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COHOMOLOGICAL CONSEQUENCES OF
THE PATTERN MAP

PRAISE ADEYEMO AND FRANK SOTTILE

Abstract. Billey and Braden defined maps on flag manifolds
that are the geometric counterpart of permutation patterns.

A section of their pattern map is an embedding of the flag man-
ifold of a Levi subgroup into the full flag manifold. We give two

expressions for the induced map on cohomology. One is in terms

of generators and the other is in terms of the Schubert basis. We

show that the coefficients in the second expression are naturally

Schubert structure constants and therefore positive. Similar re-
sults hold for K-theory, generalizing known formulas in type A
for cohomology and K-theory.

Introduction

In their study of singularities of Schubert varieties and coefficients of
Kazhdan–Lusztig polynomials [6], Billey and Braden introduced maps of flag
manifolds that are the geometric counterpart of the generalized permutation
patterns of Billey and Postnikov [5]. We study sections of the Billey–Braden
pattern map. For the type A flag manifold, such sections led to formulas for
certain specializations of Schubert [1] and Grothendieck polynomials [20]. In
both cases, this gave new expressions for Schubert class representatives as
explicit sums of monomials [3], [20]. These formulas express the pullback of a
Schubert class as a sum of Schubert classes on the smaller flag manifold whose
coefficients are naturally Schubert structure constants. This was applied in
[15] to show that quiver coefficients [13], [14], [19], [21] are naturally Schubert
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structure constants, as the decomposition formula [11], [12] is a special case
of the formulas in [1], [20].

We generalize the formulas in [1], [20]. Let L be a Levi subgroup of a
semisimple algebraic group G and write their flag manifolds as FL and FG,
respectively. For each right coset of the Weyl group of L in the Weyl group
of G there is a natural embedding of FL into FG. If L is the Levi of a stan-
dard parabolic subgroup and ς is the minimal element in a coset, then the
corresponding map on cohomology is expressed in terms of polynomial repre-
sentatives as the map on generators induced by ς . Analyzing the pushforward
map on Schubert cycles in homology gives an expression for the pullback map
as a sum of Schubert classes for FL whose coefficients are naturally Schubert
structure constants for FG.

We also give a similar formula for the pullback in K-theory.
In Section 1, we give background information on the cohomology and

Grothendieck rings of flag manifolds. Our main results are given in Section 2,
where we first recall the results of Billey and Braden, and then apply them
to obtain our formulas.

1. Flag manifolds

We work over the complex numbers, but our results are valid for any al-
gebraically closed field k, when we replace cohomology by Chow groups. We
first recall some basic facts about flag manifolds and their cohomology.

Let G be a connected and simply connected complex semisimple linear
algebraic group, B a Borel subgroup of G, and T the maximal torus contained
in B. The Weyl group W :=N(T )/T of G is the quotient of the normalizer
of T by T . Our choice of B gives W the structure of a Coxeter group with
a preferred set of generators and a length function, � : W →{0,1,2, . . .}. Let
wo ∈W be the longest element.

All Borel subgroups are conjugate by elements of G, which identifies the
set F of Borel subgroups as the orbit G/B, called the flag manifold. A Borel
subgroup B0 is fixed by an element g ∈ G if and only if g ∈ B0. The Weyl
group embeds in F as its set FT of T -fixed points. These index B-orbits
on G/B, which together form the Bruhat decomposition,

(1.1) F =
⊔

w∈W

BwB/B.

Each orbit BwB/B is isomorphic to an affine space of dimension �(w). An
orbit is a Schubert cell, X◦

w, and its closure is a Schubert variety, Xw. Set
B− := woBwo, which is the Borel subgroup opposite to B containing T . Let
Xw := woXwow = B−w, which is also a Schubert variety and has codimen-
sion �(w). The intersection Xv ∩Xw is nonempty if and only if w ≥ v and in
that case it is irreducible of dimension �(w)− �(v) [18], [23].
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Both the integral homology groups and cohomology ring of F are free as
Z-modules with bases given by Schubert classes associated to Schubert va-
rieties, and these classes do not depend upon the choice of Borel subgroup.
For homology, let [Xw] ∈H2�(w)(F ,Z) be the fundamental cycle of the Schu-

bert variety. For cohomology, let Sw ∈H2�(w)(F ,Z) be the cohomology class
Poincaré dual to [Xw]. Then

(1.2)
[
Xv ∩Xw

]
=Sv � [Xw],

where � is the cap product giving the action of cohomology on homology.
Since the Schubert classes form a basis, there are integer Schubert structure

constants cwu,v for u, v,w ∈W defined by the identity in H∗(F ,Z),

(1.3) Su ·Sv =
∑
w

cwu,vSw.

These constants vanish unless �(w) = �(u)+�(v) and they are nonnegative, for
they count the number of points in a triple intersection of Schubert varieties,
gXu ∩ Xv ∩ Xw, where g ∈ G is general. Important for us is the duality
formula. Let π : F → pt be the map to a point. Then, if v,w ∈W , we have

(1.4) π∗
(
Sv � [Xw]

)
=

{
1, if v =w,

0, otherwise,

so the Schubert basis is self-dual. Combining this with (1.3) gives

(1.5) cwu,v = π∗
(
Su ·Sv � [Xw]

)
.

Recall the projection formula. Let f : Y → Z be a map of compact topolog-
ical spaces and π : Y,Z → pt maps to a point. For y ∈H∗(Y ) and z ∈H∗(Z),
we have

(1.6) π∗
(
z � f∗(y)

)
= π∗

(
f∗(z)�y

)
.

The cohomology ring of the flag manifold has a second, algebraic descrip-
tion. The Weyl group acts on the dual h∗ of the Lie algebra h of the torus.
Borel [8] showed that the cohomology of F with complex coefficients is natu-
rally identified with the quotient of the symmetric algebra S•h

∗ of h∗ by the
ideal generated by its non-constant W -invariants,

(1.7) H∗(F ,C) = S•h
∗/
〈(
S•h

∗)W
+

〉
= S•h

∗ ⊗(S•h∗)W C.

These two descriptions, one geometric and the other algebraic, are linked.
Chevalley [16] gave a formula for the product of any Schubert class by a
generating Schubert class. This special case of the formula (1.3) determines it
and implies expressions for a Schubert class as a polynomial in the generating
classes. A breakthrough was made when Bernstein, Gelfand and Gelfand [4]
and Demazure [17] gave a computable system of polynomials Pw ∈ S•h

∗ for
w ∈ W such that Pw represents the Schubert class Sw. While not unique,
these representatives depend only upon the choice of Pwo .
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The formulas we obtain in cohomology use only basic properties of coho-
mology, functoriality, the geometric Schubert basis, generation by the dual
of h, duality, and the projection formula. Consequently, such formulas exist
for more general cohomology theories. One such example is the Grothendieck
ring.

Under tensor product, the Grothendieck group of vector bundles on F mod-
ulo short exact sequences is a ring K0(F). As F is smooth, this is isomorphic
to the Grothendieck group K0(F) of coherent sheaves on F . A consequence of
the Bruhat decomposition (1.1) is that classes of structure sheaves of Schubert
varieties form a Z-basis of K0(F) =K0(F). Write Gw for the class [OXw ] of
the structure sheaf of the Schubert variety Xw.

The Grothendieck ring has a presentation similar to (1.7) for cohomology
[22]. Let h∗

Z
:= Hom(T,C×) be the character group of T . The representation

ring R(B) of B is isomorphic to Z[h∗
Z
] and the representation ring R(G) of G is

its W -invariants, R(B)W . There is a natural map R(B)→K0(G/B) induced
by V �→G×B V , for a representation V of B. This induces an isomorphism

R(B)⊗R(G) Z
∼−→K0(G/B).

As with cohomology, there are (non-unique) representatives of Grothendieck
classes Gw in K0(G/B) that lie in the Laurent ring Z[h∗

Z
], and these depend

only upon the choice of a representative for Gwo [17].
Brion [10, Lemma 2] showed that the product of these Grothendieck classes

corresponds to the intersection of Schubert varieties,

(1.8) Gu · Gv = [OXu∩gXv ],

where g ∈G is general.
As with cohomology, the Grothendieck ring has a pairing induced by mul-

tiplication and the map to a point, π : F → pt. For sheaves E ,E ′ on F this
pairing is 〈

[E ],
[
E ′]〉 := π∗

(
[E ] ·

[
E ′])= π∗

([
E ⊗ gE ′]),

where g ∈G is general and π∗ is the derived functor of global sections,

π∗
(
[E ]

)
= χ(E) =

∑
i≥0

(−1)i dimHi(F ,E),

which is the Euler–Poincaré characteristic of the sheaf E .
Since χ(OXw) = 1 and if v ≥w and g ∈G is general, then χ(OXw∩gXv ) = 1

[9, Section 3], this Schubert basis is not self-dual. Brion and Lakshmibai
showed that the dual basis is given by the ideal sheaves of the Schubert
boundaries. Specifically, let Iw be the sheaf of OXw -ideals that define the
complement of the Schubert cell X◦

w. Then

(1.9) π∗
(
Gw · [Iv]

)
=

{
1, if v =w,

0, otherwise.
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Allen Knutson gave an expression for these classes:

(1.10) [Iw] =
∑
v≤w

(−1)�(w)−�(v)Gv.

This follows from Möbius inversion as the Bruhat order is Eulerian.
As the Schubert classes form a basis of K0(F), there are integer Schubert

structure constants cwu,v for u, v,w ∈W defined by the identity in K0(F),

Gu · Gv =
∑
w

cwu,vGw.

By duality, we have

(1.11) cwu,v = π∗
(
Gu · Gv · [Iw]

)
.

These Schubert structure constants vanish unless �(w)≥ �(u)+ �(v) and they
coincide with those for cohomology when �(w) = �(u) + �(v) (this is why we
use the same notation for both). This is because K0(F) is filtered by the
codimension of the support of a sheaf with the associated graded algebra the
integral cohomology ring. Thus when �(w) = �(u)+ �(v), cwu,v ≥ 0. In general,
these constants enjoy the following positivity [10],

(1.12) (−1)�(w)−�(u)−�(v)cwu,v ≥ 0.

2. The pattern map

Let us recall the geometric pattern map and its main properties as devel-
oped by Billey and Braden [6]. Let η : C∗ → T be a cocharacter with image
the subgroup Tη of T . Springer [24, Theorem 6.4.7] showed that the central-
izer G′ := ZG(Tη) of Tη in G is a connected, reductive subgroup and T is a
maximal torus of G′. Furthermore, if B0 ∈ F is a fixed point of Tη , so that
Tη ⊂B0, then B0 ∩G′ is a Borel subgroup of G′.

Let F ′ := G′/B′ be the flag variety of G′, and Fη be the set of Tη-fixed
points of F . Then the association Fη 	 B0 �→ B0 ∩ G′ ∈ F ′ defines a G′-
equivariant map ψ : Fη →F ′. Restricting to T -fixed points, this gives a map
ψ : W →W ′, where W ′ is the Weyl group of G′. This is the Billey–Postnikov
pattern map, generalizing maps on the symmetric groups coming from permu-
tation patterns. Specifically, ψ : W →W ′ is the unique map that is (1) W ′-
equivariant in that ψ(wx) = wψ(x) for w ∈W ′ and x ∈W , and (2) respects
the Bruhat order in that if ψ(x) ≤ ψ(wx) in W ′ with w ∈ W ′ and x ∈ W ,
then x ≤ wx in W . Billey and Braden use this to deduce that the map ψ
is an G′-equivariant isomorphism between each connected component of Fη

with the flag variety F ′, and also that the connected components of Fη are
in bijection with right cosets W ′ \W of W ′ in W .

Observe that B− ∩G′ =B′
−, which is the Borel group opposite to B′ con-

taining T . Let Fη
ς be the component of Fη corresponding to a coset W ′ς with
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ς ∈W ′ς having minimal length, and let ις : F ′ ∼−→Fη
ς be the corresponding sec-

tion of the pattern map. (This is the unique G′-equivariant map sending the
T -fixed point eB′ ∈ F ′ to the T -fixed point ςB ∈ Fη .) Note that

(2.1) Fη
ς =G′ς =B′

−ς ⊂B−ς =Xς .

Billey and Braden also note that if w ∈W ′, then

(2.2) ις
(
X ′

w

)
=Xwς ∩Fη

ς = (Xwς)
η.

Lemma 2.1. Let W ′ς be a coset of W ′ in W with ς of minimal length in
W ′ς and ις : F ′ →Fη the corresponding section of the pattern map. Then, for
w ∈W ′, we have

ις
(
X ′

w

)
⊂Xς ∩Xwς .

Proof. By (2.1), we have ις(X
′
w) ⊂ Fη

ς ⊂Xς and by (2.2) ις(X
′
w) ⊂Xwς .

�
2.1. The pattern map on cohomology. The group G′ centralizing Tη in
G is a Levi subgroup of some parabolic subgroup of G. Indeed, Billey and
Braden show that W ′ is conjugate to a standard parabolic, and as the roots
of G′ relative to the torus T are the reflections in W ′, this implies that the lie
algebra g′ of G′ coincides with the lie algebra of a Levi subgroup L, and thus
G′ = L. All parabolic subgroups of G are conjugate to a standard parabolic
subgroup, which is a parabolic subgroup containing B. The set of standard
parabolics is in bijection with subsets I of the Dynkin diagram of G.

We will assume that G′ is the Levi subgroup of a standard parabolic cor-
responding to a subset I , and henceforth write GI for G′ and BI for B′.
Write FI for its flag variety, which is a product of flag varieties whose factors
correspond to the connected components of I in the Dynkin diagram of G.
Its Weyl group is the parabolic subgroup WI of W , which is the subgroup
generated by the simple reflections corresponding to I .

The right cosets WI \W are indexed by minimal length coset representa-
tives W I . Useful for us is the following proposition.

Proposition 2.2 ([7, Proposition 2.4.4]). Let ς ∈W I be a minimal length
representative of a coset of WI in W . For w ∈WI , we have �(wς) = �(w)+�(ς)
and the intervals [e,w] in WI and [ς,wς] in W are isomorphic.

We use this to refine Lemma 2.1.

Theorem 2.3. Let ς ∈W I be a minimal length coset representative with
ις : FI →F the corresponding section of the pattern map. Then

ις(Xw) =Xς ∩Xwς .

Proof. By Lemma 2.1, we have the inclusion ⊂. The result follows as both
ις(Xw) and the Richardson variety Xς ∩ Xwς are irreducible of dimension
�(w) = �(wς)−�(ς). �
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We use this to compute the pushforward of the fundamental homology class
of a Schubert variety under ις .

Corollary 2.4. Let ις,∗ : H∗(FI)→H∗(F) be the map on homology in-
duced by ις . Then

ις,∗[Xw] =
[
Xς ∩Xwς

]
=Sς � [Xwς ].

(The second equality is (1.2).)
We use this to compute the map ι∗ς on the Schubert basis of cohomology.

Theorem 2.5. Let ς ∈W I be a minimal length representative of a right
coset of WI and ις : FI →F be the corresponding section of the pattern map
with ις(wBI) =wςB. Then

ι∗ς (Su) =
∑

w∈WI

cwς
u,ςSw,

where ι∗ς : H
∗(F)→H∗(FI) is the induced map on cohomology.

Proof. Let u ∈W . Since Schubert classes form a basis of cohomology, there
are integer decomposition coefficients dwu for w ∈WI defined by the identity

ι∗ς (Su) =
∑

w∈WI

dwuSw.

Using duality and applying the pushforward map, we have

dwu = π∗
(
ι∗ς (Su)� [Xw]

)
= π∗

(
Su � ις,∗[Xw]

)
= π∗

(
Su ·Sς � [Xwς ]

)
= cwς

u,ς ,

with the last line following from Corollary 2.4 and (1.5). �
Recall that as G and GI have the same maximal torus, we have

H∗(F ,C) = S•h
∗ ⊗(S•h∗)W C and H∗(FI ,C) = S•h

∗ ⊗(S•h∗)WI C.

Thus the map ι∗ς on cohomology is induced by the map ι∗ς on h∗. Since h∗ is
spanned by characters of T and a character γ corresponds to an equivariant
line bundle Lγ , the following lemma shows that this is simply the action of ς
on h∗.

Lemma 2.6. Let γ ∈ Hom(T,C×) be a character of the torus T , then
ι∗ς (Lγ) = Lς(γ).

Proof. Let γ be a character of T , which is also a character of B. The line
bundle Lγ is the quotient of G × C by the equivalence relation (gb, z) ∼
(g, γ(b)z) for g ∈ G, b ∈ B and z ∈ C. Thus, (g, z) ∼ (h,w) if and only if
g−1h ∈B and zw−1 = γ(g−1h).

To compute the pullback ι∗ς (Lγ), first choose a representative σ ∈N(T ) of
ς ∈ N(T )/T . Then ις : F ′ → Fη

ς is covered by the map G′ 	 g′ �→ g′σ ∈ G.
Consider the composition G′ × C → G × C � Lγ . Two points (g′, z) and
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(h′,w) of G′ ×C have the same image in Lγ if and only if b′ := (g′σ)−1h′σ =
σ−1(g′)−1h′σ lies in B′ =B ∩G′ and zw−1 = γ(b′).

Then zw−1 = γ(σ−1(g′)−1h′σ) = ς(γ)((g′)−1h′). Thus, the map G′ ×C→
G × C descends to a map of line bundles Lς(γ) → Lγ over the section
ις : F ′ →Fη

ς . �
We deduce the following result.

Theorem 2.7. The map ι∗ς on cohomology is induced by the map
S•ς : S•h

∗ → S•h
∗. That is, for x ∈ h and f ∈ S•h

∗, this map is(
ι∗ς f

)
(x) = f(ςx).

We combine Theorems 2.5 and 2.7 to get an algebraic formula for special-
izations of representatives of Schubert classes given by a minimal length coset
representative ς .

Corollary 2.8. Let Pu ∈ S•h
∗ be a representative of the Schubert class

Su ∈H∗(F). Then, for x ∈ h and ς ∈W I a minimal length coset representa-
tive, we have

Pu(ςx)≡
∑

w∈WI

cwς
u,ςPw(x) mod

〈(
S•h

∗)WI

+

〉
,

where Pw ∈ S•h
∗ for w ∈ WI are representatives of Schubert classes in

H∗(FI).

Remark 2.9. The formula for ι∗ς (Su) in Theorem 2.5 gives an algorithm
to compute it. First, expand Su ·Sς in the Schubert basis of H∗(F). Restrict
the sum to terms of the form Swς with w ∈WI , and then replace Swς by Sw

to obtain the expression for ι∗ς (Su).

Example 2.10. Suppose that G is the symplectic group of Lie type C4.
Let I be the subset of C4 obtained by removing the long root so that GI is the
special linear group SL4 of Lie type A3. The Weyl group C4 is the group of
signed permutations whose elements are words a1 a2 a3 a4, where the absolute
values |ai| are distinct, and the identity element is 1234. The length of such
a word is

�(a1 a2 a3 a4) =#{i < j | ai > aj}+
∑
ai<0

|ai|.

If we use a to represent −a, then we have

�(3142) = 4, �(2341) = 7, and �(2134) = 3.

The action of S4 on such words is to permute the absolute values without
changing the signs. The right cosets correspond to subsets P of {1, . . . ,4}
where the elements in that coset take negative values. Here are the minimal
length coset representatives

2134, 3241, 2314, and 3421



COHOMOLOGICAL CONSEQUENCES OF THE PATTERN MAP 1005

that correspond to subsets {1,2}, {2,4}, {3}, and {1,3,4}, respectively.
Write Cu for u ∈C4 for Schubert classes in this type C flag manifold F and

Sw for w ∈ S4 for Schubert classes in the type A flag manifold FI . We will
let ς = 2134 and compute ι∗ς (C3142). Following Remark 2.9, we first compute
C3142 · C2134.

We use the Pieri formula for the symplectic flag manifold as given in [2],
for

Cς = C2134 = C2134 · C1234 − 2 · C3124,

and the Pieri formula is for multiplication by C1234, C2134, and C3124. We
obtain

C3142 · C2134 = C3241 + 2C2341 + 2C4312 + 2C2341 + 2C1432 + 2C4231.

As only the indices of the last four terms have the form wς , we see that

ι∗ς (C3142) = 2S3412 + 2S3241 + 2S4132 + 2S2431.

Remark 2.11. The results in this section generalize results in [1], which was
concerned with the flag variety Fn+m of the general linear group GLn+m with
root system An+m−1. Section 4.5 of [1] studied an embedding of flag manifolds
ψP : Fn×Fm →Fn+m corresponding to a subset P of [m+n] := {1, . . . , n+m}
of cardinality n. Writing P and its complement P c := [m+n]� P in order,

P : p1 < · · ·< pn and P c : pc1 < · · ·< pcm,

the pullback map on cohomology

ψ∗
P : H∗(Fn+m)−→H∗(Fn ×Fm)H∗(Fn)⊗H∗(Fm),

is induced by the map

ψ∗
P : xa �−→

{
yi, if a= pi,

zj , if a= pcj ,

where x1, . . . , xn+m generate H∗(Fn+m), y1, . . . , yn generate H∗(Fn), and
z1, . . . , zm generate H∗(Fm). The effect of ψ∗

P on the Schubert basis was
expressed in terms of Schubert structure constants for Fn+m, detailed in The-
orem 4.5.4 and Remark 4.5.5 of [1].

These formulas are the specialization of Theorem 2.5 and Corollary 2.8 to
the situation of [1, Section 4.5]. In our notation, I is the subset of the Dynkin
diagram An+m−1 obtained by removing the nth node, GI = GLn × GLm,
WI = Sn × Sm, and FI  Fn × Fm. The minimal coset representative W I

corresponding to the map ψP is the inverse shuffle ςP defined by

ςP :

{
pi �→ i, for i= 1, . . . , n,

pcj �→m+j, for j = 1, . . . ,m.

This permutation is written εP,[n](e, e) in [1] and for v × w ∈ Sn × Sm, the
permutation (v×w)ςP is written εP,[n](v,w).
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Then, in the notation we use here, Theorem 4.5.4 of [1] becomes Theo-
rem 2.5,

ι∗ςP (Su) =
∑

v×w∈Sn×Sm

c(v×w)ςP
u,ςP Sv×w,

as Sv ⊗Sw = Sv×w under the Künneth isomorphism H∗(FI) = H∗(Fn) ⊗
H∗(Fm).

Finally, the map ι∗ςP on S•h
∗ agrees with the map Ψ∗

P of [1], where we write
the generators of H∗(FI) as y1, . . . , yn, z1, . . . , zm as above.

2.2. The pattern map in the Grothendieck ring. The results of Sec-
tion 2.1 generalize nearly immediately to Grothendieck rings of the flag vari-
eties F and FI . In particular, Theorem 2.3 implies the analog of Corollary 2.4.
Namely, if w ∈WI and ς ∈W I is a minimal length coset representative, then

(2.3) ις,∗(OXw) =OXς∩Xwς =OXς ⊗OXwς ,

where ις,∗ is the (derived) pushforward map on sheaves, which induces the
map K0(FI)→K0(F). The second equality is (1.8).

Theorem 2.7 also immediately generalizes. The map ι∗ς : K
0(F)→K0(FI)

is induced by the action of ς on h∗
Z
, leading to a formula similar to Corollary 2.8

for polynomial representatives of Grothendieck classes Gw, once we generalize
the formula of Theorem 2.5.

What remains is a formula for the decomposition coefficients dwu for u ∈W
and w ∈WI defined by the identity,

(2.4) ι∗ς (Gu) =
∑

w∈WI

dwuGw.

Using duality (1.9) for Grothendieck classes, we have

dwu = π∗
(
ι∗ς (Gu) · [Iw]

)
= π∗

(
Gu · ις,∗[Iw]

)
.

We prove the following lemma, which will enable this calculation.

Lemma 2.12. With these definitions, if w ∈ WI , then ις,∗[Iw] = [OXς ⊗
Iwς ].

As the projection formula (1.6) also holds for the Grothendieck ring/group,
the same arguments as in the proof of Theorem 2.5 yield the following theorem.

Theorem 2.13. With these definitions, we have

ι∗ς (Gu) =
∑

w∈WI

cwς
u,ςGw,

where ι∗ς : K
0(F)→K0(FI) is induced by the map ι∗ς of line bundles given in

Lemma 2.6.
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Proof of Lemma 2.12. We use the expression (1.10) for the ideal sheaves,
the pushforward formula (2.3), and Proposition 2.2 to compute

ις,∗[Iw] =
∑
v≤w

(−1)�(w)−�(v)ις,∗[OXv ] =
∑
v≤w

(−1)�(w)−�(v)[OXς ⊗OXvς ]

!
=

∑
u≤wς

(−1)�(wς)−�(u)[OXς ⊗OXu ] = [OXς ⊗Iwς ].

To see the equality (
!
=) note that OXς ⊗OXu is the zero sheaf unless ς ≤ u.

Thus the sum over u≤ wς is equal to the sum over u in the interval [ς,wς]≤
in the Bruhat order, and this interval is parameterized by the interval [e,w]
in the Bruhat order on WI under the map v �→ vς = u, by Proposition 2.2.
That proposition also implies that the signs are preserved: �(w) − �(v) =
�(wς)− �(vς). �

The decomposition coefficients dwu of (2.4) are nonnegative in the same
sense as the Grothendieck structure constants cwu,v (1.12). Indeed,

(−1)�(w)−�(u)dwu = (−1)�(w)−�(u)cwς
u,ς = (−1)�(wς)−�(u)−�(ς)cwς

u,ς > 0,

as �(w) − �(u) = �(w) + �(ς) − �(u) − �(ς) = �(wς) − �(u) − �(ς) by Proposi-
tion 2.2.

Remark 2.14. With the same conventions as Remark 2.11, the results here
for the map ι∗ς on Grothendieck rings specialize to those of [20, Section 7] in
type A.

Remark 2.15. The results here should hold for more general cohomology
theories, such as T -equivariant K-theory. We plan to treat that in a sequel.
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