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A NEW INTERPOLATION APPROACH TO SPACES OF
TRIEBEL–LIZORKIN TYPE

PEER CHRISTIAN KUNSTMANN

Abstract. We introduce in this paper new interpolation meth-
ods for closed subspaces of Banach function spaces. For q ∈
[1,∞], the lq-interpolation method allows to interpolate linear

operators that have bounded lq-valued extensions. For q = 2

and if the Banach function spaces are r-concave for some r <∞,

the method coincides with the Rademacher interpolation method

that has been used to characterize boundedness of the H∞-
functional calculus. As a special case, we obtain Triebel–Lizorkin

spaces F 2θ
p,q(R

d) by lq-interpolation between Lp(Rd) and W 2
p (R

d)
where p ∈ (1,∞). A similar result holds for the recently intro-
duced generalized Triebel–Lizorkin spaces associated with Rq-
sectorial operators in Banach function spaces. So, roughly speak-
ing, for the scale of Triebel–Lizorkin spaces our method thus plays

the role the real interpolation method plays in the theory of Besov
spaces.

1. Introduction

Many of the classical function spaces on R
d can be subsumed in the scales

of Besov and Triebel–Lizorkin spaces (see, e.g., [20]). These two types of
spaces are usually defined via Littlewood–Paley decomposition and this com-
mon feature leads to many parallels in their theory. One important difference,
however, is that Besov spaces Bs

p,q(R
d) arise as real interpolation spaces be-

tween Lebesgue spaces Lp(Rd) and Sobolev spaces Wm
p (Rd) where m ∈ N.

On the one hand, this means that one can use the powerful machinery of
real interpolation for their study. On the other hand, one can easily define
“abstract” Besov type spaces by real interpolation between a Banach space X
and the domain of a sectorial operator A in X . These spaces allow for natural
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descriptions of Littlewood–Paley type where the decomposition operators are
not defined via Fourier transform but, for example, via a suitable functional
calculus for the operator A.

To be more precise, we recall that a linear operator A in a Banach space
X is called sectorial of type ω ∈ [0, π) if its spectrum σ(A) is contained in
{z ∈ C \ {0} : |arg z| ≤ ω} ∪ {0} and, for all σ ∈ (ω,π), the sets of operators
{λ(λ+A)−1 : λ ∈C\{0}, |argλ|< π−σ} are bounded in L(X). The infimum
of all such angles (which actually is a minimum) is denoted by ω(A). If we
denote X1(A), the domain D(A) equipped with the graph norm then, for
θ ∈ (0,1) and q ∈ [1,∞],(
X,X1(A)

)
θ,q

=

{
x ∈X : ‖x‖Rθ,q :=

(∫ ∞

0

∥∥t1−θA(1+ tA)−1x
∥∥q
X

dt

t

)1/q

<∞
}

or, in case ω(A)< π/2,(
X,X1(A)

)
θ,q

=

{
x ∈X : ‖x‖Tθ,q :=

(∫ ∞

0

∥∥t1−θAe−tAx
∥∥q
X

dt

t

)1/q

<∞
}
,

and ‖ · ‖X +‖ · ‖Rθ,q or ‖ · ‖X +‖ · ‖Tθ,q are equivalent to the abstract “real inter-
polation norms” obtained, for example, via the K-method or the J -method.
The special case A = −Δ in X = Lp(Rd), p ∈ (1,∞), gives back classical
Besov spaces B2θ

p,q(R
d). The functional calculus point of view on abstract

Besov spaces has been extensively developed in [6] where these spaces are
called McIntosh–Yagi spaces. Remarkable is G. Dore’s result that a secto-
rial operator always has a bounded H∞-functional calculus in its associated
abstract Besov spaces [2].

For Triebel–Lizorkin spaces F 2θ
p,q on R

d where p ∈ (1,∞), q ∈ [1,∞] and
θ ∈ (0,1), one has as an equivalent norm, cf. [19],

(1) ‖f‖Lp +

∥∥∥∥(∫ ∞

0

∣∣t1−θ(−Δ)etΔf
∣∣q dt

t

)1/q∥∥∥∥
Lp

.

Recently, a generalization of Triebel–Lizorkin spaces has been introduced,
cf. [12], replacing in (1) the space Lp by a Banach function space X and
the operator −Δ in Lp(Rd) by a sectorial operator A in X . Provided the
operator A is Rq-sectorial in X (cf. Definition 2.7 below), it is shown in [12]
that the scale Xθ

q,A of generalized Triebel–Lizorkin spaces thus obtained has
a nice theory analogous to the one for the scale of abstract Besov spaces
associated with A. In particular, it was shown in [12] that an Rq-sectorial
operator A in a Banach space X always has a bounded H∞-calculus in its
associated generalized Triebel–Lizorkin spaces Xθ

q,A, that is, the analog of
Dore’s result holds for the scale of generalized Triebel–Lizorkin spaces. A key
issue in [12] had been an adapted version ([12, Proposition 3.9]) of the norm
equivalence result for square functions due to C. Le Merdy [15]. For X = Lp,
these square functions had been introduced in [1] to give a characterization
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for the boundedness of the H∞-calculus of a sectorial operator. Later, these
characterizations had been extended to general classes of Banach spaces via
Rademacher and Gaussian random sums [9], [10], [11], [8], and corresponding
interpolation methods have been constructed, cf. [8], [17].

It is, however, clear that there cannot be a general interpolation method,
meaning an interpolation functor from the category of interpolation couples
of Banach spaces into the category of Banach spaces in the sense of [18, Defi-
nition 1.2.2], underlying generalized Triebel–Lizorkin spaces in a way real in-
terpolation is “underlying” abstract Besov spaces. This has two reasons. The
first one is obvious: one cannot make sense of expressions like ‖(

∑
j |x|q)1/q‖X

in arbitrary Banach spaces X (although q = 2 is an exception due to random
sums, cf. Section 3 below). For this purpose one would need, for example, a
Banach function space. The second reason is less obvious: if X and Y are
Banach function spaces then a bounded linear operator X → Y need not have
a bounded extension X(lq)→ Y (lq) (again, q = 2 is an exception, cf. below).
This phenomenon is responsible for the additional technical difficulties that
arise in the study of F -spaces compared to B-spaces. Looking at the theory
developed in [12], it seems unlikely that an arbitrary linear operator T that is
bounded X →X and X1(A)→X1(A) acts boundedly Xθ

q,A →Xθ
q,A. Even be-

ing certainly wrong as it stands, [12, Proposition 4.20] gives the hint that this
interpolation property holds under boundedness assumptions on lq-extensions
of T .

The purpose of the present paper is to show that these two obstructions
are the only ones. In other words: Taking these two aspects into account
we develop an interpolation method that plays for (generalized and classical)
Triebel–Lizorkin spaces the same role real interpolation does for Besov spaces.
It is clear that, in order to do so, we also have to make sense of expressions
like ‖(

∑
j |x|q)1/q‖X1(A) where X1(A) is, in general, not a Banach function

space, even if X is, think of W 2
p and Lp where p ∈ (1,∞). The natural way

out is to consider W 2
p as a closed subspace of another Lp-space. Thus, we

are led to the class of closed subspaces of Banach function spaces. However
already this simple example shows that there are several natural embeddings,
for example, induced by the norms ‖f‖Lp +

∑
|α|≤2 ‖∂αf‖Lp , ‖f‖Lp +‖Δf‖Lp ,

‖(1−Δ)f‖Lp , moreover, in the last two expressions the operator Δ can be
replaced by a countless variety of other second order elliptic operators.

We thus prefer to make these embeddings explicit. We also take the point
of view that the primary object is the Banach space X , and that this Banach
space is given an additional structure by considering an embedding J :X →E
into a Banach function space E. We require J to be isometric, merely for
simplicity of notation, understanding that we might have to change to an
equivalent norm on X (we are not interested in the isometric theory of Banach
spaces here). We then call the triple (X,J,E) a structured Banach space and



4 P. C. KUNSTMANN

(J,E) a function space structure on X . It is important, that function space
structures may be “non-equivalent” (in a certain sense) even if the induced
norms on X are equivalent (cf. Section 2 below). The issue as such has been
noted in the context of square functions in [14] where it is less virulent (cp. the
remarks in Section 3 on q = 2). Another point that has been essential in [14]
and that we encounter here, too, is that within the class of closed subspaces
X of Banach function spaces we cannot do duality arguments: since the dual
X ′ is not a subspace of a Banach function space, in general, but a quotient
space we cannot give expressions like ‖(

∑
j |xj |q

′
)1/q

′‖X′ a meaning.
The paper is organized as follows: In Section 2, we introduce the lq-

interpolation method by a suitable modification of the K-method (discrete
version) for real interpolation. In the case q = 2, there is a relation to the
Rademacher interpolation method from [8] and to the γ-interpolation method
from [10], [17], both working for arbitrary interpolation couples of Banach
spaces. We study the relation to these methods in Section 3. This is done via
a reformulation of the lq-interpolation method in the spirit of the J -method
(discrete version) for real interpoation. In Section 4, we introduce a subclass
of interpolation couples for which lq-interpolation spaces can be given a func-
tion space structure. For this structure, an interpolated linear operator is
not only bounded but also has a bounded lq-extension. Finally, we relate in
Section 5 the interpolation theory presented here to the generalized Triebel–
Lizorkin spaces from [12]. We restrict ourselves here to homogeneous general-

ized Triebel–Lizorkin spaces Ẋθ
q,A and to θ ∈ (0,1), but only for simplicity of

presentation. In particular, we show that all function space structures that are
induced by the equivalent norms from [12] on these spaces are lq-equivalent.
We close this introduction with a few remarks on what we do not do in this
paper.

Remark 1.1. (a) We do not recover Triebel–Lizorkin spaces F s
∞,q(R

d) or

Ḟ s
∞,q(R

d) for q ∈ [1,∞) or—the case q = 2—BMO(Rd). In fact, these spaces
are not defined via vertical expressions in L∞(Lq) but one has to study ex-
pressions in tent spaces. It is also possible to do this for more general sectorial
operators A in L2 but this needs more assumptions, for example, a bounded
H∞-calculus for A, a metric structure on the measure space and some off-
diagonal estimates (at least of Davies–Gaffney type) for the semigroup oper-
ators e−tA, see, for example, [7], [4].

(b) We do not contribute to the study of Hardy spaces associated with
operators, which can be defined via conical square functions or atomic de-
compositions. Again this is related to tent spaces and uses suitable decay
assumptions for resolvents or semigroup operators, see, for example, [7], [3].

(c) We do not go into details about sufficient conditions for the existence
of lq-bounded extensions of bounded operators T : Lp → Lp here. This is a
classical topic in harmonic analysis (cf., e.g., [5]). We only want to mention
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that domination by a positive operator or by the Hardy–Littlewood maximal
operator is sufficient, and that classical Calderón–Zygmund operators have
bounded lq-extensions in any Lp for p, q ∈ (1,∞).

2. lq-interpolation for structured Banach spaces

Let X be a Banach space. We have to make sense of expressions like
‖(
∑

j |xj |q)1/q‖. To this end, we recall the notion of a Banach function space

over a σ-finite measure space (Ω, μ). We fix an increasing sequence (Ωn)n∈N

of μ-measurable subsets of Ω of finite measure whose union is Ω, and call this
a localizing sequence. A μ-measurable M ⊂ Ω is called bounded if M ⊂ Ωn

for some n. The usual choice on Ω = R
d (with Lebesgue measure) will be

bounded Ωn, the usual choice on Ω = Z (with counting measure) will be
finite Ωn. We will consider complex-valued function spaces here. However,
this is only important in our applications to sectorial operators.

Definition 2.1. Let (Ω, μ) be a σ-finite measure space with localizing
sequence (Ωn). Let M(μ) be the space of (equivalence classes of) measurable
functions and M+(μ) := {f ∈ M(μ) : f ≥ 0}. A Banach space (E,‖ · ‖E) is
called a Banach function space over (Ω, μ) if there is a functional ρ :M+(μ)→
[0,∞] having the following properties for f, g ∈M+(μ), α> 0, sequences (fn)
in M+(μ) and μ-measurable M ⊂Ω:

(i) ρ(f) = 0 if and only if f = 0 μ-a.e., ρ(αf) = αρ(f) and ρ(f + g)≤ ρ(f)+
ρ(g) (norm properties),

(ii) 0≤ g ≤ f μ-a.e. implies ρ(g)≤ ρ(f) (monotonicity),
(iii) 0≤ fn ↗ f μ-a.e. implies ρ(fn)↗ ρ(f) (Fatou property),
(iv) if M is bounded then ρ(1M )<∞,
(v) if M is bounded then

∫
M

f dμ≤CMρ(f) for a constant CM > 0 indepen-
dent of f ,

such that E = {f ∈M(μ) : ρ(|f |)<∞} and ‖f‖E = ρ(|f |).
Remark 2.2. (a) If, for ν = 0,1, Eν is a Banach function space over

(Ων , μν) then E0×E1 is a Banach function space over (Ω0 ∪̇Ω1, μ0 +̇μ1) where
Ω0 ∪̇Ω1 denotes the disjoint union of Ω0 and Ω1 (which may be realized by
Ω0×{0}∪Ω1×{1} if necessary) and μ0 +̇μ1(B0 ∪̇B1) = μ0(B0)+μ1(B1) for
μν -measurable subsets Bν ⊂Ων , ν = 0,1.

(b) If E is a Banach function spaces over (Ω, μ) and q ∈ [1,∞] then
E(lq) is the space of all sequences (fj)j∈Z in E such that ‖(fj)j‖E(lq) :=

‖(
∑

j∈Z
|fj |q)1/q‖E < ∞. The space (E(lq),‖ · ‖E(lq)) is a Banach function

space over (Ω×Z, μ⊗ δ) where δ denotes the counting measure on Z. If (Ωn)
is the localizing sequence in Ω then we consider Ωn × {|j| ≤ n} as localizing
sequence in Ω×Z.

For a Banach function space E, one can make sense of expressions like
‖(
∑

j |fj |q)1/q‖E where fj ∈M(μ), but for later applications we have to allow
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for greater flexibility, so we take closed subspaces of Banach function spaces.
We find it, however, helpful to keep the embedding in notation. Therefore,
we define the basic objects for our interpolation method as follows.

Definition 2.3. A structured Banach space is a triple (X,J,E) where X
is a Banach space, E is a Banach function space and J :X → E is a linear
map such that ‖x‖X = ‖Jx‖E for all x ∈X , i.e. J :X →E is isometric, thus
injective, but not necessarily surjective. For a given Banach space X we call a
pair (J,E) a function space structure on X if (X,J,E) is a structured Banach
space.

It will not be essential that J is isometric, it would be sufficient that ‖Jx‖E
is equivalent to the norm in X , but things are easier written down this way.
For a structured Banach space (X,J,E), we can thus make sense of expressions
like ‖(

∑n
j=1 |Jxj |q)1/q‖E , and—via the Fatou property—we can take limits∥∥∥∥∥

( ∞∑
j=1

|Jxj |q
)1/q∥∥∥∥∥

E

= lim
n→∞

∥∥∥∥∥
(

n∑
j=1

|Jxj |q
)1/q∥∥∥∥∥

E

.

In this paper, we always understand that (
∑

j |fj |q)1/q means supj |fj | in case

q =∞. We extend the notion of Rq-bounded (sets of) operators to our setting.

Definition 2.4. Let X = (X,J,E) and Y = (Y,K,F ) be structured Ba-
nach spaces and q ∈ [1,∞]. A set T of linear operators X → Y is called
lq-bounded or Rq-bounded (w.r.t. the function space structures (J,E) on
X and (K,F ) on Y ) if there exists a constant C such that, for all n ∈ N,
x1, . . . , xn ∈X and T1, . . . , Tn ∈ T ,∥∥∥∥∥

(
n∑

j=1

|KTjxj |q
)1/q∥∥∥∥∥

F

≤C

∥∥∥∥∥
(

n∑
j=1

|Jxj |q
)1/q∥∥∥∥∥

E

.

The least constant C is denoted Rq(T ) and called the Rq-bound of T . A sin-
gle linear operator T :X → Y is called lq-bounded if the set {T} is lq-bounded.
The least constant is denoted Rq(T ) in this case. Occasionally we shall say
that T or T is Rq-bounded X →Y which is a more precise notation.

Denoting the set of Rq-bounded operators T : X → Y by RqL(X,Y ) it
can be shown that RqL(X,Y ) is a Banach space for the norm Rq(·) (cf. [12,
Proposition 2.6]).

Remark 2.5. The notion has been called Rq-boundedness in [21] in the
context of R-boundedness of sets of operators in general Banach spaces. For
the purpose of this paper, it seems more natural to call it lq-boundedness here.
However, we shall use the (somehow established) notion of Rq-sectorial oper-
ators below. Hence, we use both terms lq-boundedness and Rq-boundedness
in this paper, the choice depending on the context.
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A fact we have to accept is that a single operator T : X →Y need not be
lq-bounded in general if q �= 2. Related is the phenomenon that the notion of
lq-boundedness depends on the function space structures on X and Y .

Example 2.6. The Rademacher sequence (rk) is an orthonormal system in
L2[0,1]. Let X denote their closed span in E = L2[0,1]. Then X = (X,J,E) is
a structured Banach space where J denotes the inclusion mapX →E. Now let
(hk) be the normalized characteristic functions on intervals (2−k,21−k] which

also form an orthonormal sequence in E = L2[0,1] and define J̃ :X → E by∑
k akrk →

∑
k akhk. Then also X̃ = (X, J̃,E) is a structured Banach space.

We have (cf., e.g., [12, Example 2.16]):∥∥∥∥∥
(

n∑
j=1

|rj |q
)1/q∥∥∥∥∥

L2

= n1/q,

∥∥∥∥∥
(

n∑
j=1

|hj |q
)1/q∥∥∥∥∥

L2

= n1/2.

Hence, the identity is not lq-bounded X → X̃ for 1≤ q < 2 and not lq-bounded
X̃ →X for q > 2. The example can be made to work on L2[0,1] as well.

Therefore, on a Banach space X , we call function space structures (J,E)

and (J̃ , Ẽ) that give rise to equivalent norms lq-equivalent if there exists a
constant C such that, for all n ∈N and x1, . . . , xn ∈X ,

C−1

∥∥∥∥∥
(

n∑
j=1

|Jxj |q
)1/q∥∥∥∥∥

E

≤
∥∥∥∥∥
(

n∑
j=1

|J̃xj |q
)1/q∥∥∥∥∥

Ẽ

≤C

∥∥∥∥∥
(

n∑
j=1

|Jxj |q
)1/q∥∥∥∥∥

E

,

that is, if the identity operator (X,J,E)→ (X, J̃, Ẽ) is lq-bounded in both
directions. It is clear that lq-boundedness is preserved (with equivalent lq-
bounds) if we change to lq-equivalent function space structures.

As an example that shall become important lateron, we extend the no-
tion of Rq-sectorial operators (cf. [21], [12]) from Banach function spaces to
structured Banach spaces.

Definition 2.7. Let X = (X,J,E) be a structured Banach space and
q ∈ [1,∞]. A sectorial operator A in X is called Rq-sectorial of type ω ∈ [0, π)
(w.r.t. to the function space structure (J,E) on X) if it is sectorial of type ω
and for all σ ∈ (ω,π) the set{

λ(λ+A)−1 : λ ∈C \ {0}, |argλ|< π− σ
}

is Rq-bounded in X . The infimum of all such angles ω is denoted ωq(A).

Definition 2.8. We call a pair (X0,X1) = ((X0, J0,E0), (X1, J1,E1)) an
interpolation couple if X0 ↪→ Z and X1 ↪→ Z with continuous injections for
some Hausdorff topological vector space Z, that is, if (X0,X1) is an interpo-
lation couple in the usual sense (cf. [18]).
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We now introduce the lq-interpolation method for interpolation couples of
structured Banach spaces.

Definition 2.9. For q ∈ [1,∞], an interpolation couple (X0,X1) =
((X0, J0,E0), (X1, J1,E1)), and θ ∈ (0,1) we let

‖x‖θ,lq := inf

{∥∥∥∥(∑
j∈Z

∣∣2−jθJ0x0(j)
∣∣q)1/q∥∥∥∥

E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)J1x1(j)
∣∣q)1/q∥∥∥∥

E1

:

∀j ∈ Z : x= x0(j) + x1(j), x0(j) ∈X0, x1(j) ∈X1

}
for x ∈X0 +X1 and define

(X0,X1)θ,lq :=Xθ,lq :=
{
x ∈X0 +X1 : ‖x‖θ,lq <∞

}
with norm ‖ · ‖θ,lq .

Proposition 2.10. For θ ∈ (0,1) and q ∈ [1,∞] the normed space (Xθ,lq ,
‖ · ‖θ,lq ) is a Banach space.

Proof. One has to show essentially that, for ν = 0,1,

Uν :=
{(

xν(j)
)
j∈Z

⊂Xν :
(
2j(ν−θ)Jνxν(j)

)
j
∈Eν

(
lq(Z)

)}
is complete for the associated norm and that

D :=
{(

x0(j), x1(j)
)
∈ U0 ×U1 : ∀j ∈ Z : x0(j) =−x1(j)

}
is closed in U0 ×U1. This is easy. �

The following is the basic interpolation property.

Theorem 2.11. Let (X0,X1) = ((X0, J0,E0), (X1, J1,E1)) and (Y0,Y1) =
((Y0,K0, F0), (Y1,K1, F1)) be interpolation couples of structured Banach
spaces. Let q ∈ [1,∞] and let T : X0 + X1 → Y0 + Y1 be a linear operator
such that T :X0 → Y0 and T :X1 → Y1 are Rq-bounded with Rq-bounds M0

and M1, respectively. Then for any θ ∈ (0,1) the operator T acts as a bounded

linear operator Xθ,lq → Yθ,lq with norm ≤ cθM
1−θ
0 Mθ

1 where cθ = 2θ.

As will become apparent in the proof, the constant cθ is the price to pay
for the use of discrete lq-norms in the definition of our method.

Proof of Theorem 2.11. Let x ∈Xθ,lq and ε > 0. For each j ∈ Z, we choose
a decomposition x= x0(j) + x1(j) with xν(j) ∈Xν , ν = 0,1, such that∥∥∥∥(∑

j∈Z

∣∣2−jθJ0x0(j)
∣∣q)1/q∥∥∥∥

E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)J1x1(j)
∣∣q)1/q∥∥∥∥

E1

≤ ‖x‖θ,lq + ε.
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We choose an integer m such that 2m−1 < M1/M0 ≤ 2m. Letting x̃ν(j) :=
xν(j + m) for j ∈ Z and ν = 0,1, we have Tx = T x̃0(j) + T x̃1(j) with
T x̃ν(j) ∈ Yν for ν = 0,1. Hence,

‖Tx‖θ,lq

≤
∥∥∥∥(∑

j∈Z

∣∣2−jθK0T x̃0(j)
∣∣q)1/q∥∥∥∥

F0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)K1T x̃1(j)
∣∣q)1/q∥∥∥∥

F1

which is

≤
∥∥∥∥(∑

j∈Z

∣∣2−jθM0J0x̃0(j)
∣∣q)1/q∥∥∥∥

E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)M1J1x̃1(j)
∣∣q)1/q∥∥∥∥

E1

by assumption. Now we introduce m and the last line becomes

= 2mθM0

∥∥∥∥(∑
j∈Z

∣∣2−(j+m)θJ0x0(j +m)
∣∣q)1/q∥∥∥∥

E0

+ 2m(θ−1)M1

∥∥∥∥(∑
j∈Z

∣∣2(j+m)(1−θ)J1x1(j +m)
∣∣q)1/q∥∥∥∥

E1

.

We shift the summation index by m and obtain

≤max
{
2mθM0,2

−m(1−θ)M1

}(
‖x‖θ,lq + ε

)
.

We let ε→ 0 and observe

2mθM0 ≤ 2θM1−θ
0 Mθ

1 , 2−m(1−θ)M1 ≤M1−θ
0 Mθ

1 .

We thus have shown the claim with cθ = 2θ. �

A short comment on the functor property of our interpolation method
seems to be in order.

Remark 2.12. Let q ∈ [1,∞]. We consider the category C of all Banach
spaces with bounded linear operators as morphisms (cf. [18, Definition 1.2.2]).
Now let the category Cq be given by taking as objects interpolation couples
(X0,X1) of structured Banach spaces and as morphisms between two couples
(X0,X1) and (Y0,Y1) linear operators T : X0 +X1 → Y0 + Y1 such that T :
X0 →Y0 and T :X1 →Y1 are lq-bounded. Then lq-interpolation is a covariant
functor from Cq to C which is of type θ.

We note several simple properties.

Proposition 2.13. Let (X0,X1) be an interpolation couple of structured
Banach spaces. For q ∈ [1,∞] and θ ∈ (0,1), we have

(a) (X0,X1)θ,lq = (X1,X0)1−θ,lq ,
(b) (X0,X0)θ,lq =X0,
(c) if q < q̃ ≤∞ then (X0,X1)θ,lq ↪→ (X0,X1)θ,lq̃ ,
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(d) (X0,X1)θ,1 ↪→ (X0,X1)θ,lq ↪→ (X0,X1)θ,∞ where (X0,X1)θ,r denote real
interpolation spaces.

Proof. (a) is obvious, and (c) follows from lq ↪→ lq̃ . For the proof of (b), we
decompose x by taking x0(j) = x for j ≥ 0, x0(j) = 0 for j < 0 and x1(j) = 0
for j ≥ 0, x1(j) = x for j < 0. This gives X0 ↪→ (X0,X0)θ,lq , but the reverse
embedding is clear since always (X0,X1)θ,lq ↪→X0 +X1. For the proof of (d),
we notice

sup
j

∥∥2j(ν−θ)xν(j)
∥∥
Xν

≤
∥∥∥sup

j

∣∣2j(ν−θ)Jνxν(j)
∣∣∥∥∥

Eν

≤
∥∥∥∥(∑

j

∣∣2j(ν−θ)Jνxν(j)
∣∣q)1/q∥∥∥∥

Eν

≤
∥∥∥∥∑

j

∣∣2j(ν−θ)Jνxν(j)
∣∣∥∥∥∥

Eν

≤
∑
j

∥∥2j(ν−θ)xν(j)
∥∥
Xν

.
�

Remark 2.14. Proposition 2.13(d) implies for 0 < θ0 < θ1 < 1, q0, q1, q ∈
[1,∞] and λ ∈ (0,1) by reiteration(

(X0,X1)θ0,lq0 , (X0,X1)θ1,lq1
)
λ,q

= (X0,X1)(1−λ)θ0+λθ1,q.

3. The case q = 2 and Rademacher interpolation

The case q = 2 in lq-interpolation is a special one: If in X = (X,J,E)
the Banach function space E is qE-concave for some qE <∞, then (cf. [16,
Thm 1.d.6(i)]) we have equivalence of expressions∥∥∥∥∥

(
n∑

j=1

|Jxj |2
)1/2∥∥∥∥∥

E

and

∫ 1

0

∥∥∥∥∥
n∑

j=1

rj(u)Jxj

∥∥∥∥∥
E

du= E

∥∥∥∥∥
n∑

j=1

rjxj

∥∥∥∥∥
X

uniformly in n where the rj denote Rademacher functions on [0,1]. Moreover,
such a space E is of finite cotype and we have equivalence of expressions

E

∥∥∥∥∥
n∑

j=1

rjxj

∥∥∥∥∥
X

, E

∥∥∥∥∥
n∑

j=1

γjxj

∥∥∥∥∥
X

uniformly in n where the γj are independent Gaussian variables.
This has two consequences. The first one is well known: If, in addition,

in Y = (Y,K,F ) the space F is qF -concave for some qF < ∞, then a set
of operators T from X → Y is R2-bounded X → Y if and only if it is R-
bounded, that is, if and only if there exists a constant C such that, for all
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n ∈N, x1, . . . , xn ∈X , and T1, . . . , Tn ∈ T , we have

E

∥∥∥∥∥
n∑

j=1

rjTjxj

∥∥∥∥∥
Y

≤CE

∥∥∥∥∥
n∑

j=1

rjxj

∥∥∥∥∥
X

.

Since singletons {T} are always R-bounded, we obtain under these assump-
tions that each bounded operator T : X → Y is R2-bounded X → Y . The
same holds for the related notion of γ-boundedness.

The second consequence is that l2-interpolation spaces for an interpolation
couple (X0,X1), for which Eν is qν -concave for some qν < ∞ and ν = 0,1,
coincide with the spaces obtained for the couple (X0,X1) by Rademacher
interpolation or by γ-interpolation (which are equivalent in this case). In
order to see this, we present the following reformulation of our method for
general q. For q = 2, the relation to the Rademacher interpolation spaces
from [8, Definition 7.1] is then obvious.

Theorem 3.1. Let q ∈ [1,∞] and let (X0,X1) be an interpolation couple.
For θ ∈ (0,1) and x ∈X0 +X1 we let

‖x‖Jθ,lq := inf

{∥∥∥∥(∑
j∈Z

∣∣2−jθJ0xj

∣∣q)1/q∥∥∥∥
E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)J1xj

∣∣q)1/q∥∥∥∥
E1

:

∀j ∈ Z : xj ∈X0 ∩X1 and x=
∑
j∈Z

xj in X0 +X1

}
.

Then (X0,X1)θ,lq = {x ∈X0 +X1 : ‖x‖Jθ,lq <∞} and ‖x‖Jθ,lq is an equivalent

norm on (X0,X1)θ,lq .

Corollary 3.2. Let (X0,X1) be an interpolation couple such that, for
ν = 0,1, the space Eν is qν -concave for some qν <∞. Then for θ ∈ (0,1) the
space (X0,X1)θ,l2 coincides with the Rademacher interpolation space 〈X0,X1〉θ
and the norms are equivalent.

Proof. Note that, for ν = 0,1, the expressions∥∥∥∥(∑
j∈Z

∣∣2j(ν−θ)Jνxj

∣∣2)1/2∥∥∥∥
Eν

= sup
N

∥∥∥∥( ∑
|j|≤N

∣∣2j(ν−θ)Jνxj

∣∣2)1/2∥∥∥∥
Eν

and

sup
N

E

∥∥∥∥ ∑
|j|≤N

2j(ν−θ)rjxj

∥∥∥∥
Xν

are equivalent and take a look at [8, Definition 7.1]. �

Proof of Theorem 3.1. Let x ∈X0+X1. We have to prove two inequalities.
First suppose that (x0(j)), (x1(j)) are sequences in X0, X1, respectively, such
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that x= x0(j) + x1(j) for all j ∈ Z and

C :=

∥∥∥∥(∑
j∈Z

∣∣2−jθJ0x0(j)
∣∣q)1/q∥∥∥∥

E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)J1x1(j)
∣∣q)1/q∥∥∥∥

E1

<∞.

Then yj := x0(j + 1)− x0(j) =−(x1(j + 1)− x1(j)) ∈X0 ∩X1 for j ∈ Z, and

k∑
j=−l

yj = x0(k+ 1)− x0(−l) = x1(−l)− x1(k+ 1) for k, l > 0.

The assumption implies ‖2−kθJ0x0(k)‖E0 ≤C, that is,∥∥x0(k)
∥∥
X0

≤C2kθ → 0 (k→−∞),

and, similarly, ∥∥x1(k)
∥∥
X1

≤C2−k(1−θ) → 0 (k→∞).

We conclude that x=
∑

j∈Z
yj = limk,l→∞

∑k
j=−l yj in X0 +X1. Finally, we

have, for ν = 0,1,∥∥∥∥(∑
j∈Z

∣∣2j(ν−θ)Jνyj
∣∣q)1/q∥∥∥∥

Eν

≤ 2θ−ν

∥∥∥∥(∑
j∈Z

∣∣2(j+1)(ν−θ)Jνxν(j + 1)
∣∣q)1/q∥∥∥∥

Eν

+

∥∥∥∥(∑
j∈Z

∣∣2j(ν−θ)Jνxν(j)
∣∣q)1/q∥∥∥∥

Eν

,

which yields ‖x‖θ,lq ≤ (1 + 2θ)C.
Now we suppose that (yj) is a sequence in X0 ∩X1 such that x=

∑
j∈Z

yj
(convergence in X0 +X1) and

C :=

∥∥∥∥(∑
j∈Z

∣∣2−jθJ0yj
∣∣q)1/q∥∥∥∥

E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)J1yj
∣∣q)1/q∥∥∥∥

E1

<∞.

For k ∈ Z we now let x0(k) :=
∑k

j=−∞ yj and x1(k) :=
∑∞

j=k+1 yj . It is clear

that the series converge in X0+X1 and that x0(k)+x1(k) = x for each k ∈ Z.
For ν = 0,1 we have to show that the series for xν(k) converges in Xν . For
n,m ∈ Z with n <m, we have by Hölder and assumption∥∥∥∥∥

m∑
j=n

yj

∥∥∥∥∥
Xν

=

∥∥∥∥∥
m∑

j=n

Jνyj

∥∥∥∥∥
Eν

≤
∥∥∥∥∥
(

m∑
j=n

2j(θ−ν)q′

)1/q′( m∑
j=n

∣∣2j(ν−θ)Jνyj
∣∣q)1/q∥∥∥∥∥

Eν

≤ C

(
m∑

j=n

2j(θ−ν)q′

)1/q′

.
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For ν = 0, this tends to 0 for n,m→−∞, and for ν = 1 this tends to 0 for
n,m→∞. We conclude that xν(k) ∈Xν for ν = 0,1. Now we write

N0 :=

∥∥∥∥(∑
k∈Z

∣∣2−kθJ0x0(k)
∣∣q)1/q∥∥∥∥

E0

=

∥∥∥∥∥
(∑

k∈Z

∣∣∣∣∣
k∑

j=−∞
2(j−k)θJ0

(
2−jθyj

)∣∣∣∣∣
q)1/q∥∥∥∥∥

E0

=

∥∥∥∥(∑
k∈Z

∣∣∣∣∑
j∈Z

akjzj

∣∣∣∣q)1/q∥∥∥∥
E0

where akj = 2(j−k)θ for j ≤ k, akj = 0 for j > k, and zj = J0(2
−jθyj). It is

easily checked that
∑

k akj =
∑

j akj =
2θ

2θ−1
, hence (ηj) → (

∑
j akjηj)k defines

a bounded operator lq(Z)→ lq(Z) with norm ≤ 2θ

2θ−1
. We thus obtain

N0 ≤
2θ

2θ − 1

∥∥∥∥(∑
j

∣∣2−jθJ0yj
∣∣q)1/q∥∥∥∥

E0

.

Similarly, we prove

N1 :=

∥∥∥∥(∑
k∈Z

∣∣2k(1−θ)J1x1(k)
∣∣q)1/q∥∥∥∥

E1

≤ 1

21−θ − 1

∥∥∥∥(∑
j

∣∣2j(1−θ)J1yj
∣∣q)1/q∥∥∥∥

E1

,

and obtain finally N0 +N1 ≤max{ 2θ

2θ−1
, 1
21−θ−1

}C. This ends the proof. �

Another consequence of Theorem 3.1 is the following denseness property
(cp. [18, Theorem 1.6.2] for the real method).

Corollary 3.3. Let (X0,X1) be an interpolation couple of structured Ba-
nach spaces and 1≤ q <∞, θ ∈ (0,1). Then X0 ∩X1 is dense in (X0,X1)θ,lq

and
(X0,X1)θ,lq =

(
X 0

0 ,X1

)
θ,lq

=
(
X0,X 0

1

)
θ,lq

=
(
X 0

0 ,X 0
1

)
θ,lq

,

where, for ν = 0,1, X 0
ν = (X0

ν , Jν |X0
ν
,Eν) and X0

ν denotes the closure of
X0 ∩X1 in Xν .

Proof. Take x ∈ (X0,X1)θ,lq and a representation x=
∑

j∈Z
yj as in Theo-

rem 3.1. We just have to note that the sequence (
∑

|j|≤n yj)n converges to x

in (X0,X )θ,lq , which is implied by∥∥∥∥( ∑
|j|>n

∣∣2j(ν−j)Jνyj
∣∣q)1/q∥∥∥∥

Eν

→ 0 (n→∞)



14 P. C. KUNSTMANN

(use q <∞ and the Fatou property). �

The assertion of Corollary 3.3 does certainly not hold for q =∞.

4. lq-quasilinearizable interpolation couples

The point that may seem unsatisfactory in the theory presented so far
is that we do not obtain Rq-bounded operators between the lq-interpolation
spaces although we start with Rq-bounded operators. On the other hand,
we do not know what lq-boundedness would mean since we do not even have
function space structures on lq-interpolation spaces. Indeed, the norm in lq-
interpolation spaces comes as a quotient norm. However, we do obtain a
natural function space structure for an equivalent norm if a linear selection
of representatives is possible in a suitable way. The following modification
of quasi-linearizability (cf. [18, Definition 1.8.4]) is a formalization of this
idea.

Definition 4.1. Let q ∈ [1,∞]. The interpolation couple (X0,X1) is said
to be lq-quasilinearizable if there are families (Vν(t))t>0 of linear operators
X0 +X1 →Xν for ν = 0,1 such that

(i) for all t > 0: V0(t) + V1(t) = IX0+X1 ,
(ii) for ν, ρ= 0,1 the sets {tν−ρVν(t) : t > 0} are Rq-bounded Xρ →Xν .

In this case, we shall write V = (V0(t), V1(t))t>0.

Strictly speaking, we only need the operators Vν(t) for t= 2j , j ∈ Z, in the
following. Note, however, that a corresponding modification of the definition
would not lead to greater generality since we can have the operators Vν(t)
constant on dyadic t-intervals.

Proposition 4.2. Let q ∈ [1,∞] and let the interpolation couple (X0,X1) =
((X0, J0,E0), (X1, J1,E1)) be lq-quasilinearizable with corresponding operator
family V = (V0(t), V1(t))t>0. For θ ∈ (0,1) and x ∈X0 +X1 we define

‖x‖Vθ,lq :=

∥∥∥∥(∑
j∈Z

∣∣2−jθJ0V0

(
2j
)
x
∣∣q)1/q∥∥∥∥

E0

+

∥∥∥∥(∑
j∈Z

∣∣2j(1−θ)J1V1

(
2j
)
x
∣∣q)1/q∥∥∥∥

E1

.

Then (X0,X1)θ,lq = {x ∈X0 +X1 : ‖x‖Vθ,lq <∞} and ‖ · ‖Vθ,lq is an equivalent

norm on (X0,X1)θ,lq .

Proof. We denote by C the maximum of the Rq-bounds of the sets in
Definition 4.1. For x ∈X0 +X1 we clearly have ‖x‖θ,lq ≤ ‖x‖Vθ,lq . If, on the
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other hand, x= x0(j) + x1(j) for j ∈ Z then

1∑
ν=0

∥∥∥∥(∑
j∈Z

∣∣2j(ν−θ)JνVν

(
2j
)
x
∣∣q)1/q∥∥∥∥

Eν

≤
1∑

ν=0

1∑
ρ=0

∥∥∥∥(∑
j∈Z

∣∣2j(ν−θ)JνVν

(
2j
)
xρ(j)

∣∣q)1/q∥∥∥∥
Eν

≤
1∑

ν=0

1∑
ρ=0

∥∥∥∥(∑
j∈Z

∣∣2j(ρ−θ)Jν
(
2j(ν−ρ)Vν

(
2j
))
xρ(j)

∣∣q)1/q∥∥∥∥
Eν

≤ 2C

1∑
ρ=0

∥∥∥∥(∑
j∈Z

∣∣2j(ρ−θ)Jρxρ(j)
∣∣q)1/q∥∥∥∥

Eρ

by the Rq-boundedness properties of V0(t), V1(t). Hence ‖x‖Vθ,lq ≤ 2C‖x‖θ,lq .
�

Example 4.3. As an example, we mention the special case of a sectorial
operator A in a structured Banach space X = X0 = (X,J,E) with 0 ∈ ρ(A).
We let X1 := (X1, J1,E) where X1 =D(A) with norm ‖x‖X1 = ‖Ax‖X and
J1x := JAx. If A is Rq-sectorial then taking V0(t) = tA(1+ tA)−1 and V1(t) =
(1 + tA)−1 shows that the couple (X0,X1) is lq-quasilinearizable. Moreover,
the Rq-bounds of the four sets in Definition 4.1(ii) are all equal to the Rq-
bound X → X of {λ(λ+ A)−1 : λ > 0}. This gives the link to (generalized)
Triebel–Lizorkin spaces in the next section.

Corollary 4.4. In the situation of Proposition 4.2, we let

XV
θ,lq :=

(
Xθ,lq ,‖ · ‖Vθ,lq

)
, Elq :=E0

(
lq(Z)

)
×E1

(
lq(Z)

)
.

Then XV
θ,lq := (XV

θ,lq , J
V
θ,lq ,Elq ) is a structured Banach space where

JV
θ,lq :X

V
θ,lq →Elq , JV

θ,lqx :=
(
2−jθJ0V0

(
2j
)
x,2j(1−θ)J1V1

(
2j
)
x
)
j∈Z

.

The following is the announced improvement of the assertion of Theo-
rem 2.11.

Theorem 4.5. Let q ∈ [1,∞] and let (X0,X1) and (Y0,Y1) be lq-
quasilinearizable interpolation couples with corresponding families V , W , re-
spectively. Let T be a set of linear operators T : X0 + X1 → Y0 + Y1 such
that T is Rq-bounded X0 → Y0 and X1 → Y1 with Rq-bounds M0 and M1,
respectively. Then, for θ ∈ (0,1), the set T is Rq-bounded XV

θ,lq →YW
θ,lq with

Rq-bound ≤ cθ,V,WM1−θ
0 Mθ

1 .

Proof. This is done by a suitable modification of the proof of Theorem 2.11.
We choose an integer m such that 2m−1 <M1/M0 ≤ 2m. We have to bound
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expressions ∥∥∥∥(∑
j,k

∣∣2j(ν−θ)KνWν

(
2j
)
Tkxk

∣∣q)1/q∥∥∥∥
Fν

where ν = 0,1 and
∑

j,k =
∑

j∈Z

∑n
k=1. To this end, we write

xk = V0

(
2j+m

)
xk + V1

(
2j+m

)
xk

and estimate ∥∥∥∥(∑
j,k

∣∣2j(ν−θ)KνWν

(
2j
)
TkVρ

(
2j+m

)
xk

∣∣q)1/q∥∥∥∥
Fν

for ν, ρ= 0,1. By Definition 4.1(ii) for Wν and the assumption on T we get
that this is

≤ cWMρ

∥∥∥∥(∑
j,k

∣∣2j(ν−θ)2j(ρ−ν)JρVρ

(
2j+m

)
xk

∣∣q)1/q∥∥∥∥
Fρ

= cWMρ2
m(θ−ρ)

∥∥∥∥(∑
j,k

∣∣2(j+m)(ρ−θ)JρVρ

(
2j+m

)
xk

∣∣q)1/q∥∥∥∥
Fρ

.

Now we can proceed as before. �

5. Generalized Triebel–Lizorkin spaces revisited

In this section, let X be a Banach function space with absolute continuous
norm and q ∈ [1,∞]. Let A be a sectorial operator in X with dense domain
D(A) and range R(A) that is Rq-sectorial of type ωq(A). Then A is injective.
We first recall the construction of generalized Triebel–Lizorkin spaces associ-
ated with A from [12]. For the sake of a simple presentation, we restrict to the
case θ ∈ (0,1) and homogeneous generalized Triebel–Lizorkin spaces. To this

end, we define Ẋ1(A) as the completion of the normed space (D(A),‖A · ‖X).

Then (X,Ẋ1(A)) is an interpolation couple of Banach spaces and A has an

extension to an isometry Ẋ1(A)→X which we denote again by A. We refer
to, for example, [13], [8], [6] for more background. We denote X0 := (X,I,X)

and X1 := (Ẋ1(A),A,X) and obtain an interpolation couple in the sense of
Definition 2.8. As in Example 4.3, this couple is lq-quasilinearizable with
V0(t) = tA(1 + tA)−1 and V1(t) = (1 + tA)−1.

For ω ∈ (0, π), we denote the open sector {z ∈ C \ {0} : |arg z| < ω} by
Σω and let Σ0 := (0,∞). Then Σω = {z ∈ C \ {0} : |arg z| ≤ ω} ∪ {0} for
any ω ∈ [0, π). For an angle ω ∈ (0, π), we denote by H∞(Σω) the set of all
bounded homolorphic functions on Σω and by H∞

0 (Σω) the subset of those
functions f ∈H∞(Σω) that satisfy, for some ε > 0, |f(z)|=O(|z|ε) as z → 0
and |f(z)| = O(|z|−ε) as z → ∞. We denote the extended Dunford–Riesz
class H∞

0 (Σω) + 〈z → (1 + z)−1, z → 1〉 by E(Σω). Thus E(Σω) consists of
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all f ∈ H∞(Σω) that have limits f(0) and f(∞) such that f(z) − f(0) =
O(|z|ε) (z → 0) and f(z) − f(∞) = O(|z|−ε) (z → ∞) for some ε > 0. Any
sectorial operator of type ω(A) ∈ [0, π) has an E(Σω) functional calculus for
ω ∈ (ω(A), π), cf. [12] or [6].

We combine [12, Definition 4.1] and [12, Proposition 4.10]: For ω > ωq(A)

and ϕ ∈ E(Σω) \ {0} such that z → z−θϕ(z) ∈H∞
0 (Σω) and x ∈X + Ẋ1(A)

let

‖x‖θ,q,ϕ :=

∥∥∥∥(∫ ∞

0

∣∣t−θϕ(tA)x
∣∣q dt

t

)1/q∥∥∥∥
X

and Ẋθ
q,A,ϕ := {x ∈X + Ẋ1(A) : ‖x‖θ,q,ϕ <∞}. This is a Banach space. By

[12, Proposition 4.5] the space Ẋθ
q,A,ϕ is independent of ϕ and all the norms

are equivalent. Hence this space is denoted Ẋθ
q,A. There are discrete analogs

of these norm expressions but only for a restricted class of functions ϕ, cf. [12,
Section 3.3]. Here we only need that ψ(z) = z(1 + z)−1 belongs to this class,
i.e. for θ ∈ (0,1), the function ψθ(z) = z1−θ(1 + z)−1 satisfies property (UE)
from [12, Definition 3.11], which can be seen as in [12, Example 3.13] and
is even simpler. In fact, the conclusion of [12, Lemma 3.12] can be checked
directly here: We have, for t ∈ [1,2] and j ∈ Z,

Sj(t) = ψθ

(
2jtA

)−1
ψθ

(
2jA

)
= tθ−1

(
1 + 2jtA

)(
1 + 2jA

)−1
,

Sj(t) = ψθ

(
2jA

)−1
ψθ

(
2jtA

)
= t1−θ

(
1 + 2jA

)(
1 + 2jtA

)−1
.

Hence Rq-boundedness of the set {Sj(t), Sj(t) : j ∈ Z, t ∈ [1,2]} in X follows
directly from the definition of Rq-sectoriality of A. By [12, Proposition 4.5]
we have, for θ ∈ (0,1), that

‖x‖Σθ,q,A :=

∥∥∥∥(∑
j∈Z

∣∣2−jθψ
(
2jA

)
x
∣∣q)1/q∥∥∥∥

X

is an equivalent norm on Ẋθ
q,A. But ψ(2jA) = V0(2

j) = 2jAV1(2
j), which

means
‖x‖Vθ,lq = 2‖x‖Σθ,q,A,

and we have proved the following.

Proposition 5.1. Under the assumptions of this section we have, for
θ ∈ (0,1) and ϕ as above,

Ẋθ
q,A,ϕ = (X0,X1)θ,lq

with equivalent norms.

Actually, the norm expressions mentioned so far give rise to lq-equivalent
function space structures. We let Lq

∗ := Lq(0,∞, dtt ) and use the notation

ψ(z) := z(1 + z)−1 from above. We define

Jθ : Ẋ
θ
q,A →X

(
lq(Z)

)
, Jθx :=

(
2−jθψ

(
2jA

)
x
)
j∈Z

.
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Then (Jθ,X(lq(Z)) is clearly lq-equivalent to the function space structure we
have on (X0,X1)θ,lq by Corollary 4.4.

For ϕ ∈ E(Σω) \ {0} with z−θϕ(z) ∈H∞
0 (Σω) where ω > ωq(A) we define

Jϕ,θ : Ẋ
θ
q,A,ϕ →X

(
Lq
∗
)
, (Jθ,ϕx)(t) = t−θϕ(tA)x.

Then (Ẋθ
q,A,ϕ, Jθ,ϕ,X(Lq

∗)) is a structured Banach space.

Theorem 5.2. Under the assumptions of this section, for θ ∈ (0,1), and
ϕ as above, the function space structures (Jθ,ϕ,X(Lq

∗)) and (Jθ,X(lq)) are

lq-equivalent on Ẋθ
q,A.

Proof. This is essentially a Fubini argument. We have to show equivalence
of expressions ∥∥∥∥∥

(∫ ∞

0

n∑
k=1

∣∣t−θϕ(tA)xk

∣∣q dt
t

)1/q∥∥∥∥∥
X

and

∥∥∥∥∥
(∑

j∈Z

n∑
k=1

∣∣2−jθψ
(
2jA

)
xk

∣∣q)1/q∥∥∥∥∥
X

uniformly in n. To this end, we use the operator Ãq defined in [12, Defini-

tion 3.2] in X(lq) by Ãq(xj) := (Axj) with domain all sequences (xj) in D(A)
such that (xj), (Axj) ∈X(lq) which had been shown to be sectorial in X(lq).

We take lq = lqn here, but estimates will be uniform in n. The operator Ãq is
even Rq-sectorial in X(lq) as is easily checked (same Rq-bound as for A in X).

Now we can apply Proposition 5.1 to the operator Ãq , and this gives what
we need. An inspection of the arguments in [12] shows that the equivalence
is indeed uniform in n. �

We close with a remark on the H∞-calculus of the part of A in Ẋθ
q,A.

Remark 5.3. Under the assumptions of this section it can be proved—via
a suitable modification of [12, Proposition 3.9]—that, for θ ∈ (0,1), the part

of A in Ẋθ
q,A even has an Rq-bounded H∞-calculus in Ẋθ

q,A.
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