma(T) \cup \sigma(N)$. Then

$$
\begin{aligned}
h(T) & =\frac{1}{2 \pi i} \int_{C} h(\lambda)(\lambda-T)^{-1} d \lambda, \\
h(N) & =\frac{1}{2 \pi i} \int_{C} h(\lambda)(\lambda-N)^{-1} d \lambda
\end{aligned}
$$

For any complex numbers λ_{1} and λ_{2} outside of $\sigma(T) \cup \sigma(N)$, the operators $\left(\lambda_{1}-T\right)^{-1},\left(\lambda_{2}-N\right)^{-1}$ and Q commute; thus, $h(T)$ and $h(N)$ commute with each other. Using (1), we have

$$
h(T)-h(N)=\frac{1}{2 \pi i} \int_{C} h(\lambda)(\lambda-T)^{-1} Q(\lambda-N)^{-1} d \lambda=A Q
$$

where

$$
A=\frac{1}{2 \pi i} \int_{C} h(\lambda)(\lambda-T)^{-1}(\lambda-N)^{-1} d \lambda
$$

We have $A Q=Q A$. By Lemma $3, A Q$ is s.o.t.-quasinilpotent.
For the remainder of this note, \mathcal{M} will be a finite von Neumann algebra with specified normal, faithful, tracial state τ.

Lemma 5. Let $T \in \mathcal{M}$. Suppose $p \in \mathcal{M}$ is a T-invariant projection with $p \notin\{0,1\}$.
(i) If T is invertible, then p is T^{-1}-invariant. Moreover, we have

$$
\begin{aligned}
T^{-1} p & =(p T p)^{-1} \\
(1-p) T^{-1} & =((1-p) T(1-p))^{-1}
\end{aligned}
$$

where the inverses on the right-hand-sides are in $p \mathcal{M} p$ and $(1-p) \mathcal{M}(1-$ p), respectively.
(ii) The union of the spectra of $p T p$ and $(1-p) T(1-p)$ (in $p \mathcal{M} p$ and $(1-p) \mathcal{M}(1-p)$, respectively) equals the spectrum of T.
(iii) If h is a function that is holomorphic on a neighborhood of $\sigma(T)$, then p is $h(T)$-invariant. Moreover, $h(T) p=h(p T p)$.

Proof. For (i), a key fact is that one-sided invertible elements of \mathcal{M} are always invertible. Thus, writing $T=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with respect to the projections p and $(1-p)$ (so that $a=p T p, b=p T(1-p)$ and $c=(1-p) T(1-p))$ writing $T^{-1}=\left(\begin{array}{ll}x & y \\ w & z\end{array}\right)$ and multiplying, we easily see that a and c must be invertible and

$$
T^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b c^{-1} \tag{2}\\
0 & c^{-1}
\end{array}\right)
$$

Thus, p is T^{-1}-invariant.
For (ii) we use (i) and the fact that the formula (2) shows that T is invertible whenever $p T p$ and $(1-p) T(1-p)$ are invertible.

For (iii), writing

$$
\begin{equation*}
h(T)=\frac{1}{2 \pi i} \int_{C} h(\lambda)(\lambda-T)^{-1} d \lambda \tag{3}
\end{equation*}
$$

for a suitable contour C, where this is a Riemann integral that converges in norm, the result follows by applying part (i).

For a von Neumann subalgebra \mathcal{D} of \mathcal{M}, let $\operatorname{Exp}_{\mathcal{D}}$ and $\operatorname{Exp}_{\mathcal{D}^{\prime}}$, respectively denote the τ-preserving conditional expectations onto \mathcal{D} and, respectively, the relative commutant of \mathcal{D} in \mathcal{M}.

Lemma 6. Let $T \in \mathcal{M}$.
(i) Suppose $0=p_{0} \leq p_{1} \leq \cdots \leq p_{n}=1$ are T-invariant projections and let $\mathcal{D}=\operatorname{span}\left\{p_{1}, \ldots, p_{n}\right\}$. Then the spectra of T and of $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)$ agree. If T is invertible, then $\operatorname{Exp}_{\mathcal{D}^{\prime}}\left(T^{-1}\right)=\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)^{-1}$.
(ii) Suppose $\left(p_{t}\right)_{0 \leq t \leq 1}$ is an increasing family of T-invariant projections in \mathcal{M} with $p_{0}=0$ and $p_{1}=1$, that is right-continuous with respect to strong operator topology. Let \mathcal{D} be the von Neumann algebra generated by the set of all p_{t}. If T is invertible, then so is $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)$ and $\operatorname{Exp}_{\mathcal{D}^{\prime}}\left(T^{-1}\right)=$ $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)^{-1}$.
Proof. For (i), we have

$$
\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)=\sum_{j=1}^{n}\left(p_{j}-p_{j-1}\right) T\left(p_{j}-p_{j-1}\right)
$$

The assertions now follow from repeated application of Lemma 5.
For (ii), using the right-continuity of p_{t} it is easy to choose an increasing family of finite dimensional subalgebras \mathcal{D}_{n} of \mathcal{D} whose union is strong operator topology dense in \mathcal{D}. Then $\operatorname{Exp}_{\mathcal{D}_{n}^{\prime}}(T)$ and $\operatorname{Exp}_{\mathcal{D}_{n}^{\prime}}\left(T^{-1}\right)$ converge in strong operator topology to $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)$ and $\operatorname{Exp}_{\mathcal{D}^{\prime}}\left(T^{-1}\right)$, respectively, and both sequences are bounded. From (i), we have the equality

$$
\operatorname{Exp}_{\mathcal{D}_{n}^{\prime}}(T) \operatorname{Exp}_{\mathcal{D}_{n}^{\prime}}\left(T^{-1}\right)=I
$$

and taking the limit as $n \rightarrow \infty$ yields the desired result.

Lemma 7. Let $T \in \mathcal{M}$ and let p_{t} and \mathcal{D} be as in either part (i) or part (ii) of Lemma 6. Suppose a function h is holomorphic on a neighborhood of the spectrum of T. Then $\operatorname{Exp}_{\mathcal{D}^{\prime}}(h(T))=h\left(\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)\right)$.

Proof. Using that the Riemann integral (3) converges in norm, that $\operatorname{Exp}_{\mathcal{D}^{\prime}}$ is norm continuous and applying Lemma 6, we get

$$
\begin{aligned}
\operatorname{Exp}_{\mathcal{D}^{\prime}}(h(T)) & =\frac{1}{2 \pi i} \int_{C} h(\lambda) \operatorname{Exp}_{\mathcal{D}^{\prime}}\left((\lambda-T)^{-1}\right) d \lambda \\
& =\frac{1}{2 \pi i} \int_{C} h(\lambda)\left(\lambda-\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)\right)^{-1} d \lambda=h\left(\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)\right)
\end{aligned}
$$

For convenience, here is the statement of Lemma 22 of [2] and an immediate consequence.

Lemma 8. Let $T \in \mathcal{M}$. For any increasing, right-continuous family of T-invariant projections $\left(q_{t}\right)_{0 \leq t \leq 1}$ with $q_{0}=0$ and $q_{1}=1$, letting \mathcal{D} be the von Neumann algebra generated by the set of all the q_{t}, the Fuglede-Kadison determinants of T and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)$ agree. Since the same is true for $T-\lambda$ and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)-\lambda$ for all complex numbers λ, we have that the Brown measures of T and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)$ agree.

Now we have all the ingredients to prove our main result.

Proof of Theorem 1. In Theorem 6 of [2] the decomposition $T=N+Q$ is constructed by considering an increasing, right-continuous family $\left(p_{t}\right)_{0 \leq t \leq 1}$ of Haagerup-Schultz projections, with $p_{0}=0$ and $p_{1}=1$, that are T-invariant, letting \mathcal{D} be the von Neumann algebra generated by the set of projections in this family and taking $N=\operatorname{Exp}_{\mathcal{D}}(T)$. In particular, each p_{t} is also Q invariant.

For (i), we need to show that the Brown measure of $h(T)-h(N)$ is the Dirac mass at 0 . By Lemma $5(\mathrm{iii})$, each p_{t} is $h(T)$-invariant. So by Lemma 8, the Brown measures of $h(T)-h(N)$ and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(h(T)-h(N))$ agree. Since $h(N) \in$ \mathcal{D}, we have $\operatorname{Exp}_{\mathcal{D}^{\prime}}(h(N))=h(N)$ and by Lemma 7 , we have $\operatorname{Exp}_{\mathcal{D}^{\prime}}(h(T))=$ $h\left(\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)\right)$. Combining these facts we get

$$
\begin{equation*}
\nu_{h(T)-h(N)}=\nu_{h\left(\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)\right)-h(N)} . \tag{4}
\end{equation*}
$$

We have

$$
\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)=N+\operatorname{Exp}_{\mathcal{D}^{\prime}}(Q)
$$

and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(Q)$ is s.o.t.-quasinilpotent. This last statement follows formally from Lemma 8 and the fact that Q is s.o.t.-quasinilpotent. However, we should mention that the fact that $\operatorname{Exp}_{\mathcal{D}^{\prime}}(Q)$ is s.o.t.-quasinilpotent was actually proved directly in [2] as a step in the proof that Q is s.o.t.-quasinilpotent.

In any case, since N and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)$ commute and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(Q)$ is s.o.t.quasinilpotent, by Proposition 4 it follows that $h\left(\operatorname{Exp}_{\mathcal{D}^{\prime}}(T)\right)-h(N)$ is s.o.t.quasinilpotent. Using (4), we get that $h(T)-h(N)$ is s.o.t.-quasinilpotent, as desired.

For (ii), the projections p_{t} form a right-continuous family, each of which is invariant under $N^{-1} Q$. By Lemma 8, the Brown measure of $N^{-1} Q$ equals the Brown measure of

$$
\begin{equation*}
\operatorname{Exp}_{\mathcal{D}^{\prime}}\left(N^{-1} Q\right)=N^{-1} \operatorname{Exp}_{\mathcal{D}^{\prime}}(Q) \tag{5}
\end{equation*}
$$

But since N^{-1} and $\operatorname{Exp}_{\mathcal{D}^{\prime}}(Q)$ commute and since the latter is s.o.t.quasinilpotent, by Lemma 3, their product (5) is s.o.t.-quasinilpotent.

References

[1] L. G. Brown, Lidskii's theorem in the type II case, Geometric methods in operator algebras (Kyoto, 1983), vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 1-35. MR 0866489
[2] K. Dykema, F. Sukochev and D. Zanin, A decomposition theorem in $I I_{1}$-factors, J. Reine Angew. Math. 708 (2015), 97-114. MR 3420330
[3] U. Haagerup and H. Schultz, Invariant subspaces for operators in a general $I I_{1}$-factor, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 19-111. MR 2511586
K. Dykema, Department of Mathematics, Texas A\&M University, College Station, TX, USA

E-mail address: ken.dykema@math.tamu.edu
F. Sukochev, School of Mathematics and Statistics, University of New South Wales, Kensington, NSW, Australia

E-mail address: f.sukochev@math.unsw.edu.au
D. Zanin, School of Mathematics and Statistics, University of New South Wales, Kensington, NSW, Australia

E-mail address: d.zanin@math.unsw.edu.au

[^0]: Received June 1, 2016; received in final form June 7, 2016.
 The first author's research supported in part by NSF Grant DMS-1202660.
 The second and third authors' research supported by ARC.
 2010 Mathematics Subject Classification. 47C15.

