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COEFFICIENT IDEALS IN DIMENSION TWO

A. KOHLHAAS

Abstract. We describe coefficient ideals for both (x, y)-primary
monomial ideals in k[x, y] and m-primary ideals in two-dimensio-
nal regular local rings (R,m) by linking them to certain ideals

of reduction number one. In the monomial case, we then explic-
itly determine the generators of a coefficient ideal by showing

their symmetric relationship to the generators of the associated
reduction number one ideal.

1. Introduction

In this paper, we describe coefficient ideals for both (x, y)-primary mono-
mial ideals in k[x, y] as well as m-primary ideals in regular local rings (R,m)
of dimension two and their relationship to ideals of reduction number one.
The coefficient ideal was first introduced by Aberbach and Huneke:

Definition 1 ([2, 2.1]). Let I and J be two ideals. The coefficient ideal
of I and J is the largest ideal a such that aI = aJ .

We show in the following that if I is either a 0-dimensional monomial ideal
in k[x, y] or a 0-dimensional ideal in a two-dimensional regular local ring, then
the coefficient ideal of I and a minimal reduction J of I is independent of J ,
and we denote this ideal coef(I). In the process, we show that this coefficient
ideal appears as a component of the canonical module of R[It] and is therefore
closely related to core(I), the intersection of all reductions of I . This extends
similar results for different classes of ideals shown by I. Aberbach, A. Corso,
A. Hosry, C. Huneke, E. Hyry, T. Järvilehto, S. Ohnishi, C. Polini, K. Smith,
B. Ulrich, and K. Watanabe [1], [2], [5], [10], [11], [12], [16], [17].

To more fully understand coef(I), we use linkage theory to define another
ideal I∗, the unique largest ideal containing I with the same coefficient ideal
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as I . The ideal I∗ is also the unique smallest ideal of reduction number at
most one containing I . If, additionally, I∗ = Ǐ , where Ǐ is the first coefficient
ideal of I in the sense of [19], then I∗ is also the largest ideal with the same
core as I and in fact core(I) = I coef(I) = I∗ coef(I∗).

Finally, by using coefficients of the Hilbert–Samuel function and the struc-
ture of monomial ideals, we show that, in the polynomial case, the exponent
sets of coef(I) and I∗ have an Alexander-like duality similar to that discussed
by Miller and Sturmfels (see [15, 5.27]).

2. The coefficient ideal and its link

We begin with a lemma concerning the degree one component of the canon-
ical module of R[It, t−1] described by Polini and Ulrich in [17]. The lemma
uses the notion “general locally minimal reduction” as defined by Polini, Ul-
rich, and Vitulli in [18, 3.3], a locally minimal reduction of a monomial ideal
I generated by d general linear combinations of the minimal monomial gen-
erators of I as well as appropriate powers of each of the variables to ensure it
is also a reduction of I .

Lemma 1. Let I be a 0-dimensional ideal either in a regular local ring
(R,m) of dimension d or monomial in k[x1, . . . , xd]. Let J be a minimal
reduction of I or a general locally minimal reduction of I , respectively. If
r = rJ(I), then Jr : Ir = core(I) : I . If I is a monomial ideal in a polynomial
ring k[x1, . . . , xd] and J is a general locally minimal reduction of I , then addi-
tionally Jr : Ir =mono(J : I), where mono(J : I) is the largest monomial ideal
contained in J : I .

Proof. Under the hypotheses, core(I) = Jr+1 : Ir (see, for instance, [17,
4.5] and [18, 2.3]). Notice that the colon ideal J t : It is stable for all
t ≥ r, so core(I) : I = (Jr+1 : Ir) : I = Jr+1 : Ir+1 = Jr : Ir. The equality
Jr : Ir = mono(J : I) uses the characterization of the core of a monomial
ideal, core(I) = mono(J), given in [18, 3.6]. That is, Jr : Ir = core(I) : I =
mono(J) : I . The inclusion mono(J) : I ⊆ J : I is clear, and since the first ideal
is monomial, we have mono(J) : I ⊆mono(J : I). Finally, if m is a monomial
generator of mono(J : I), then mI ⊆mono(J) since I is also monomial. Thus,
mono(J) : I =mono(J : I). �

Remark 1. Since Jr : Ir ⊆ Jr−1 : Ir−1 ⊆ · · · ⊆ J : I , Lemma 1 shows that
in fact mono(Js : Is) =mono(J : I) for all s≥ 1.

The following results generalize the case presented in [18, 4.10] in which I
is an ideal of k[x, y] with a 2-generated monomial reduction.

Assumptions 1. For the remainder of the section, let I be an ideal in a
regular local ring (R,m) of dimension two or a monomial ideal in k[x, y]. We
can assume I is 0-dimensional by pulling out the greatest common divisor. Let
J be a minimal reduction of I or a locally minimal reduction of I , respectively.
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Proposition 2. Define I∗ := J : (Jr : Ir), where I and J satisfy Assump-
tions 1 and r = rJ(I). Then I∗ does not depend on J and r(I∗) ≤ 1. In
addition, J : I∗ = Jr : Ir .

Proof. We will work with the characterization J : (Jr : Ir) = J : (core(I) : I)
given by Lemma 1. If necessary, localize to assume J is generated by a
regular sequence. By the Briançon–Skoda theorem [14, 1], JI ⊆ I2 ⊆ core(I).
That is, J ⊆ core(I) : I . Since all of these ideals are m-primary and hence
unmixed, I∗ = J : (core(I) : I) is a link. Taking the colon with J again, we
obtain J : I∗ = core(I) : I , which does not depend on J . Hence, the ideal
I∗ is 2-balanced [20, 3.6]. Therefore, r(I∗) ≤ 1 according to [20, 4.8]. Now
suppose K is another minimal reduction of I . Then by the discussion above,
J : I∗ =K : I∗ = core(I) : I . But K : I∗ is a link, so I∗ =K : (K : I∗) =K :
(core(I) : I) =K : (Kr : Ir). Thus, I∗ is independent of the minimal reduction
used to define it. �

Remark 2. If I as above is monomial, then I∗ is also a monomial ideal.
This is because I∗ remains fixed under the torus action. See, for instance, [4,
5.1].

We can now equate the coefficient ideal of I and a minimal reduction J of
I with the degree one component of the canonical module of R[It, t−1].

Proposition 3. Let I and J satisfy Assumptions 1 and let r = rJ(I).
Then Jr : Ir = core(I) : I is the coefficient ideal of I and J . In particular, the
coefficient ideal of I and J does not depend on J .

Proof. If a is an ideal of R, then Ia = Ja implies Ira = Jra. Hence, the
coefficient ideal of I and J is contained in Jr : Ir. For the other inclusion,
consider I∗ of Proposition 2. Then Jr : Ir = J : I∗, and because r(I∗) ≤ 1,
core(I∗) = J(J : I∗) = I(J : I∗) [5, 2.6]. By substitution, Jr : Ir is contained
in the coefficient ideal, as desired. �

Proposition 3 generalizes a result of Hyry, in which he assumed the Rees
algebra R[It] was Cohen–Macaulay [10, 3.4]. Since the coefficient ideal of I
and J does not depend on the minimal reduction J , we can now simplify
notation by defining the coefficient ideal of I .

Definition 2. Let I and J satisfy Assumptions 1. We define the coefficient
ideal of I to be the coefficient ideal of I and J and denote this ideal by coef(I).

Corollary 4. Let I satisfy Assumptions 1, and define I∗ as in Proposi-
tion 2. Then I∗ is the largest ideal between I and I with the same coefficient
ideal as I and the smallest ideal between I and I with reduction number at
most one.
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Proof. By definition, I∗ = J : coef(I). Since a minimal reduction J of I
is also a minimal reduction of I∗, coef(I∗) = J : I∗ by Proposition 3. As
all ideals are m-primary and locally I∗ is linked to coef(I), indeed we have
J : I∗ = J : (J : coef(I)) = coef(I).

Let L be an ideal with I ⊆ L ⊆ I . If coef(L) = coef(I∗) = J : I∗, then
J(J : I∗) = L(J : I∗) by the definition of coef(L). Therefore, L⊆ J : (J : I∗) =
I∗. On the other hand, suppose r(L) = 1. Then since J is also a minimal
reduction of L, we have coef(L) = (J : L) and so J(J : L) = L(J : L) = I(J : L).
But then J : L⊆ coef(I) = coef(I∗) = J : I∗. By the reverse inclusion property
of colons, I∗ ⊆ L. �

Using Corollary 4, we now formalize the notion of I∗ introduced in Propo-
sition 2.

Remark 3. Let I and J satisfy Assumptions 1, and let r = r(I). Set
I∗ := J : (Jr : Ir). By the above propositions, this ideal is the unique ideal
of reduction number one between I and its integral closure with coef(I∗) =
coef(I). In addition, core(I∗) = I coef(I) = J coef(I).

Remark 4. Notice if I is a 0-dimensional monomial ideal in k[x, y], then
I∗ = core(I) : coef(I). Indeed, if J is a general locally minimal reduction of
I , then I∗ = J : coef(I) = mono(J : coef(I)) because I∗ is monomial. Since
coef(I) is monomial, this gives us I∗ =mono(J) : coef(I) = core(I) : coef(I).
Furthermore, since core(I∗) = I∗ coef(I∗) = I∗ coef(I) by the previous remark,
I∗ satisfies the cancellation property I∗ coef(I) : coef(I) = I∗.

If I satisfies Assumptions 1, then the ideal I∗ associated to I is a reduction
number one ideal with the same degree one component of the canonical module
of its extended Rees algebra; namely, coef(I). Since core(I) is the degree two
component of the canonical module, it is natural to ask whether core(I) =
core(I∗). We can even ask whether ωR[It,t−1] is generated in degrees less than
or equal to one. Theorem 5 below shows that often this is the case. In fact,
core(I) = core(I∗) precisely when I∗ = Ǐ , where Ǐ is the first coefficient ideal
of I , the largest ideal containing I with the same Hilbert–Samuel function
coefficients e0 and e1 as I .

Theorem 5. Let I and J satisfy Assumptions 1 such that additionally
rJ(I) = r(I). Set r = r(I). Then the following are equivalent:

(a) I∗ = Ǐ ;
(b) r(Ǐ)≤ 1;
(c) λ(R/Ǐ) = e0(Ǐ)− e1(Ǐ);
(d) R[Ǐt] is Cohen–Macaulay;
(e) J i(Js : Is) = Js+i : Is for all s≥ r and i≥ 0;

(f) J i(Js′ : Ls′) = Js′+i : Ls′ for all s′ ≥ rJ(L) and i≥ 0, where L is any ideal
integral over I with the same core as I .
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If these equivalent conditions hold, then core(I) = J coef(I) = I coef(I) =
core(I∗).

Proof. Clearly, (a) implies (b). For the converse, ωR[It,t−1] = ωR[Ǐt,t−1] by

[18, 4.1]. Specifically, the degree one components must be the same. There-
fore, coef(I) = coef(Ǐ). But then Ǐ ⊆ I∗, since I∗ is the largest ideal satisfying
coef(I) = coef(I∗). Since I∗ is also the smallest ideal of reduction number at
most one containing I , the condition r(Ǐ)≤ 1 ensures I∗ = Ǐ .

The equivalence of (b) and (c) was proved by Huneke in [9, 2.1].
We can see the equivalence of (b) and (d) by combining [21, 3.1] with [7,

3.10].
To show (e) is equivalent to (a) and (b), let us first assume (e). Then we can

take u= 0 in [18, 4.2]. Consequently, Ǐ = J : (Js : Is) for all s� 0. But this is
I∗ by definition. For the converse, if I∗ = Ǐ , then r(Ǐ)≤ 1. Since J is (locally)
a minimal reduction of I , it must also (locally) be a minimal reduction of Ǐ .
Thus we can apply [5, 2.6] to conclude J i+s : Ǐs = J i(Js : Ǐs) = Ii(Js : Ǐs) for
all s� 0 and i≥ 0. Thus for all s� 0 and i≥ 0, we have the following string
of inequalities:

J i
(
Js : Is

)
⊆ Js+i : Is = [ωR[It,t−1]]d+i−1

= [ωR[Ǐt,t−1]]d+i−1

= Js+i : Ǐs

= J i
(
Js : Ǐs

)

= J i
(
Js : Is

)
.

The final equality follows from coef(I) = coef(Ǐ) and Proposition 3. Hence,
J i(Js : Is) = Js+i : Is for all s� 0 and i ≥ 0. But Js+i : Is is stable for all
s≥ r. Indeed, for all s≥ r,

Js+1+i : Is+1 = Js+1+i : JIs =
(
Js+1+i : J

)
: Is = Js+i : Is.

To show (f) is equivalent to (b) and (e), first assume (e). Polini, Ulrich,
and Vitulli prove in [18, 4.9] that if J i(Js : Is) = Js+i : Is for s≥ r and i≥ 0,
then Ǐ is largest ideal integral over I with the same core as I . Thus, I ⊆ L⊆ Ǐ
for any L in the hypothesis. But then Ľ= Ǐ , so by the equivalence of (b) and

(e), r(Ľ) ≤ 1. We now apply (e) to L to see that J i(Js′ : Ls′) = Js′+i : Ls′

for any s′ ≥ rJ(L) and i≥ 0. For the converse, we can take L= I to get the
desired result.

Finally, suppose the equivalent conditions hold. Recall Jr : Ir = coef(I)
and Jr+1 : Ir = core(I). Then (e) says J coef(I) = core(I). Since core(I) =
core(Ǐ), (a) finishes the proof. �
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The examples below show that the equivalent conditions of Theorem 5 do
not hold for all monomial ideals in k[x, y]. Sometimes, Ǐ is not even the largest
ideal containing I with the same core as that of I .

Example 1. Let I = (x6, x3y3, xy6, y7) and let J be a general locally min-
imal reduction of I . By CoCoA calculations following the method introduced
in [18], rJ(I) = r(I) = 2, but I = Ǐ and

core(I) =
(
y12, xy11, x2y10, x3y8, x4y7, x5y6, x6y4, x7y3, x9

)
.

However, x9 /∈ I coef(I). If it were, then we would have x3 ∈ coef(I) and, in
turn, x3y7 ∈ I coef(I)⊆ core(I). But x3y7 /∈ core(I), a contradiction. For this
ideal, I = Ǐ is still the unique largest monomial ideal integral over I with the
same core as I . Any strictly larger monomial ideal with the same integral
closure has a smaller core.

Example 2. Let I = (x15, x9y6, x4y12, y17) and let J be a general locally
minimal reduction of I . By CoCoA calculations, rJ(I) = r(I) = 8, but I(J8 :
I8) �= (J9 : I8) = core(I). In particular, x27 ∈ core(I), but x12I � core(I).
Again by CoCoA calculations, the first coefficient ideal is

Ǐ =
(
x15, x12y5, x9y6, x6y11, x4y12, x3y14, y17

)
,

and rJ(Ǐ) = 6. On the other hand, the largest ideal containing I with the
same core as I is the reduction number two ideal

L=
(
x15, x14y3, x13y4, x12y5, x9y6, x8y9, x7y10,

x6y11, x4y12, x3y14, x2y15, xy16, y17
)
.

The Hilbert coefficient e1(I) = e1(Ǐ) = 97, while e1(L) = 100.

3. The monomial case

For a 0-dimensional monomial ideal I in k[x, y], we combine our results from
the previous section with the structure of the exponent set of I to provide
a combinatorial description for coef(I). Because we have shown that I has
the same coefficient ideal as a possibly larger ideal of reduction number one,
we may reduce to r(I)≤ 1 and coef(I) = J : I , where J is a locally minimal
reduction of I . When J is monomial, the duality between the exponent sets
of I and J : I is well known and easy to show. In particular, if J = (xa, yb),
then xsyt ∈ I −J if and only if xa−s−1yb−t−1 /∈ J : I . See, for example, Miller
and Sturmfels [15, 5.27]. We will describe a surprising generalization of this
duality when J is not monomial; that is, when I does not have a 2-generated
monomial reduction.

Assumptions 2. For the remainder of the paper, we assume I is a 0-
dimensional monomial ideal in the polynomial ring R= k[x, y] over a field of
either characteristic zero or sufficiently large characteristic, and r(I)≤ 1. Let
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I = (xa0 , . . . ,xan), where xai = xaiybi , a0 > · · ·> an = 0 and 0 = b0 < · · ·< bn.
Let J be a locally minimal reduction of I .

In addition, we denote the exponent set of an ideal I by Γ(I) =
{(a, b)|xayb ∈ I)}. The Newton polyhedron of I , denoted NP(I), is the convex
hull of Γ(I) in R2.

Our description of coef(I) = J : I relies on the Hilbert–Burch matrix for
I . Recall that this matrix is given by the (n + 1) × n matrix M = {mij},
where mii = −ybi−bi−1 , m(i+1)i = xai−1−ai for i = 1, . . . , n, and mij = 0 for
j �= i− 1, i. That is,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 . . . n−2 n−1

0 −yb1 0 0 . . . 0 0

1 xa0−a1 −yb2−b1 0 . . . 0 0

2 0 xa1−a2 −yb3−b2 . . . 0 0
...

...
...

...
. . .

...
...

n−1 0 0 0 . . . xan−2−an−1 −ybn−bn−1

n 0 0 0 . . . 0 xan−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Because J : I does not depend on the locally minimal reduction J , we can
apply [6, 2.4] to conclude J : I is generated by the (n− 1)× (n− 1) minors of
M . Consider the minor formed by deleting column � and rows j and k of M ,
where 0≤ �≤ n− 1 and 0≤ j < k ≤ n. Notice if either � < j or � > k− 1, then
the minor generated by deleting column � and rows j and k is zero. Hence,
we may assume 0 ≤ j ≤ � < k ≤ n. If we delete column � and rows j and k
under these conditions, the resulting (n− 1)× (n− 1) matrix M ′ is a block
diagonal matrix composed of four blocks, call them A, B, C, and D, defined
as follows:

M ′ =

⎛
⎜⎜⎝
A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

⎞
⎟⎟⎠ ,

A=

⎛
⎜⎜⎜⎜⎜⎝

−yb1 0 . . . 0 0
xa0−a1 −yb2−b1 . . . 0 0

...
...

. . .
...

...
0 0 . . . −ybj−1−bj−2 0
0 0 . . . xaj−2−aj−1 −ybj−bj−1

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

xaj−aj+1 −ybj+2−bj+1 . . . 0 0
0 xaj+1−aj+2 . . . 0 0
...

...
. . .

...
...

0 0 . . . xa�−2−a�−1 −ybj−1−bj−2

0 0 . . . 0 xa�−1−a�

⎞
⎟⎟⎟⎟⎟⎠

,
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C =

⎛
⎜⎜⎜⎜⎜⎝

−yb�+2−b�+1 0 . . . 0 0
xa�+1−a�+2 −yb�+3−b�+2 . . . 0 0

...
...

. . .
...

...
0 0 . . . −ybk−1−bk−2 0
0 0 . . . xak−2−ak−1 −ybk−bk−1

⎞
⎟⎟⎟⎟⎟⎠

,

D =

⎛
⎜⎜⎜⎜⎜⎝

xak−ak+1 −ybk+2−bk+1 . . . 0 0
0 xak+1−ak+2 . . . 0 0
...

...
. . .

...
...

0 0 . . . xan−2−an−1 −ybn−bn−1

0 0 . . . 0 xan−1

⎞
⎟⎟⎟⎟⎟⎠

.

Then, up to a factor of −1,

det
(
M ′)= det(A)det(B)det(C)det(D)

= ybjxaj−a�ybk−b�+1xak

= xaj+ak−a�ybj+bk−b�+1 .

Since every generator of J : I can be obtained in this manner, the following
lemma results.

Lemma 6. Let I and J satisfy Assumptions 2. Then

coef(I) = J : I =
({

xaj+ak−a�ybj+bk−b�+1
}
0≤j≤�<k≤n

)
.

By examining which of the generators of coef(I) given by Lemma 6 are
minimal, we see the shape of Γ(coef(I)) emerge. The following theorem details
this shape and its symmetry with Γ(I).

Theorem 7. Let I and J satisfy Assumptions 2 with {t0, . . . , ts} ⊆
{0, . . . , n} so that at0 , . . . ,ats minimally determine NP(I). Then Γ(coef(I)) =
Γ(J : I) is minimally generated by all of the elements of the form ati +ati+1 −
(a�, b�+1), where 0≤ i≤ s− 1 and ti ≤ � < ti+1.

Before proving the theorem, we look carefully at elements of the form
ati + ati+1 − (a�, b�+1) and how they correspond to symmetry between
Γ(coef(I)) and Γ(I). Fix i ∈ {0, . . . , s − 1} in order to focus on two
consecutive minimal generators ati and ati+1 of NP(I). Figures 1(A)
and 1(D) illustrate this process for the reduction number one ideal I =
(x11, x9y2, x6y3, x5y5, x4y6, x2y7, xy9, y10). Fix � so that ti ≤ � < ti+1. No-
tice since a� and a�+1 are consecutive minimal generators of Γ(I), the point
(a�, b�+1) forms an inside corner of the region in R2 representing Γ(I). See Fig-
ure 1(B) for an illustration. If we reflect the inside corner (a�, b�+1) through
the point (ati + ati+1)/2, the center of the box between ati and ati+1 , the
resulting point is ati + ati+1 − (a�, b�+1). See Figure 1(E) for an illustration.
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Figure 1. Duality of Γ(I) and Γ(coef(I)).

Theorem 7 shows that by repeating this process for all i ∈ {0, . . . , s − 1}
and for all pairs of consecutive generators a� and a�+1 for which ti ≤ � < ti+1,
we actually generate Γ(coef(I)). This creates a duality between Γ(I) and
Γ(coef(I)) which locally (i.e., between generators ati and ati+1) mirrors the
Alexander duality of [15, 5.27]. Figures 1(C) and 1(F) exhibit this local
duality.

In order to prove Theorem 7, we first relate the length of J : I to the Hilbert
coefficient e1(I).

Lemma 8. Let I and J satisfy Assumptions 2. Then λ(R/J : I) = e1(I),
where λ denotes R-module length.

Proof. In [8, 4.10], Huckaba and Marley showed that R[It] is Cohen–
Macaulay if and only if

e1(I) =
d−1∑
n=1

λR

(
In/In ∩ J

)
,

where d= dim(R). Since r(I) ≤ 1, R[It] is Cohen–Macaulay by Theorem 5.
Then, because d= 2, we have

e1(L) = λ(I/I ∩ J) = λ(I/J) = λ
(
R/(J : I)

)
,
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Figure 2. Illustration of the proof of Proposition 7.

where the final equality follows from linkage theory. That is, J : I is linked to
I via J , so ωR/(J:I) = I/J . Since R/(J : I) is Artinian, λ(ωR/(J:I)) = λ(R/(J :
I)) by [3, 3.2.12(e)(i)]. �

We are now able to prove the theorem.

Proof of Theorem 7. Let a be the ideal

a=
(
xe|e= ati−1 + ati − (a�, b�+1), i ∈ [s], ti−1 ≤ � < ti

)
.

Each element of the form ati−1 + ati − (a�, b�+1) is an element of Γ(J : I) by
Lemma 6. Thus, a ⊆ J : I . To show equality, we compare lengths. Using
Lemma 8, we need only show λ(R/a) = e1(I).

Set e0 = e0(I) and e1 = e1(I). Recall ati = (ati , bti). Consider the ideal
b =

∑s
i=0(x

ati
+ati+1 ybti ), where bts+1 is taken to be 0. Clearly b ⊆ I , as

pictured in Figure 2(B) above, so we may consider λ(I/b).

Claim 1. λ(I/b) = e1.

Proof of Claim 1. Since r(I) ≤ 1, we can apply Theorem 5 to conclude
λ(R/I) = e0 − e1. Then by the additivity of lengths, λ(I/b) = λ(R/b) −
λ(R/I) = λ(R/b) − (e0 − e1). Thus, to show λ(I/b) = e1, it suffices to
show λ(R/b) = e0. Now according to [22, 7.35], covol(NP(I)) = e0/2. On
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the other hand, adding up areas of trapezoids, covol(NP(I)) =
∑n

i=1
1
2 (ati +

at)(bti − bti−1). Then e0 =
∑n

i=1(ati−1 + ati)(bti − bti−1). But this is precisely
covol(Γ(b)) = λ(R/b), as desired. �

Claim 2. λ(R/a) = λ(I/b).

Proof of Claim 2. Notice that we can identify λ(R/a) with #(N2 − Γ(a))
and λ(L/b) with #(Γ(I)−Γ(b)). We further identify a point (m1,m2) in N2

with the square of area one in R2 with vertices at (m1,m2), (m1+1,m2), (m1+
1,m2 + 1), and (m1,m2 + 1). By this identification, the areas of the regions
in R2 represented by N2 − Γ(a) and Γ(I)− Γ(b) are equal to the number of
points in the respective sets. Therefore, to prove the claim, it is sufficient to
show that the area of the region represented by N2−Γ(a) is equal to the area
of the region represented by Γ(I)− Γ(b).

To show this equality, we first divide the two regions into pieces. Figure 2
illustrates this process. Define Ai := {(m1,m2) ∈ N2 − Γ(a)|qi ≤m2 < qi+1}
for i= 0, . . . , s− 1. Notice the Ai are disjoint sets whose union is N2 − Γ(a).
Define Bi := {(n1, n2) ∈ Γ(I)− Γ(b)|qi ≤ n2 < qi+1} for i= 0, . . . , s− 1. Simi-
larly, the Bi are disjoint sets whose union is Γ(I)−Γ(b). Fix i ∈ {0, . . . , s−1}.
We identify Ai and Bi with the respective regions in R2 that the two sets rep-
resent. We will show the area of Ai is equal to the area of Bi.

Let ϕ be the map which takes a point in R2 to its reflection through the
point (ati + ati+1)/2. That is, ϕ((m1,m2)) = ati + ati+1 − (m1,m2). Then by
construction, ϕ(Bi) = Ai, when Ai and Bi are thought of as regions in R2.
See Figure 2(D) for an illustration. Since area is invariant under reflection,
the area of Ai must equal the area of Bi. Because i was arbitrarily chosen,
it follows that the sum of the areas of the Ai for i= 0, . . . , s− 1 must equal
the sum of the areas of the Bi. Therefore, the area of the region representing
N2 −Γ(a) equals the area of the region representing Γ(I)−Γ(b), proving the
claim. �

Combining Claim 1 and Claim 2 yields the desired result. �

Remark 5. Let I satisfy Assumptions 2. Then the number of minimal
generators μ(coef(I)) = μ(I)− 1. Indeed, by Theorem 7 and its subsequent
discussion, we see that two consecutive minimal generators of Γ(I) correspond
to exactly one minimal generator of Γ(coef(I)).

Given the close connection between coef(I) and core(I), it is natural to
wonder whether Γ(core(I)) also has a symmetric relationship to Γ(I), espe-
cially when core(I) = I coef(I) under the equivalent conditions of Theorem 5.
This is indeed shown to be the case in [13].

The results in this paper depend heavily on dimension two, which raises
questions concerning higher dimensions. Under what conditions is the coef-
ficient ideal still Jr : Ir? In dimension d > 2, reduction number one ideals
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are not as prevalent. Are there natural substitutes, such as reduction num-
ber d− 1 ideals? What can be said about the shape of the exponent set of
monomial coefficient ideals in this broader setting?
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